
Kohn-Sham potentials in density functional theory

Robert van Leeuwen

October 18, 1994



Contents

1 General introduction 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A review of density functional theory 9

2.1 Key concepts and formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Density matrices and density functionals . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The pair-correlation function and the exchange-correlation hole . . . . . . . . . . . . 13

2.4 E�ective non-interacting particle models . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 The Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Scaling properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 The coupling constant integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Virial relations and the kinetic part of Exc . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Asymptotic properties of the exchange-correlation potential . . . . . . . . . . . . . . 30

2.11 The Optimized Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 Approximate density functionals: LDA and GGA . . . . . . . . . . . . . . . . . . . . 34

2.13 An integral equation for the exchange-correlation potential . . . . . . . . . . . . . . 38

3 A review of functional calculus 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 The Banach spaces Lp and H1 . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Operators and functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Functional di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 The Fr�echet derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 The Gâteaux-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Higher order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Variational calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Extremal points of functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Convex functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Functional integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 The line integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Integrability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Taylor expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1



2 CONTENTS

4 Density functionals for Coulomb systems 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Conditions on the electron density and external potentials . . . . . . . . . . . . . . . 63

4.3 Properties of the energy functional E[v] . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 The Hohenberg-Kohn functionals FHK [�] and FEHK [�] . . . . . . . . . . . . . . . . . 68

4.5 The Levy and Lieb functionals FLL[�] and FL[�] . . . . . . . . . . . . . . . . . . . . 73

4.6 Gâteaux di�erentiability of FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 An exchange-correlation potential with correct asymptotic behaviour 81

R.van Leeuwen and E.J.Baerends,Phys.Rev.A49:2421,1994

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Nonlocal exchange-correlation potentials : requirements . . . . . . . . . . . . . . . . 82

5.3 The nonlocal exchange and correlation potentials of Becke and Perdew . . . . . . . . 86

5.4 Constructing the potential from the density . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 A model potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Structure of the optimized e�ective Kohn-Sham exchange potential and its gra-

dient approximations 99

O.V.Gritsenko,R.van Leeuwen and E.J.Baerends,Int.J.Quant.Chem. (submitted)

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Properties of the exchange optimized e�ective potential . . . . . . . . . . . . . . . . 100

6.3 Comparison of the OPM, LDA, GGA and GEA exchange potentials . . . . . . . . . 102

6.4 A gradient �t to vx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Analysis of electron interaction and atomic shell structure in terms of local

potentials 115

O.V.Gritsenko,R.van Leeuwen and E.J.Baerends,J.Chem.Phys. (accepted)

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 De�nition of local potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Structure of local potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Step structure in the atomic Kohn-Sham potential 129

R.van Leeuwen, O.V.Gritsenko and E.J.Baerends,Z.Phys.D (submitted)

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 The exchange-correlation potential: separation into a long range and a short range

part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Functional derivative of the Kohn-Sham pair-correlation function . . . . . . . . . . . 134

8.4 The step structure in the exchange potential . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.7 Appendix:The inverse density response function . . . . . . . . . . . . . . . . . . . . . 145



CONTENTS 3

9 A self-consistent approximation to the Kohn-Sham exchange potential 149

O.V.Gritsenko,R.van Leeuwen,E.van Lenthe and E.J.Baerends,Phys.Rev.A (submitted)

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2 A model potential vmodresp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3 A self-consistent scheme with vmodresp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.4 A comparison of the self-consistent potentials . . . . . . . . . . . . . . . . . . . . . . 155

9.5 Calculations with the accurate Slater potential . . . . . . . . . . . . . . . . . . . . . 159

9.6 Calculations with the GGA approximation to vS . . . . . . . . . . . . . . . . . . . . 162

9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10 An analysis of nonlocal density functionals in chemical bonding 167

R.van Leeuwen and E.J.Baerends,Int.J.Quant.Chem. (accepted)

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 Left-right correlation and the exact Kohn-Sham potential . . . . . . . . . . . . . . . 168

10.3 Analysis of Beckes and Perdews molecular potentials . . . . . . . . . . . . . . . . . . 170

10.4 Gradient corrected energy densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.5 Numerical procedure and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11 Exchange and correlation: a density functional analysis of the hydrogen molecule183

R.van Leeuwen and E.J.Baerends (to be submitted)

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11.2 Exchange and correlation in density functional theory . . . . . . . . . . . . . . . . . 184

11.3 The in�nite separation limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

11.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.5 An analysis of bond energy contributions . . . . . . . . . . . . . . . . . . . . . . . . 197

11.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

12 Energy expressions in density functional theory using line integrals 203

R.van Leeuwen and E.J.Baerends,Phys.Rev.A (submitted)

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.2 Line integrals and path dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

12.3 Exchange-correlation energy and the kinetic part: bounds from potentials . . . . . . 207

12.4 Constraints on vc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

12.5 Invariance properties of potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

12.6 Calculating molecular binding energies from potentials . . . . . . . . . . . . . . . . . 215

12.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Samenvatting 219

List of publications 223



4 CONTENTS



Chapter 1

General introduction

1.1 Introduction

The description of the physical properties of interacting many-particle systems has been one of the

most important goals of physics during this century. The problem is to derive the properties of

many-particle systems from the quantum mechanical laws of nature. This requires the solution of a

partial di�erential equation (the Schr�odinger or Dirac equation ) of 3N spatial variables and N spin

variables (for electrons) where N is the number of particles in the system. For atoms the number

of electrons is in the range N � 1� 100. Even small molecules have often more than 100 electrons

and for a solid one has N � 1023. It is clear that the problem cannot be solved without making

approximations somewhere along the line. However 'solving' the Schr�odinger or Dirac equation is

only part of the many-particle problem. The most important objective is to understand and predict

the properties of many-particle systems and to calculate the several measurable quantities, such as

the bonding energy, polarizability, conductivity,etc.. , rather than the wave function itself.

One way to circumvent the complete solution of the many-particle problem is to construct model

Hamiltonians containing only the physics one is interested in. A large number of model Hamilto-

nians is in use. One has for instance the H�uckel method or tight-binding model, the Hubbard and

Heisenberg Hamiltonians, the BCS-model etc.. to mention just a few (see for instance [1]). These

approximate methods have been quite succesful in explaining a large range of physical phenomena

ranging from bonding mechanisms in chemistry to ferromagnetism and superconductivity in solid

state physics. However if one is looking for systematic improvements of these approximate models

one still has to face the many-body problem.

A systematic way of improvement can be achieved for �nite systems such as atoms and molecules

by variational methods or perturbation theory. A very simple method is the con�guration interac-

tion method. One uses an approximate wave function with many parameters (sometimes millions!)

which are expansion coe�cients of Slater determinants, and uses the variational principle to mini-

mize the energy with respect to these parameters. The minimizing wave function then approximates

the real wave function. The method is however not applicable to in�nite systems. Also several vari-

ants of perturbation theory are available. A rather elegant formalism, which has been developed

in the 50's, is the Greens function technique [2, 3, 4]. Instead of the wave function one uses the

one- and two-particle Greens functions to calculate the measurable quantities. The method can in

some cases also be applied to in�nite systems, for instance quantum liquids or the electron gas.

The disadvantage of the above methods is that their application when possible to inhomogeneous

systems like atoms, molecules, solids and surfaces require a large computational e�ort.

A di�erent formalism which is still exact and which can treat the systems mentioned with less

5



6 CHAPTER 1. GENERAL INTRODUCTION

computational e�ort is the density functional method [5, 6, 7, 8, 9] . The formalism has been devel-

oped in the 60's by Hohenberg and Kohn [10] and Kohn and Sham [11]. The Kohn-Sham approach

to density functional theory (DFT) allows an exact description of the interacting many-particle

systems in terms of an e�ective non-interacting particle system. The e�ective potential in this non-

interacting particle system (the Kohn-Sham system) can be shown to be completely determined

by the electron density of the interacting system, and is for this reason called a density functional.

In particular the ground state energy of the system is a density functional. Exact expressions for

this functional are, due to the complicated nature of the many-body problem, not known. However

over the years, due to a great amount of thoughtful work, more accurate ,more 'physical' and more

practical approximations have continued to appear.

The Kohn-Sham method has been used in solid state physics for about thirty years. By now, largely

due to the development of increasingly accurate density functionals, the method has also gained a

large popularity among quantum chemists, especially as it allows in many cases accurate treatments

of molecular systems unattainable by the more traditional quantum mechanical methods.

The review in the following chapter gives a basic introduction to density functional theory and the

Kohn-Sham method. The choice of the subjects in this review has to a large extent been in
u-

enced by the subjects of the thesis work and personal interest. It therefore treats among others

exchange-correlation holes and pair-correlation functions, the OPM-model, scaling properties, and

generalized gradient approximations.

Two further chapters on the more mathematical aspects of density functional theory are included.

The �rst one is an introduction to functional calculus, the concepts of which are applied to den-

sity functional theory of Coulomb systems in the following section. This chapter contains a more

rigorous discussion of some mathematical aspects of density functional theory providing a justi�-

cation for the use of variational equations in DFT which assumes for instance di�erentiability of

functionals. From a physicists point of view these points are technicalities as all electron densities

to be considered in nature are smooth and well-behaved and the corresponding energy functional

should also be smooth and di�erentiable, at least at the collection of physical densities. Although

plausible, this still is an assumption. The fact that the statement is in fact true has been proved

by mathematicians some 20 years after the Hohenberg-Kohn paper providing a sound basis for

applications in DFT. The two chapters on functional analysis are hopefully useful for the reader

interested in the functional analytical aspects of DFT.

1.2 Overview of the thesis

In this thesis we investigate the properties of the Kohn-Sham e�ective potential for atomic and

molecular systems. We in particular investigate the exchange-correlation potential and its ap-

proximations such as the local density approximation (LDA) and the generalized gradient approx-

imations (GGA). We further propose improved approximations for the exchange and exchange-

correlation potential (shortly denoted as x-potential and xc-potential ) and discuss a method to

obtain exchange-correlation energy expressions from approximate potentials using line integrals.

In chapter 5 we discuss the properties of the xc-potential corresponding to the GGA's of Becke

and Perdew which are compared to the exact xc-potential. The exact xc-potential is constructed

from accurate atomic electron densities by a newly developed iterative method. From this compar-

ison one can clearly see that the approximate GGA's lack some properties satis�ed by the exact

xc-potential, notably the long range Coulombic asymptotics which a�ects the highest occupied

orbital energies. To satisfy the asymptotic requirement a gradient expression is developed for the

xc-potential with the correct asymptotics leading to greatly improved atomic and molecular ioni-
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sation energies as determined from the highest occupied Kohn-Sham orbital.

In chapter 6 we give a more extensive discussion of several gradient approximations to the ex-

change potential. These are Pad�e approximants which are constructed to satisfy the correct scaling

properties, long range asymptotics and atomic shell structure of the exchange potential. The con-

structed Pad�e approximants lead to considerable improvements of the existing expressions for the

GGA exchange potentials which do not exhibit the right long range asymptotics and which have

an unphysical Coulombic divergence close to the atomic nucleus. The exchange energy is calcu-

lated from these Pad�e approximants using the Levy-Perdew relation. It turns out that to obtain

good exchange energies this way a good description of the exchange potential in the core region is

important.

In chapter 7 we give an analysis of electron correlation and atomic shell structure in terms of local

potentials. The analysis carried out leads to a splitup of the xc-potential into two terms, a long

range and a short range part, both of which are relatively easy to approximate. An important ques-

tion is how exchange and correlation e�ects in
uence the shape of the xc-potential as it provides

insight in the way to construct more accurate density functionals. An important feature of the

exchange and exchange-correlation potential is the atomic shell structure. The x- and xc-potential

can be written as the sum of two potentials, a smooth long range attractive Coulombic potential

and a short range repulsive step-like potential with clear atomic shell structure. The latter po-

tential is constant within the atomic shells but changes rapidly at the atomic shell boundaries.

The exchange-correlation energy is completely determined by the long range attractive part of the

xc-potential. The atomic shell structure is further clearly re
ected in the properties of the exchange

and exchange-correlation hole and the conditional probability amplitude. Both quantities are re-

lated to the distribution of the other electrons when one electron, called the reference electron,

is known to be at a certain position in space. The exchange hole and the conditional probability

amplitude undergo rapid changes when the reference electron crosses atomic shell boundaries. As

several of the constituents of the Kohn-Sham and xc-potential can be expressed in terms of the

conditional probability amplitudes information on the structure of the Kohn-Sham potential can

directly be obtained from the study of these probability amplitudes which contain all the exchange

and correlation information of the system. For instance the peak structure at the atomic shell

boundaries in the so-called kinetic potential which is a part of the functional derivative of the

kinetic energy functional is directly related to changes in the conditional probabililty amplitudes

when the reference electron crosses atomic shell boundaries. As discussed in chapter 10 the same

potential describes the left-right correlation e�ect in dissociating molecules.

In chapter 7 we noted the step structure in the x- and xc-potential. In chapter 8 this step structure

is derived by making an approximation in the functional derivative of the pair correlation function.

The result is an equation for the exchange potential which has been derived earlier by Krieger, Li

and Iafrate (KLI) in a di�erent way. This potential turns out to be a very accurate approximation

to the exact exchange potential. Another important result is an approximate expression for the

inverse density response function as it occurs in several places within density functional theory

(e.g. in the construction of xc-potentials from electron densities and in the calculation of excitation

energies in time-dependent DFT).

In chapter 9 we propose an approximation for the above discussed short range step-like and long

range Coulombic part of the exchange potential. The long range part is approximated by a density

gradient expression with the correct asymptotics derived from the Becke GGA for the exchange

energy. The short range repulsive step-like part is written as a summation of orbital densities with

coe�cients that depend on the orbital energies. The analytic dependence of these coe�cients on

the orbital energies is determined by imposing the correct scaling relations, gauge invariance and
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reduction to the correct electron gas result for homogeneous systems. The resulting potential turns

out to be a practical and accurate representation of the exchange potential and it moreover yields

accurate (of Becke GGA quality ) values for the exchange energies.

In chapters 10 and 11 we consider molecular systems. In chapter 10 we discuss the properties of

the GGA's of Becke and Perdew for the case of molecular dissociation. The Becke-Perdew GGA

is widely applied in quantum chemistry as it yields accurate ( with an accuracy of about 0.2 eV )

bond energies and geometries for molecules. In this chapter we try to obtain more insight in the

reasons for this good performance of the gradient corrected functionals. We �rst discuss the prop-

erties of the exact Kohn-Sham potential in the bond midpoint region. As has been noted before

the Kohn-Sham potential in the bond midpoint region exhibits a peak structure related to the left-

right correlation e�ect. This peak structure arises from the kinetic part of the exchange-correlation

functional and can be expressed in terms of the conditional probability amplitude. We show that

this peak structure is also present in Becke-Perdew GGA however with a wrong functional depen-

dence on the electron density. We furthermore explain why the Becke GGA for the exchange in

general yields repulsive contributions to the bond energy and why the Perdew GGA for correlation

yields an attractive contribution. This is related to the fact that density gradients at the saddle

point in the electron density (the bond midpoint) are zero. Numerical results are presented for the

dissociating nitrogen molecule and contributions from di�erent regions of space are analyzed.

In chapter 11 we discuss exact and approximate (the Becke-Perdew GGA) density functional re-

sults for the dissociating hydrogen molecule. The hydrogen molecule is chosen for the analysis as

the exact DFT quantities needed for comparison with the approximate results can be calculated

from accurate electron densities obtained from large con�guration interaction calculations on this

molecule. A disadvantage however is that this molecule is not a 'standard' molecule in the sense

that is does not have core orbitals and therefore it lacks the Pauli repulsion contribution to the bond

energy. The DFT results are further compared to the results of the Hartree-Fock approximation

and the con�guration interaction method which yields almost exact results. It turns out that the

DFT results with GGA's included give a very accurate representation of the binding curve of the

hydrogen molecule. The DFT curve deviates from the exact curve however in the dissociation limit,

which can be cured by performing an unrestricted Kohn-Sham calculation. The DFT dissociation

error is however much smaller than the error in the Hartree-Fock approximation. This is due to the

fact that the LDA and GGA exchange-correlation hole is localized around the reference electron

and resembles much more the true exchange-correlation hole than the delocalized Hartree-Fock

exchange hole. The fact that there is still a dissociation error in DFT is due to the fact that the

approximate density functionals are not invariant under spin rotations, which leads to problems

for degenerate ground states (which are in practice solved by performing unrestricted calculations).

We �nally analyze the bond energy contribution of the Becke-Perdew GGA for certain density

variations.

In chapter 12 we discuss the problem how to calculate the exchange-correlation energy if only the

exchange-correlation potential is known. From the exchange potential one can calculate the ex-

change energy using the Levy-Perdew relation which can be derived using the scaling properties of

the exchange potential. For the correlation potentials such scaling relations are however not known.

However as we show the correlation energy can be obtained from line integrals in the space of elec-

tron densities. Path dependence of the line integrals is discussed and integrability conditions are

presented. We further discuss how several invariance properties of the xc-potential can be derived

by selecting certain paths corresponding to certain symmetries (rotation, translation, scaling) and

derive some inequalities for the correlation potential. We then show that the line integral formalism

generalizes the transition state method of Ziegler for the calculation of molecular bond energies.



Chapter 2

A review of density functional theory

2.1 Key concepts and formulas

The evolution of a system of N particles moving in a external potential v(r) and having internal

particle interactions w(r1r2) is in many cases where relativistic e�ects are not important to a very

good approximation determined by the Schr�odinger equation

H(r1; : : : ; rN )	(r1; : : : ; rN ; t) = i@t	(r1 : : : rN ; t) (2.1)

where the Hamiltonian H is given by

H(r1; : : : ; rN ) =

NX
i

�
1

2
r2
i + v(ri) +

1

2

X
i6=j

w(rirj) (2.2)

In the above equations we neglected the internal degrees of freedom of the particles such as spin.

For many-electron systems such as atoms, molecules or solids we have to take the electron spin

into account and the stationary states of the system are determined from the time-independent

Schr�odinger equation

H(r1 : : : rN )	(r1�1 : : : rN�N ) = E	(r1�1 : : : rN�N ) (2.3)

where �i are the spin coordinates of the electrons and we require the wave function of the system to

be antisymmetric under interchange of space and spin variables. The Hamiltonian can alternatively

be written in second quantized notation as

Ĥ = T̂ + V̂ + Ŵ (2.4)

where

T̂ = �
1

2

X
�

Z
 ̂+
� (r)r2 ̂�(r)dr (2.5)

V̂ =
X
�

Z
 ̂+
� (r)v(r) ̂�(r)dr (2.6)

Ŵ =
X
��0

Z
 ̂+
� (r) ̂+

�0(r
0)w(r; r0) ̂�0(r

0) ̂�(r)drdr0 (2.7)

We further denote xi = (ri�i). The action of the operators  ̂+
� (r) and  ̂�(r) on a N -electron state

	N in coordinate space is de�ned as

[ ̂+
� (r)	]N+1(x1 : : : xN ) =

1p
N + 1

Â[�(x � xN+1)	N (x1 : : : xN )] (2.8)

9
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where

�(x � xi) = �(r � ri)���i (2.9)

and

[ ̂�(r)	]N�1(x1 : : : xN�1) =
p
N	N (x1 : : : xN�1; x) (2.10)

where Â is the antisymmetrization operator de�ned as

(Â	)(x1 : : : xN ) =
X
P2SN

sign(P )	(xP (1) : : : xP (N)) (2.11)

where the summation runs over all permutations P of the group of permutations SN of N elements.

The operator  ̂+
� (r) adds a particle with spin � at position r to the N -particle state 	N and operator

 ̂�(r) removes a particle with spin � from the N -particle state 	N . One can readily verify using

the above de�nitions that the Hamiltonians 2.3 and 2.4 are equivalent. One can furthermore derive

the anticommutation relationsh
 ̂�(r);  ̂�0(r

0)
i
+

=
h
 ̂+
� (r);  ̂+

�0 (r
0)
i
+

= 0 (2.12)h
 ̂�(r);  ̂+

�0(r
0)
i
+

= �(r � r0)���0 (2.13)

where [A;B]+ = AB +BA.

We now de�ne the electron density as

�(r) = h	j�̂(r)j	i = h	j
X
�

 ̂+
� (r) ̂�(r)j	i = N

X
�

Z
j	(r�x2 : : : xN )j2dx2 : : : dxN (2.14)

where dx denotes integration over the spatial variable r and summation over the spin variable �.

The electron density �(r) is proportional to the probability per unit volume of �nding an electron

at position r.

2.2 Density matrices and density functionals

An important method of calculating ground state properties of many-particle systems is the varia-

tional method which is based on the variational principle which states in the case of fermion systems

that for any anti-symmetric wavefunction 	 :

E[	] =
h	jĤj	i
h	j	i

� E0 (2.15)

where E0 is the ground state energy of the system. This can be derived assuming Ĥ has a lowest

eigenvalue which is almost always true for all (non-relativistic) cases of interest. This means that

the ground state wavefunction is a stationary point of the energy functional E[	], so we have

0 =
�E

�	(x1 : : : xN )
=

1

h	j	i

"
�h	jĤ j	i

�	(x1 : : : xN )
�E[	]

�h	j	i
�	(x1 : : : xN )

#

=
1

h	j	i

h
Ĥ	�(x1 : : : xN )�E	�(x1 : : : xN )

i
(2.16)
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which is just Schr�odingers equation as expected.

From the expression of the Hamiltonian 2.4 it follows that we can write the expectation value of Ĥ

with state j	i as

h	jĤ j	i = �
1

2

X
�

Z
r2
r
�(r; r0)jr=r0dr+

X
�

Z
��(r)v(r)dr+

1

2

X
��0

Z
���0(r; r

0)w(r; r0)drdr0(2.17)

In the above expression we have de�ned the one-particle density matrix 
� as


�(r; r
0

) = h	j ̂+
� (r0) ̂�(r)j	i = N

Z
	�(r0�x2 : : : xN )	(r�x2 : : : xN )dx2 : : : xN (2.18)

and the diagonal two-particle density matrix ���0 as

���0(r; r
0) = h	j ̂+

� (r) ̂+
�0(r

0) ̂�0(r
0) ̂�(r)j	i

= N(N � 1)

Z
j	(r�; r0�0x3 : : : xN )j2dx3 : : : dxN (2.19)

A general M -particle density matrix (for an overview of the properties of density matrices see

reference [12] ) is de�ned as:

DM (r1�1 : : : rM�M ; rM�
0
1 : : : r

0
M�

0
M ) = h	j ̂+

�01
(r01) : : :  ̂

+
�0
M

(r0M ) ̂�1(r1) : : :  ̂�M (rM )j	i

=
N !

(N �M)!

Z
	�(r01�

0
1 : : : r

0
M�

0
MxM+1 : : : xN )	(r1�1 : : : rM�MxM+1 : : : xN )dxM+1 : : : dxN (2.20)

In systems were there are only two-particle interactions present we can restrict ourselves to the two-

particle density matrix. To calculate the energy of the system we then only need the one-particle

density matrix and the diagonal two-particle density matrix which are related to D2 by

��1�2(r1; r2) = D2(r1�1; r2�2; r1�1; r2�2) (2.21)


�(r1; r
0
1) = D1(r1�; r

0
1�) =

1

N � 1

X
�2

Z
D2(r1�r2�2; r

0
1�1r2�2)dr2 (2.22)

One could therefore wonder if one could derive a variational principle for density matrices instead

of wavefunctions. This is readliy done by de�ning

E[DM ] = inf
	!DM

h	jĤ j	i (2.23)

where the in�mum of the expectation value is searched over all normalized anti-symmetric wave-

functions 	 yielding DM (denoted 	 ! DM ). This means that E[DM ] is de�ned on the set DM of

M -particle density matrices obtainable from normalized antisymmetric wavefunctions, i.e

DM = fDM j9	 : 	 ! DM ; h	j	i = 1;	anti-symmetricg (2.24)

One has the variational property:

E[DM ] � E0 if DM 2 DM (2.25)

An arbitrary function DM (x1 : : : xM ;x01 : : : x
0
M ) will in general not belong to the set DM . One

might therefore ask what the necessary constraints are for a function DM to belong to DM . This

problem, which is known as the N -representability problem for M -particle density matrices, has

received considerable attention for the cases M = 1 and M = 2 [13]. The reason for this is that
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equation 2.17 gives an explicit expression for the total energy in terms of D2 and can therefore

be applied for variational calculations. However to apply this formula one needs the constraints

for D2 to belong to D2 which can then be incorporated in the calculation by means of Lagrange

multipliers. If one minimizes without these constraints the energy expression one might get lower

than E0. However the N -representability problem for two-particle density matrices has not been

solved until now.

The N -representability problem for one-particle density matrices on the other hand has been

solved [14] and we will therefore have a look at one-particle density matrix functionals. The energy

for the one-particle density matrix can be written as

E[
] = �
1

2

X
�

Z
r2
r
�(r; r0)jr=r0dr +

X
�

Z
��(r)v(r)dr +W [
] (2.26)

where W [
] is de�ned as

W [
] = inf
	!


h	jŴ j	i (2.27)

A very nice property of the functionalW [
] is that it is de�ned independent of the external potential

v. It can therefore in principle (but not in practice) be calculated once and for all independent of

v. For practical applications one needs to know the necessary conditions for 
 to belong to D1.

These conditions can be formulated as constraints on the eigenvalues �i� of 
�. If we haveZ

�(r1; r2)�i�(r2)dr2 = �i��i�(r2) (2.28)

then the set D1 is equal to

D1 = f
j
Z

�(r; r)dr = N�; 0 � �i� � 1g (2.29)

The �i� are called the natural occupation numbers and the orbitals �i� are called the natural

orbitals. The fact that 0 � �i� � 1 is a consequence of the Pauli-principle, any orbital �� can be

occupied with maximally one electron with spin �. For the application of the variation theorem one

needs approximate expressions for W [
]. One of the simplest expressions follows by considering a


 obtainable from a Slater determinant which yields

W [
] =
1

2

X
�

Z
w(r1; r2)[
�(r1; r1)
�(r2; r2)� 
�(r1; r2)
�(r2; r1)]dr1dr2 (2.30)

As one can prove [15] that for this approximate W [
] the energy is always minimized by a 
�
obtainable from a Slater determinant wave function the variational equations corresponding to

this W [
] will be equal to the Hartree-Fock equations to be discussed in a later section. Some

approximations which go beyond the one proposed here are known [16, 17] but the variational

equations are not solved.

An other approach for which approximations to the functionals are easier to obtain is the density

functional approach. In the spirit of the lines described above one can de�ne an energy density

functional by

E[�] =

Z
�(r)v(r) + FLL[�] (2.31)

where the functional FLL introduced by Levy and Lieb is [18, 19] de�ned as

FLL[�] = inf
	!�

h	jT̂ + Ŵ j	i (2.32)
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where the in�mum is searched over all normalized antisymmetric wavefunctions giving electron

density �. The in�mum can actually be shown to be a minimum [19]. As for any density integrating

to N electrons and which satis�es � � 0 one can easily construct a wavefunction (even a Slater

determinant) which yields � the densities in the set

N = f�j� � 0;

Z
�(r)dr = Ng (2.33)

satisfy the N -representability conditions. With the introduction of a Kohn-Sham system accurate

approximate expressions for the functional FLL can be found. This leads in practice to the solution

of a system of equations for noninteracting particles moving in an e�ective external potential.

2.3 The pair-correlation function and the exchange-correlation

hole

Important insight into the behaviour of interacting many-particle systems can be obtained by the

analysis of correlation functions. Especially insightful are the pair-correlation function g�(r1; r2)

and the exchange-correlation hole function �xc(r1; r2) Extensive discussions of the exchange-correlation

hole function have been given by Slater [20] and McWeeny [21]. We de�ne the function

P�1�2(r2jr1) =
��1�2(r1; r2)

��1(r1)
(2.34)

The function P�1�2(r2jr1) gives the probability to �nd an electron with spin �2 at r2 if we know

that there is an electron at r1 with spin �1. We de�ne the exchange-correlation hole function

��1�2xc (r1; r2) by the equation

P�1�2(r2jr1) = ��2(r2) + ��1�2xc (r1; r2) (2.35)

As the presence of the reference electron at r1 reduces the probability to �nd an electron near r1
the function �xc represents a hole in the electron density ��(r2). It has the property

X
�2

Z
��1�2xc (r1; r2)dr2 = �1 (2.36)

The hole therefore contains one electron. The electron repulsion energy between the electrons may

now be written

h	jŴ j	i =
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 +Wxc (2.37)

where Ŵ is the Coulombic repulsive potential between the electrons and the exchange-correlation

energy is given by

Wxc =
1

2

X
�1�2

Z
��1(r1)�

�1�2
xc (r1; r2)

jr1 � r2j
dr1dr2 =

1

2

X
�1

Z
��1(r1)v

h
xc;�1(r1)dr1 (2.38)

where vhxc;�(r1) is the potential of the exchange-correlation hole of the reference electron at r1
de�ned as

vhxc;�1(r1) =
X
�2

Z
��1�2xc (r1; r2)

jr1 � r2j
dr1dr2 (2.39)
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For neutral �nite systems such as atoms the asymptotic behaviour of vhxc;� at large distance r

from the system decays Coulombically as �1=r. If we move the reference electron to in�nity then,

for instance for an atom, the probability to �nd an electron near the atomic nucleus is reduced.

Another way of putting this is to say that the reference electron experiences the potential of the

positive ion it leaves behind. Let us discuss the exchange-correlation hole function a bit further.

The probability to �nd another electron near the reference electron is reduced for two di�erent

reasons, one reason is the Pauli-principle which only a�ects electrons with like spin, and the other

reason is the Coulomb repulsion which is spin-independent. The Pauli principle forbids, even if

there where no Coulomb interactions between the electrons, electrons with the same spin to occupy

the same position in space. This is called the exchange e�ect. The corresponding hole function ��1�2x

is called the exchange-hole function. For a non-interacting system of electrons the exchange-hole

function is readily calculated. The wave function of such a system is just a Slater determinant

	D(r1�1 : : : rN�N ) =
1p
N !
j�1(r1�1) : : : �N (rN�N )j (2.40)

We �nd

��1�2x (r1; r2) = �
j
�1(r1; r2)j2

��1(r1)
��1�2 (2.41)

where


�1 =

N�1X
i

�i(r1�1)�
�
i (r2�1) (2.42)

So we see that the hole for unlike spin electrons is zero as expected. If the reference electron at r1 is

well-located within orbital �i and the other orbital densities are small at r1 then ��1(r1) � j�i(r1)j2
and we �nd approximately

��1�2x (r1; r2) � �j�i(r2�2)j2��1�2 (2.43)

The exchange-correlation hole for an interacting system of electrons is much more di�cult to

calculate. Note however that to calculate Wxc or the hole potential vhxc we only need the spherical

averaged part ��xc of the exchange-correlation hole, de�ned as

���1�2xc (r1; s) =

Z
��1�2xc (r1; r1 + s)d
s (2.44)

where d
s is the integration volume of the angular variables for s. The exchange-correlation hole

potential becomes

vhxc;�1(r1) =
X
�2

Z 1

0
4�s2

���1�2xc (r1; s)

s
ds (2.45)

Another useful function for the description of electron correlation in many-electron systems is the

pair-correlation function g�1�2(r1; r2) de�ned as

g�1�2(r1; r2) =
��1�2(r1; r2)

��1(r1)��2(r2)
(2.46)

Then we can write

h	jŴ j	i =
1

2

X
�1�2

Z
��1(r1)��2(r2)

g�1�2(r1; r2)

jr1 � r2j
dr1dr2 (2.47)
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The function describes the screening of the interparticle interactions due to exchange- and correla-

tion e�ects, i.e. the 1=r12 potential is replaced by the screened potential g=r12. The expression for

Wxc then becomes

Wxc =
1

2

X
�1�2

Z
��1(r1)��2(r2)

(g�1�2(r1; r2)� 1)

jr1 � r2j
dr1dr2 (2.48)

The pair-correlation functions satis�es the sum rule

X
�2

Z
��2(r2)(g�1�2(r1; r2)� 1)dr2 = �1 (2.49)

And for the exchange-correlation hole potential we have

vhxc;�1(r1) =
X
�2

Z
��2(r2)(g�1�2(r1; r2)� 1)

jr1 � r2j
dr2 (2.50)

From the sum rule we again �nd that vhxc has a Coulombic asymptotic behaviour.

2.4 E�ective non-interacting particle models

Important insight in the properties of many-particle systems can be obtained from the study of

e�ective non-interacting particle models. In these models the interacting system of particles is

replaced by a non-interacting system of particles in which the external �eld is replaced by an e�ective

external �eld which incorporates to some extent the interparticle interactions in an average way.

Within the Kohn-Sham approach to DFT one can do this in a formally exact manner. In this section

we will however discuss some approximate models, which by their relative ease in computation and

by their physically appealling interpretation, have gained a considerable popularity. It turns out

that from quite simple models such as the H�uckel method in chemistry one can already understand

many properties of chemical bonding. With the appearance of more powerful computers more

sophisticated approximations, such as the Hartree-Fock approximation, have become quite popular

in chemistry.

In the Hartree-Fock approximation the ground state wave function is approximated by a Slater

determinant

	D(r1�1 : : : rN�N ) =
1p
N !
j�1(r1�1) : : : �N (rN�N )j (2.51)

The corresponding energy expression is de�ned as the expectation value of the Hamiltonian with

this Slater determinant wave function. The interparticle interaction Ŵ is taken to be Coulombic.

E[f�ig] = �
1

2

X
�

Z
��i (r�)r2�i(r�)dr +

Z
�(r)v(r)dr +

1

2

Z
�(r)�(r0)

jr� r0j
drdr0 +Ex[f�ig](2.52)

where the electron density is given by

�(r) =
X
�

X
i

j�i(r�)j2 (2.53)

and the exchange energy by

Ex[f�ig] = �
1

2

Z j
�(r; r0)j2

jr� r0j
drdr0 (2.54)
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where


�(r; r0) =

N�X
i

��i (r�)�i(r
0�) (2.55)

In order to obtain the equations for the e�ective one-particle orbitals �i we use the variational

theorem and we minimize the functional


[f�ig] = E[f�ig]�
X
ij

�ij

�Z
��i (r�)�j(r�)dr � �ij

�
(2.56)

where the Lagrange multipliers �ij ensure orthonormality of the orbitals. The Euler-Lagrange

equations are then obtained from

�


��i(r�)
= 0

�


���i (r�)
= 0

�


��ij
= 0 (2.57)

yielding�
�

1

2
r2 + v(r) +

Z
�(r0)

jr0 � rj
dr0
�
�i(r�)�

Z
�HF
x� (r; r0)�i(r

0�)dr0 = �i�i(r�) (2.58)

where the one-particle energies �i are obtained from a diagonalization of the matrix of Lagrange

multipliers �ij. The integral kernel �HF
x� is given by

�HF
x� (r; r0) =


�(r; r0)

jr� r0j
(2.59)

The above equations constitute the Hartree-Fock equations which is a set of integro-di�erential

equations for the orbitals �i. Some of the features of the Hartree-Fock model become more clear if

we rewrite these equations in a slightly modi�ed form where we replace the integral kernel with a

set of orbital dependent potentials�
�

1

2
r2 + v(r) +

Z
�(r0)

jr� r0j
dr0 + vHFi (r�)

�
�i(r�) = �i�i(r�) (2.60)

where

vHFi (r�) = �
Z
ni(r�; r

0�)

jr� r0j
dr0 (2.61)

and

ni(r�; r
0�) =

��i (r�)
�(r; r0)�i(r
0�)

j�i(r�)j2
(2.62)

The most important contribution of 
� to ni when �i is an occupied orbital is the term �i(r�)��i (r
0�)

so we �nd that approximately

ni(r�; r
0�) � j�i(r0�)j2 (2.63)

so we have

vHFi (r�) �
Z j�i(r0�)j2

jr� r0j
dr0 (2.64)
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So we see that the term ni for occupied orbitals substracts out the density of orbital �i. This is

something which is intuitively clear. The e�ective electron should move in the �eld of the charge

cloud of the other electrons, excluding the �eld of its own charge cloud. For atomic systems with

nuclear charge Z this implies that the asymptotic form of the total e�ective Hartree-Fock potential

for occupied orbitals is given by

vHFTOT;i(r�) � �
Z

r
+

Z
�(r0)� j�i(r0�)j2

jr� r0j
dr0 � �

(Z �N + 1)

r
(r !1) (2.65)

which decays like �1=r for neutral atoms. For unoccupied orbitals we have

vHFTOT;i(r�) � �
Z

r
+

Z
�(r0)

jr� r0j
dr0 � �

(Z �N)

r
(r !1) (2.66)

which decays faster than Coulombic for neutral atoms. This last result implies that the virtual

spectrum of a neutral atom within the Hartree-Fock approximation does not resemble the Rydberg-

like series characteristic for particles bounded by a Coulombic potential. The virtual orbitals

(when bounded) of a neutral atom will be quite di�use. This is of some importance when the

virtual Hartree-Fock orbitals are used in more elaborate correlated methods such as con�guration

interaction expansions.

The Hartree-Fock equations have the computational disadvantage that every e�ective electron

moves in a di�erent potential. To simplify the equations one could therefore approximate the the

HF-exchange energy locally by the HF-exchange energy of the homogeneous electron gas yielding

Ex = ��
�

3

8�

� 1
3
Z
�(r)

4
3 dr1 (2.67)

where � = 2=3. The variational equations then become"
�

1

2
r2 + v(r) +

Z
�(r0)

jr� r0j
dr0 �

4

3
�

�
3

8�

� 1
3

�(r)
1
3

#
�i(r) = �i�i(r) (2.68)

NX
i

j�i(r)j2 = �(r) (2.69)

This is a considerable simpli�cation of the Hartree-Fock equations. The main advantage from a

computational point of view is that one now does not have to calculate a nonlocal potential which

requires large computational e�ort. In actual applications for atoms, molecules and solids it turns

out that the accuracy can be improved by replacing the � = 2=3 of the electron gas by � = 0:7. The

method, originally developed by Slater [20], is known as the X�-method and has extensively been

used in solid state physics and quantum chemistry due to its simplicity and surprising accuracy

which in many cases exceeds the accuracy of the Hartree-Fock approximation. The reason for this

is among others, that the well-known molecular dissociation error in Hartree-Fock is considerably

reduced in the X�-approximation due to the localized character of the X�-exchange hole which

actually resembles more the true exchange-correlation hole than the exchange hole. A more exten-

sive discussion of the feature in connection with the Local Density Approximation (LDA) is given

in section of this chapter.

The X�-method shows that it is possible to obtain fairly accurate results within an e�ective non-

interacting particle model with a local potential depending only on the electron density �. In the

next two sections we will show that the X�-model can be regarded as an approximation to an
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exact non-interacting particle model, known as the Kohn-Sham system, containing a density de-

pendent local potential. From the solution of the Kohn-Sham equations it is in principle possible

to obtain the exact ground state density and energy. In practice of course we have to resort to

approximations.

2.5 The Hohenberg-Kohn theorem

In the following we will demonstrate that the ground state energy of any interacting many-particle

system with a given �xed interparticle interaction Ŵ is uniquely determined by its ground state

density. Furthermore the knowledge of the ground state density � determines the external potential

v of the system (to within a trivial constant).

An essential part of the proof of the latter � � v relation is the fact that when calculating the

expectation value of the Hamiltonian Ĥ with a certain state j	i a term containing the electron

density and the external potential explicitly separates out as

h	jV̂ j	i =

Z
�(r)v(r)dr (2.70)

For the same reason one can prove from

h	jŴ j	i =
X
��0

Z
���0(r; r

0)w(r; r0)drdr0 (2.71)

that the two-particle interaction Ŵ is (to within a constant ) a unique functional of the diagonal

two-particle density matrix ���0 .

Another essential ingredient of the proof of the HK-theorem is the use of the variational theorem.

We will derive the theorem for systems with non-degenerate ground states. The theorem is quite

easily extended to the case of degenerate ground states. However to avoid unnecessary complication

we will discuss the degenerate case in a later instant.

An external potential V̂ leads to a ground state density in an obvious way. First of all V̂ leads to

a ground state j	i by solving the Schr�odinger equation

Ĥj	i = Ej	i (2.72)

This provides us with a map C : V 7! � from the set of external potentials V to the set of

ground state wave functions �. Secondly, for any ground state wave function one can calculate the

corresponding electron density from

�(r) = h	j�̂(r)j	i = N
X
�

Z
j	(r�x2 : : : xN )j2dx2 : : : dxN (2.73)

which gives a second map D : � 7! N from the set of ground state wave functions to the set

of ground state densities N . The statement of the Hohenberg-Kohn theorem is then: The map

DC : V 7! N is invertible. To prove this we �rst show that two di�erent external potentials

V̂ 6= V̂ 0 + C (with C an arbitrary constant) lead to two di�erent wave functions (that is di�ering

more than a phase factor).

The proof is by contradiction. Suppose we have

(T̂ + V̂1 + Ŵ )j 1i = E1j 1i (2.74)

(T̂ + V̂2 + Ŵ )j 2i = E2j 2i (2.75)
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where V̂1 6= V̂2 + C where C is a constant and let us assume that j 1i = j 2i = j i, then by

subtraction of these equations we have

(V̂1 � V̂2)j i = (E1 �E2)j i (2.76)

As V̂1 and V̂2 are multiplicative operators we must have V̂1� V̂2 = E1�E2 which is in contradiction

with V1 6= V̂2 + C unless j i vanishes in some region in space. This is however impossible by

the unique continuation theorem valid for all reasonably well-behaved potentials ( for instance for

potentials not containing in�nite barriers etc.). From the above contradiction we then conclude

that our assumption was wrong so two potentials di�ering more than a constant yield di�erent

ground state wave functions and hence the map C is invertable. A more rigorous discussion of the

set of allowable potentials in DFT is presented in chapter 4 of this thesis.

The second part of the proof consists of showing that two di�erent ground state wave functions

yield di�erent ground state densities. The proof proceeds again by contradiction. Let us assume

that j 1i and j 2i yield the same ground state density �. Then we have

E1 = h jĤ1j 1i < h 2jĤ1j 2i = h 2jĤ2 + V̂1 � V̂2j 2i = E2 +

Z
�(r)(v1(r)� v2(r))dr (2.77)

similarly we �nd

E2 < E1 +

Z
�(r)(v2(r)� v1(r))dr (2.78)

Adding both inequalities then leads to the contradiction

E1 +E2 < E1 +E2 (2.79)

and therefore our assumption was wrong, j 1i and j 2i must yield di�erent densities and the map

D is invertible. Therefore by our previous result the map DC is also invertable and the ground

state density uniquely determines the external potential.

Due to the invertability of the map D every ground state expectation value of an operator Â is

determined by the ground state density

A[�] = h [�]jÂj [�]i (2.80)

In particular for the ground state energy we �nd

Ev[�] = h [�]jĤ j [�]i =

Z
�(r)v(r)dr + FHK [�] (2.81)

where the functional FHK [�] is de�ned as

FHK [�] = h [�]jT̂ + Ŵ j [�]i (2.82)

The functional FHK is universal in the sense that it does not depend on the external potential V̂ .

It can therefore in principle (but not in practice ) be calculated for all ground state densities �.

This is the most important conclusion of the HK-theorem, once approximations for FHK are known

we can apply it to all electronic systems ranging from atoms and molecules to solids.

The energy functional Ev satis�es a variational property

E0 = Ev0 [�0] = h [�0]jT̂ + V̂0 + Ŵ j [�0]i < h [�]jT̂ + V̂0 + Ŵ j [�]i = Ev0 [�] (2.83)

if � 6= �0. We therefore �nd

E0 = min
�2N

Ev0 [�] = min
�2N

�Z
�(r)v0(r)dr + FHK [�]

�
(2.84)

A more thorough discussion of the properties of FHK including a discussion of the extension of

FHK to a functional FLL de�ned on a larger set of densities is given in chapter 4 of this thesis.
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2.6 The Kohn-Sham equations

To apply the DFT formalism one obviously needs good approximations for the functional FHK or

FLL. Accurate approximations have been obtained by means of the Kohn-Sham method [11]. A

main advantage of this scheme is that it allows a straightforward determination of a large part of

the kinetic energy in a simple way. Another advantage, from a more physical point of view, is that

it provides an exact one-particle picture of interacting electronic systems. This then provides a

rigorous basis for the one-particle arguments used in solid state physics and chemistry to explain

and predict certain features of chemical bonding.

We introduce a non-interacting particle system with Hamiltonian Ĥs, ground state density � and

external potential vs. The ground state (assumed to be non-degenerate for the moment) is a Slater

determinant of orbitals �i which satisfy the equations ( we neglect spin for the moment)�
�

1

2
r2 + vs(r)

�
�i(r) = �i�i(r) (2.85)

with

NX
i

j�i(r)j2 = �(r) (2.86)

If we apply the Hohenberg-Kohn theorem to this non-interacting system we �nd that there is at

most one external potential vs to within a constant which generates � ( one usually chooses this

constant in such a way that vs ! 0 for jrj ! 1.) Therefore, for a given ground state density �, all

the properties of the system are determined. This is in particular true for the kinetic energy Ts[�]

and the total energy Evs [�] given by

Ts[�] =

NX
i

�
1

2

Z
��i (r1)r2�i(r)dr (2.87)

and

Evs [�] = Ts[�] +

Z
�(r)vs(r)dr (2.88)

The functional Ts[�], which is called the Kohn-Sham kinetic energy, is just a particular case of the

functional FHK for the case Ŵ = 0. The ground state density of the system can now equivalently

be obtained by the solution of the Euler-Lagrange equations

0 =
�

��(r)

�
Evs [�]� �s

Z
�(r)dr

�
=

�Ts

��(r)
[�] + vs(r)� �s (2.89)

where we introduced the Lagrange multiplier �s to satisfy the constraint that the density integrates

to the correct number of electrons. Let us now go back to the interacting system where the energy

functional reads

Ev[�] =

Z
�(r)v(r)dr + FHK [�] (2.90)

and let us de�ne the exchange-correlation energy functional Exc[�] as

Exc[�] = FHK [�]�
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 � Ts[�] (2.91)
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As FHK is only de�ned for ground state densities of interacting systems and Ts is only de�nend for

ground state densities of non-interacting systems, we have implicitly assumed that for any ground

state density � of an interacting system there exists a non-interacting system with the same ground

state density. This is the central assertion of the Kohn-Sham scheme. If we assume this assertion

to be true then the Euler-Lagrange equation of the interacting system is given by

0 =
�

��(r)

�
Ev[�]� �

Z
�(r)dr

�
=

�Ts

��(r)
[�] + v(r) +

Z
�(r0)

jr� r0j
dr0 +

�Exc

��(r)
[�]� � (2.92)

If we de�ne the exchange-correlation potential vxc by

vxc([�]; r) =
�Exc

��(r)
[�] (2.93)

we �nd using the fact that the equations for the interacting and the non-interacting system are

solved for the same density that

vs(r) = v(r) +

Z
�(r0)

jr� r0j
dr0 + vxc([�]; r) (2.94)

to within a constant ( we can always choose the arbitrary constant in vxc in such a way that vxc ! 0

for jrj ! 1 and then �� �s = 0). We therefore �nd that we can �nd the ground state density of

the interacting system by solving the Kohn-Sham equations�
�

1

2
r2 + v(r) +

Z
�(r0)

jr� r0j
dr0 + vxc([�]; r)

�
�i(r) = �i�i(r) (2.95)

NX
i

j�i(r)j2 = �(r) (2.96)

The advantage of the above approach is that we now have reduced the problem of �nding good

approximations to the functional FHK to �nding good approximations for the much smaller quantity

Exc.

Note that the kinetic energy of the interacting system T [�] = h [�]jT̂ j [�]i with  [�] the ground

state wave function of the interacting system with density �, is not equal to the kinetic energy of

the non-interacting system Ts[�] with the same ground state density. It follows from

h [�]jT̂ j [�]i+

Z
�(r)vs(r)dr = h [�]jĤsj [�]i

� h s[�]jĤsj s[�]i = Ts[�] +

Z
�(r)vs(r)dr (2.97)

where  s[�] is the Kohn-Sham determinant and Ĥs is the Kohn-Sham Hamiltonian, that

T [�] � Ts[�] (2.98)

and

Ts[�] = min
 !�

h	jT̂ j	i (2.99)

where we minimize over all anti-symmetric and normalized wave functions yielding density �. If we

de�ne the exchange-correlation part of the kinetic energy as

Txc[�] = T [�]� Ts[�] (2.100)
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we therefore �nd

Txc[�] � 0 (2.101)

So we have

Exc[�] = Txc[�] +Wxc[�] �Wxc[�] (2.102)

where

Wxc[�] = h [�]jŴ j [�]i �
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 (2.103)

Before we will look into approximations for the exchange-correlation energy functional we will

�rst discuss some exact scaling properties of density functionals which give useful constraints on

approximate functionals.

2.7 Scaling properties

We will now derive some scaling properties [22] of some density functionals which can be de�ned

in terms of the Kohn-Sham orbitals. Consider the Kohn-Sham equations�
�

1

2
r2 + vs(r)

�
�i(r) = �i�i(r) (2.104)

NX
i

j�i(r)j2 = 1 (2.105)

and de�ne the scaled coordinate r = �r0 then

rr =
1

�
r

r
0 (2.106)

and we obtain�
�

1

2
r2

r
0 + �2vs(�r)

�
�i(�r

0) = �2�i�i(�r
0) (2.107)

If we de�ne

�i;�(r) = �
3
2�i(�r) (2.108)

�i;� = �2�i (2.109)

��(r) = �3�(�r) (2.110)

then we obtain�
�

1

2
r2

r
0 + �2vs(�r)

�
�i;�(r0) = �i;��i;�(r0) (2.111)

NX
i

j�i;�(r)j2 = ��(r) (2.112)
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We therefore conclude that if vs(r) generates ground state density �(r) , which we will denote with

vs([�]; r) , then vs;�(r) = �2vs(�r) generates ground state density ��(r). However as there is by the

Hohenberg-Kohn theorem at most one potential which generates �� we must conclude that

vs([��]; r) = �2vs([�];�r) (2.113)

to within a constant. We further obtain

�i([��]; r) = �
3
2�i([�];�r) (2.114)

�i[��] = �2�i[�] (2.115)

This implies that the Kohn-Sham kinetic energy functional satis�es

Ts[��] = �2Ts[�] (2.116)

Let us now de�ne the exchange energy functional as

Ex[�] = �
1

4

Z j
s(r1; r2)j2

jr1 � r2j
dr1dr2 (2.117)

where


s(r1; r2) =

NX
i

�i(r1)�
�
i (r2) (2.118)

is the one-particle density matrix for the Kohn-Sham system. Using the above derived equations

we �nd


s([��]; r1; r2) =

NX
i

�i([��]; r1)�
�
i ([��]; r2) =

= �3
NX
i

�i([�];�r1)��i ([�];�r2) = �3
s([�];�r1; �r2) (2.119)

This then yields

Ex[��] = �Ex[�] (2.120)

The functionals Ts and Ex are special cases of homogeneously scaling functionals of the form

A[��] = �kA[�] (2.121)

For these functionals we obviously have the property

d

d�
A[��]j�=1 = kA[�] (2.122)

If we further denote

a([�]; r) =
�A

��(r)
[�] (2.123)

then on the other hand

d

d�
A[��]j�=1 =

Z
�A

���(r)
[��]j�=1

d��(r)

d�
j�=1dr
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=

Z
a([�]; r)(3�(r) + r � r�(r))dr = �

Z
�(r)r � ra([�]; r)dr (2.124)

where in the last step we performed partial integration. We therefore �nd

A[�] =
1

k

Z
a([�]; r)(3�(r) + r � r�(r))dr (2.125)

In particular we �nd for Ts and Ex that

Ts[�] =
1

2

Z
vs([�]; r)(3�(r) + r � r�(r))dr (2.126)

Ex[�] =

Z
vx([�]; r)(3�(r) + r � r�(r))dr (2.127)

where the exchange potential vx is de�ned as the functional derivative of Ex

vx([�]; r) =
�Ex

��(r)
[�] (2.128)

This last relation between the exchange potential and exchange energy is often denoted as the

Levy-Perdew relation [22]. The scaling property of the functional A[�] further implies that

a([��]; r) = �ka([�];�r) (2.129)

This we will derive as follows. From

�A[�] =

Z
a([�]; r)��(r)dr (2.130)

�A[��] =

Z
a([��]; r)���(r)dr (2.131)

���(r) = �3��(�r) (2.132)

�A[��] = �k�A[�] (2.133)

it follows thatZ
a([��]; r)���(r)dr = �A[��] = �k�A[�] = �k

Z
a([�]; r)��(r)dr =

= �k
Z
a([�];�r)��(�r)d�r = �k

Z
a([�];�r)�3��(�r)dr = �k

Z
a([�];�r)��(r)dr (2.134)

which yields

0 =

Z h
a([��]; r) � �ka([�];�r)

i
���(r)dr (2.135)

This relation is true for all � and all variationsZ
���(r)dr = 0 (2.136)

This then implies that

a([��]; r) = �ka([�];�r) (2.137)
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Application of this relation to the functionals Ts and Ex yields [23]

vs([��]; r) = �2vs([�];�r) (2.138)

vx([��]; r) = �vx([�];�r) (2.139)

The �rst equation of the above we alreday derived above. For the correlation energy functional

de�ned as

Ec[�] = Exc[�]�Ex[�] (2.140)

and its corresponding correlation potential

vc([�]; r) =
�Ec

�(r)
[�] (2.141)

no scaling relations are known. One can however prove the scaling inequalities

Ec[��] < �Ec[�] � < 1 (2.142)

Ec[��] > �Ec[�] � > 1 (2.143)

Proofs of the above relations and other scaling relations can be found in reference [22].

2.8 The coupling constant integration

The coupling constant integration technique [24, 25, 26] is a useful way of deriving relations among

density functionals. It provides a way of expressing the exchange-correlation energy in terms of a

coupling constant integrated pair correlation function �g.

We de�ne the Hamiltonian Ĥ� by

Ĥ� = T̂ + V̂� + �Ŵ (2.144)

For � = 1 we have the fully interacting system with external potential V̂ = V̂�=1, having ground

state density �. For 0 � � � 1 we de�ne V̂� in such a way that the ground state density � remains

unchanged. For � = 0 we then obviously have V̂ = V̂s which is equal to the Kohn-Sham potential

corresponding to density �. If we denote the ground state for coupling constant � by j �i then by

the Hellmann-Feynman theorem we obtain

dE

d�
(�) = h �j

dĤ�

d�
j �i = h �jŴ j �i+

d

d�

Z
v�(r)�(r)dr (2.145)

Therefore

E(1) = E(0) +

Z 1

0
h �jŴ j �id�+

Z
�(r)(v(r) � vs(r))dr

= Ts[�] +

Z
�(r)v(r)dr +

Z 1

0
h �jŴ j �id� =

= Ts[�] +

Z
�(r)v(r)dr +

1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 +Exc[�] (2.146)
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where

Exc[�] =
1

2

X
�1�2

Z
��1(r1)��2(r2)

jr1 � r2j
(�g�1�2(r1; r2)� 1)dr1dr2 (2.147)

Here we de�ned the coupling constant integrated pair-correlation function �g as

�g�1�2 =

Z 1

0
g�;�1�2(r1; r2) (2.148)

where g� is the pair-correlation function corresponding to j �i. The relation between Exc and the

coupling constant integrated pair-correlation function is useful for constructing approximations to

Exc by means of constructing approximations to �g. Useful in this respect are relations between

density scaling and coupling constant integration. Suppose that 	� is the ground state eigenfunction

of Ĥ� with a ground state density �, so we can denote 	� = 	�[�]. We have (we leave the spin

indices out for notational convenience)2
4X

i

�
1

2
r2
i + v�(ri) +

1

2

X
i6=j

�

jri � rjj

3
5	�(r1 : : : rN ) = E	�(r1 : : : rN ) (2.149)

If we de�ne the scaled coordinate r = �r0 we obtain2
4X

i

�
1

2
r2

r
0

i
+ �2v�(�r0i) +

1

2

X
i6=j

��

jr0i � r0jj

3
5	�(�r01 : : : �r

0
N ) = �2E	�(�r01 : : : �r

0
N ) (2.150)

If we take � = 1=� and de�ne � by

	(r1 : : : rN ) = �
3N
2 �(�r1 : : : �rN ) (2.151)

Then � satis�es2
4X

i

�
1

2
r2

r
0

i
+ ��2v�(��1r0i) +

1

2

X
i6=j

1

jr0i � r0j j

3
5�(r01 : : : r

0
N ) = ��2E�(r01 : : : r

0
N ) (2.152)

So � is a ground state wave function at full coupling strength yielding density �1=�(r) = ��3�(��1r).

We therefore denote � = 	�=1[�1=�]). So we �nd that

	�[�](r1 : : : rN ) = �
3N
2 �(�r1 : : : �rN ) = �

3N
2 	�=1[�1=�](�r1 : : : �rN ) (2.153)

The diagonal two-particle density matrix at coupling strength � is then [27]

��;�1�2([�]; r1; r2) =
X

�3:::�N

Z
j	�[�](r1�1 : : : rN�N )j2dr3 : : : drN =

=
X

�3:::�N

Z
�3N j	�=1[�1=�](�r1�1 : : : �rN�N )j2dr3 : : : drN =

=
X

�3:::�N

�6
Z
j	�=1[�1=�](�r1�1 : : : �rN�N )j2d�r3 : : : d�rN = �6��1�2([�1=�];�r1; �r2) (2.154)

In particular we �nd for the pair-correlation function at coupling constant � that

g�;�1�2([�]; r1; r2) =
��;�1�2([�]; r1; r2)

��1(r1)��2(r2)
= �6

��1�2([�1=�];�r1; �r2)

��1(r1)��2(r2)
=



2.8. THE COUPLING CONSTANT INTEGRATION 27

=
��1�2([�1=�];�r1; �r2)

�1=�;�1(�r1)�1=�;�2(�r2)
= g�1�2([�1=�];�r1; �r2) (2.155)

So we can calculate the coupling constant integrated pair-correlation function �g as

�g�1�2([�]; r1; r2) =

Z 1

0
g�1�2([�1=�];�r1; �r2)d� (2.156)

This is a useful relation as approximations for g[�] are often based on models for full coupling

strength. The coupling constant average can then be obtained from the above formula.

We will further derive an expression for v� in terms of potentials at full coupling strength. We will

�rst show that if we de�ne (with Ŵ being Coulombic)

F �LL[�] = min
 !�

h jT̂ + �Ŵ j i (2.157)

where we search over all normalized anti-symmetric wave functions yielding density � that

FLL[��] = �2F
1=�
LL [�1=�] (2.158)

where ��(r) = �3�(�r) and FLL = F �=1LL . Equivalently one has

F �LL[�] = �2FLL[�1=�] (2.159)

The above equations are readily proved (see Y.Wang in ref [13]). Every wave function  yielding

density �� can be written as

 (r1 : : : rN ) = �
3N
2 �(�r1 : : : �rN ) = ��(r1 : : : rN ) (2.160)

This equation actually de�nes � and ��. Then � yields density �. Therefore we have

FLL[��] = min
 !��

h T̂ + Ŵ j i = min
�!�

h��jT̂ + Ŵ j��i =

= min
�!�

h�j�2T̂ + �Ŵ j�i = �2 min
�!�

h�jT̂ +
1

�
Ŵ j�i = �2F

1=�
LL [�] (2.161)

which proves the statement. The total energy functional for the system at coupling strength � is

given by

E�v� [�] =

Z
v�(r)�(r)dr + F �LL[�] (2.162)

For � = 1 we recover our usual energy functional for the fully interacting system. And for � = 0

we have F 0
LL[�] = Ts[�] and we obtain the energy functional of the non-interacting system which is

the Kohn-Sham system. The variational equation for the density is given by

0 =
�

��(r)

�
E�v� [�]� ��

Z
�(r)dr

�
=
�F �LL
��(r)

[�] + v�(r)� �� (2.163)

In particular for � = 1 we �nd

0 =
�FLL

��(r)
[�] + v(r)� � (2.164)
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By the de�nition of v� the variational equations are for all � solved for the same density � From

the last two equations we then �nd ( to within a constant ) that

v�(r) =
�FLL

��(r)
[�]�

�F �LL
��(r)

[�] + v(r) (2.165)

We now split up F �LL as

F �LL[�] = Ts[�] +
�

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 +E�xc[�] (2.166)

where the above equation de�nes E�xc[�]. Then we can write

v�(r) = v(r) + (1� �)vH(r) +
�Exc

��(r)
�
�E�xc
��(r)

(2.167)

where we de�ned the Hartree potential vH as

vH(r) =

Z
�(r0)

jr� r0j
dr0 (2.168)

From the known scaling property of Ts and the scaling property 2.159 it further follows that

E�xc[�] = �2Exc[�1=�] (2.169)

If we de�ne the exchange energy for the system with coupling constant � as

E�x [�] = ��
1

4

Z j
s([�]; r1; r2)j2

jr1 � r2k
dr1dr2 (2.170)

where 
s is the Kohn-Sham one particle density matrix then it follows directly from the above

de�nition that

E�x [�] = �Ex[�] (2.171)

If we furthermore de�ne the correlation energy functional at coupling constant � as

E�c [�] = E�xc[�]�E�x [�] (2.172)

we �nd

E�c [�] = �2Ec[�1=�] (2.173)

So we obtain

v�xc([�]; r) =
�E�xc
��(r)

[�] = �
�Ex

��(r)
[�] + �2

�Ec

��(r)
[�1=�] = �vx([�]; r) + �2vc([�1=�]; r) (2.174)

and we �nally get the following expression for v� [28]

v�(r) = v(r) + (1� �)(vx([�]; r) + vH(r)) + vc([�]; r)� �2vc([�1=�]; r) (2.175)

For � = 1 we �nd v� = v and for � = 0 we have v� = vs. This equation has recently been used

to derive exact perturbative expressions for the correlation functional in terms of the Kohn-Sham

orbitals and eigenvalues, by performing an expansion in the coupling constant parameter � [29].

How these expressions can be used in a Kohn-Sham calculation is discussed in the section on the

Optimized Potential Model.
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2.9 Virial relations and the kinetic part of Exc

Exact relations among density functionals can be derived from the general quantum mechanical

virial theorem

2hT̂ i = h
NX
i=1

ri � riU(r1 : : : rN )i (2.176)

where the brackets stand for expectation values with the ground state wave function where U

represents the sum of all potentials

Û = V̂ + Ŵ =

NX
i

v(ri) +
1

2

NX
i6=j

w(ri; rj) (2.177)

If Ŵ is Coulombic this yields

2hT̂ i+ hŴ i =

Z
�(r)r � rv(r)dr (2.178)

If we de�ne

T [�] = h [�]jT̂ j [�]i (2.179)

W [�] = h [�]jŴ j [�]i (2.180)

Then we have

2T [�] +W [�] =

Z
�(r)r � rv(r)dr (2.181)

One should note however that the above relation is not universal. For a given density � the above

relation is only satis�ed for the particular external potential which generates the prescribed density

�. Universal relations can however be derived on the basis of the virial relation. From the variational

relations of the energy functional

0 =
�

��(r)

�
Ev[�]� �

Z
�(r)dr

�
=

�T

��(r)
+

�W

��(r)
+ v(r)� � (2.182)

we �nd by acting with �r � r on the above equation thatZ
�(r)r � r

�T

��(r)
dr +

Z
�(r)r � r

�W

��(r)
dr = �

Z
�(r)r � rv(r)dr (2.183)

which by addition to the virial relation yields [22]

2T [�] +

Z
�(r)r � r

�T

��(r)
drdr = �W [�]�

Z
�(r)r � r

�W

��(r)
dr (2.184)

The above equation does not involve the external potential anymore and is universal. For the

special case of non-interacting particles we have Ŵ = 0 and T [�] = Ts[�]. In that case the above

relation yields

2Ts[�] +

Z
�(r)r � r

�Ts

��(r)
dr = 2Ts[�] +

Z
�(r)r � rvs([�]; r)dr = 0 (2.185)
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which we already proved by scaling. The last two equations in combination with

T [�] = Ts[�] + Txc[�] (2.186)

W [�] = Exc[�] + Txc[�] +
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 (2.187)

then yields [30, 22]

Txc[�] =

Z
(3�(r) + r � r�(r))vxc([�]; r)dr �Exc[�] (2.188)

So we have now established a relation between the kinetic part of the exchange-correlation energy

functional and the exchange-correlation energy and potential. If we further split up the exchange-

correlation potential vxc = vx + vc and use the Levy-Perdew relation for the exchange functional

we obtain

Txc[�] =

Z
(3�(r) + r � r�(r))vc([�]; r)dr �Ec[�] (2.189)

The above relation provides a way to calculate approximate expressions of the kinetic contribution

of the exchange-correlation energy from approximate correlation functionals. The equation can be

rewritten as

Txc[�] =
dEc

d�
[��]j�=1 �Ec[�] (2.190)

as can be checked by di�erentiation. Further relations for Txc in connection with functional inte-

gration can be found in chapter 12 of this thesis.

2.10 Asymptotic properties of the exchange-correlation potential

In this section we will discuss the long-range properties of the exchange-correlation potential in �nite

systems such as atoms and molecules. For simplicity we will discuss the case of spin unpolarized

systems. We can write the exchange-correlation energy in terms of the coupling constant integrated

pair-correlation function �g as

Exc[�] =
1

2

Z
�(r1)�(r2)

jr1 � r2j
(�g([�]; r1; r2)� 1)dr1dr2 (2.191)

By functional di�erentiation the expression for the exchange-correlation potential becomes

vxc(r) = vxc;scr(r) + vrespxc;scr(r) (2.192)

where the exchange-correlation screening part ( where �g represents the sreening of the interparticle

interactions due to exchange-correlation e�ects) of vxc is de�ned as

vxc;scr(r3) =

Z
�(r1)(�g([�]; r1; r3)� 1)

jr1 � r3j
dr1 =

Z 1

0

�xc(r3; s)

s
4�s2ds (2.193)

and the screening response potential as

vrespxc;scr(r3) =
1

2

Z
�(r1)�(r2)

jr1 � r2j
��g([�]; r1; r2)

��(r3)
dr1dr2 (2.194)
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The potential vxc;scr is just the potential of the coupling constant integrated exchange-correlation

hole. Due to the fact that this hole integrates to one electron (or the sumrule property of �g ) we

�nd that for neutral �nite systems

vxc;scr(r) � �
1

r
(jrj ! 1) (2.195)

This is therefore a long range Coulombic potential. If we pull an electron to in�nity then it will

just experience the Coulombic potential of the positive ion it leaves behind. For the calculation

of the exchange-correlation energy we only need a good approximation for the screening potential

vxc;scr as we have

Exc[�] =
1

2

Z
�(r)vxc;scr(r)dr (2.196)

The other part vrespxc;scr of the exchange-correlation potential is short ranged and for atoms it shows a

clear atomic shell structure. It is constant within the atomic shells but changes rapidly at the atomic

shell boundaries. The function ��g=�� which describes the sensitivity of the exchange-correlation

screening due to density variations shows a clear dependence on the atomic shell structure. An

extensive discussion of this function is given in chapter of this thesis. As vxc;scr is long-ranged and

vrespxc;scr is short-ranged ( decaying faster than Coulombic) we �nd

vxc � �
1

r
(r !1) (2.197)

A more rigorous derivation of the above relation can be found in reference [31]. The asymptotic

behaviour of vxc is important for density functional theories for excitation energies which have been

developed, as one then needs a correct description of the virtual spectrum, such as the Rydberg-like

series in atoms. Also density dependent properties such as polarizabilities are sensitive to a correct

behaviour of the exchange-correlation potential. This is an important observation as most density

functionals in use, such as the current LDA+GGA exchange-correlation functionals, do not satisfy

this asymptotic relation for the exchange-correlation potential [32].

2.11 The Optimized Potential Model

Constructing approximate density functionals by using direct expressions in terms of the density

itself can be quite di�cult in some cases. This is for instance true for the kinetic energy functional

Ts, for which direct Thomas-Fermi like approximations in terms of the density are much more

inaccurate. It is moreover more di�cult to represent properties such as the atomic shell structure

in the exchange-correlation potential correctly be means of direct expressions in the density than

expressions in terms of Kohn-Sham orbitals. It is therefore interesting to study energy expressions

which depend on the density through the intermediate use of the Kohn-Sham orbitals and energies,

like Ts and Ex. Such expressions have recently been proposed by G�orling and Levy [29]. For Ex
we already had

Ex[�] = Ex[f�ig] (2.198)

For Ec we can write

Ec[�] = Ec[f�i; �ig] (2.199)
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For practical applications we need

vx([�]; r) =
�Ex[f�ig]
��(r)

(2.200)

vc([�]; r) =
�Ec[f�i; �ig]

��(r)
(2.201)

This can by means of partial di�erentiation be written as

vx([�]; r) =

NX
i

Z
�Ex

��i(r0)

��i(r
0)

��(r)
dr0 + c:c: (2.202)

vc([�]; r) =
1X
i=1

Z
�Ec

��i(r0)

��i(r
0)

��(r)
dr0 + c:c: +

1X
i

@Ec

@�i

��i

��(r)
(2.203)

From the above expressions we can see that we need to know the functional derivatives ��i=�� and

��i=��. We will determine these in the following. The orbitals �i satisfy the Kohn-Sham equations�
�

1

2
r2 + vs([�]; r)

�
�i(r) = �i�i(r) (2.204)

NX
i

j�i(r)j2 = �(r) (2.205)

From response theory it is then not di�cult to derive [33]

��i(r)

�vs(r0)
= �Gi(r; r0)�i(r0) (2.206)

��i

�vs(r0)
= j�i(r0)j2 (2.207)

Where Gi is the Greens function of the Kohn-Sham system de�ned as

Gi(r; r
0) =

X
j 6=i

�j(r)�
�
j (r

0)

�i � �j
(2.208)

We can therefore calculate the density response function �s of the Kohn-Sham system as

�s(r; r
0) =

��(r)

�vs(r0)
=

NX
i

�

�vs(r0)
j�i(r)j2 = �2

NX
i

�i(r)Gi(r; r
0)��i (r

0) (2.209)

The expressions for vx and vc can now be written as

vx([�]; r) =

NX
i

Z
�Ex

��i(r1)
Gi(r1; r2)�i(r2)�

�1
s (r2; r)dr1dr2 + c:c: (2.210)

and similarly for the correlation potential

vc([�]; r) =
1X
i

Z
�Ec

��i(r1)
Gi(r1; r2)�i(r2)�

�1
s (r2; r)dr1dr2 + c:c:+
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+

1X
i

@Ec

@�i

Z
j�i(r1)j2��1s (r1; r)dr1 (2.211)

In these equations ��1s is the inverse density response function determined by the equationZ
��1s (r1; r3)�s(r3; r2)dr3 = �(r1 � r2) (2.212)

It must be emphasized however that ��1s is only determined to within a constant. This is because

a change of vs by a constant does not a�ect the density. We have

��(r1) =

Z
�s(r1; r2)�vs(r2)dr2 (2.213)

If �vs(r) = C is a constant then ��(r) = 0 and we �ndZ
�s(r1; r2)dr2 = 0 (2.214)

The constant function is therefore an eigenfunction of �s with eigenvalue 0. So if a certain ��1s
satis�es equation 2.212 then ��1s + C will satisfy this equation as well. The constant can however

be �xed by choosing a particular gauge for the potential vs , for instance vs(r) ! 0 (r !1).

As �s is explicitly known in terms of �i and �i the above equations for vx and vc together with

the Kohn-Sham equations constitute a self-consistent set of equations which can be solved once

approximate expressions for Ec[f�i; �ig] are known.

Note that the problem is equivalent to minimizing a total energy expression Ev[f�i; �ig] under the

constraint that the orbitals �i obey an independent particle equation with a local potential, i.e.

one has to �nd the local potential that solves the Euler-Lagrange equation

�Ev

�vs(r)
[f�i; �ig] = 0 (2.215)

For this reason these equation are called the Optimized Potential Model (OPM) equations [34, 33,

35, 36]. The simplest case is the exchange-only OPM, for which we can put Ec = 0, yielding the

x-only OPM equations�
�

1

2
r2 + vs([�]; r)

�
�i(r) = �i�i(r) (2.216)

NX
i

j�i(r)j2 = �(r) (2.217)

vs([�]; r) = v(r) +

Z
�(r0)

jr� r0j
dr0 + vx([�]; r) (2.218)

Z
�s(r; r

0)vx(r0)dr0 =
�Ex

�vs(r)
(2.219)

For solving these equations one needs to solve an integral equation (to be more precise a Fredholm

integral equation of the �rst kind) for the exchange potential vx. This requires inversion of the

integral kernel �s (after �xing a gauge) [37, 36]. One can however avoid this problem if one makes

explicit orbital dependent approximations for the inverse function ��1s . An explicit expression can

be derived on the basis of an approximation for the Kohn-Sham Greens function Gi proposed by
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Sharp and Horton [34] and Krieger et al. [35]. One �nds (see chapter 8 of this thesis) in the natural

gauge where vs ! 0 (r !1) for ��s ( for the spin unpolarized non-degenerate case)

��1s (r1; r2) = �
�(r1 � r2)

�(r1)
�
N�1X
ik

�ik
j�i(r1)j2j�k(r2)j2

�(r1)�(r2)
(2.220)

where the coe�cients �ik are given by

�ik = (�I � �N)�1ik (2.221)

where �I is the unity matrix and N is the matrix

Nik =

Z j�i(r)j2j�k(r)j2

�(r)
dr (2.222)

where all the matrices are of dimension N � 1. If one uses this approximation for ��1s one obtains

the following approximation for the OPM exchange potential [35]

vKLIx (r) = vS(r) +

N�1X
i

wi
j�i(r)j2

�(r)
(2.223)

wi = h�ijvx � vij�ii (2.224)

where vi is equal to the orbital dependent Hartree-Fock potential (only its self-consistent orbitals

are di�erent ). The potential vS is the Slater potential. These equations have been derived �rst by

Krieger, Li and Iafrate in a di�erent way. This approximation turns out to be very accurate [38,

39, 40, 41]

From these approximate equations for vx we can easily see the structure of the exchange potential.

It consists of a part vS which has a Coulombic long range �1=r behaviour and a part we will call

the step potential. For atomic systems this step potential is constant within the atomic shells and

changing rapidly at the atomic shell boundaries. It has therefore a step-like structure with the

heigths of the steps approximately equal to the constants wi. A more extensive discussion of all

these features can be found in chapter 8 of this thesis.

2.12 Approximate density functionals: LDA and GGA

The simplest and most widely used density functional approximation for the exchange-correlation

energy is the Local Density Approximation (LDA). In this approximation one uses the exchange-

correlation energy density of the homogeneous electron gas ehomxc (�0) dependent on the homogeneous

density �0 and replaces this for the inhomogeneous system with density �(r) by

eLDAxc (�(r)) = ehomxc (�0)j�0=�(r) (2.225)

The exchange-correlation energy functional then becomes

ELDAxc [�] =

Z
eLDAxc (�(r))dr (2.226)

At �rst sight this approximation seems to work only for systems with slowly varying densities, such

as the weakly perturbed electron gas. However the approximation works surprisingly well even for

systems which have very inhomogeneous electron densities such as atoms and molecules. This calls
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for an explanation.

A more detailed look on LDA can be obtained from considerations of the xc-hole and the pair-

correlation function. We have

�LDAxc (r1; r2) = �(r1)
h
�ghom([�]; jr1 � r2j)� 1

i
(2.227)

where �ghom[�] is the coupling constant integrated pair-correlation function of the homogeneous

electron gas. By now accurate expressions for �ghom[�] are known. The simplest part is the exchange

part of the pair-correlation function which is una�ected by the coupling constant integration. It is

given (in its spin unpolarized form) by

�ghomx ([�]; r1; r2) = 1�
9

2

�
sin (kF (r1)jr1 � r2j)� kF (r1)jr1 � r2j cos (kF (r1)jr1 � r2j)

(kF (r1)jr1 � r2j)3

�2
(2.228)

where kF (r) is the local Fermi wave vector de�ned as

kF (r) = (
3

�
)
1
3�(r)

1
3 (2.229)

It satis�es the scaling property

�ghomx ([�]; r1; r2) = �ghomx ([�1=�];�r1; �r2) (2.230)

where �1=�(r) = ��3�(��1r). The corresponding exchange functional as can be calculated from the

above pair-correlation function is then

ELDAx [�] =
3

4
(
3

�
)
1
3

Z
�(r)

4
3dr (2.231)

which satis�es the correct exchange scaling. Corresponding expressions exist for the correlation

part of �ghom[�] and for ELDAc [�]. The �rst important thing to note is that the LDA xc-hole is

spherical around the reference electron

�LDAxc (r1; r2) = �xc(r1; s) (2.232)

where s = jr1 � r2j and secondly it satis�es the sum ruleZ
�LDAxc (r1; r2)dr2 = 4�

Z 1

0
�LDAxc (r1; s)s

2ds = �1 (2.233)

The above relations provide some insight in the unexpected success of LDA in strongly inhomo-

geneous systems. The coupling constant averaged xc-hole in real inhomogeneous systems is not

spherically symmetric. Therefore the LDA xc-hole cannot adequately approximate this xc-hole.

However the spherically averaged hole is reasonably well reproduced within the local density ap-

proximation. Consequently the exchange-correlation energy which is determined by the spherically

averaged xc-hole is reasonably well produced as well. The satisfaction of the sum rule 2.233 further

implies that if the LDA xc-hole �LDAxc (r; s) has positive errors for some values of s, it must have

negative errors for other values of s leading to a systematic cancelation of errors.

An obvious way to go beyond the local density approximation is to extend the exchange-correlation

functional with terms containing gradients of the electron density. The gradients then measure

changes of the electron density and can therefore be expected to improve the local density approxi-

mation. Most of the gradient functionals developed are based on the response theory of the weakly
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varying electron gas [42]. The approximations obtained in this way are called Gradient Expansion

Approximations (GEA). This then leads to the expressions

EGEAx [�] = ELDAx [�] + �

Z
(r�)2

�
4
3

dr + : : : (2.234)

EGEAc [�] = ELDAc [�] +

Z
C(�)

(r�)2

�
4
3

dr+ : : : (2.235)

where � is a constant and C(�) is a function determined by response theory. However in practice,

the success of LDA nothwithstanding, the GEA provides no systematic improvement over LDA

as realistic densities in atoms and molecules do not vary slowly over space. An analysis of the

gradient expansion of the xc-hole shows that although the short range part (near the reference

electron) is improved by the gradient expansion, the long range part is considerably worsened [43].

If one however by hand corrects the long range part of the gradient corrected xc-hole and enforces

the sum rule property one can obtain xc-energy functionals which give a considerable improvement

over LDA for energetics. The corresponding approximations are known as Generalized Gradient

Approximations or GGA's. The most widely used GGA's are the Becke GGA [44] for the exchange

energy and the exchange- and correlation GGA's by Perdew [45] and Perdew and Wang [46, 47,

43, 48]. We will give a short account of the ideas behind the derivation of these GGA's.

The Becke GGA correction to the LDA is of the form

EGGAx [�] =

Z
�(r)

4
3 f(x(r))dr (2.236)

where x(r) = jr�(r)j=�(r)
4
3 and f is a function to be determined. The variable x is a dimensionless

quantity introduced to satisfy the scaling property of the exchange functional. In order to obtain

the GEA for weakly varying densities we must have the following small x behaviour of f

f(x) � ��x2 (x # 0) (2.237)

We can write the exchange energy in terms of the potential of the exchange hole vhx as

Ex[�] =
1

2

Z
�(r)vhx(r)dr (2.238)

In the above ansatz we have

vhx(r) = vh;LDAx (r) + 2�(r)
1
3 f(x(r)) (2.239)

To satisfy the correct asymptotics for vhx for �nite systems ( vhx � �1=r (r ! 1) ) we must

have [49, 32]

f(x) � �
1

6

x

lnx
(x!1) � �

�(r)

2

1

r
(r !1) (2.240)

which follows directly by inserting exponentially decaying densities. One of the simplest interpola-

tions between the large and the small x behaviour of f(x) is then found by taking

f(x) = �
�x2

1 + 6�x sinh�1 x
(2.241)

The coe�cient � was �tted by Becke to obtain the correct exchange energy of the noble gas

atoms. A somewhat di�erent approach to obtain GGA's has been used by Langreth and Mehl [50],
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Perdew [45], and Perdew and Wang [43, 48]. One can write the spherical average of the coupling

constant integrated xc-hole in momentum space as [50, 43]

��xc(r; k) =

Z
��xc(r; s)e

ik�sds =

Z 1

0
4�s2

sin (ks)

ks
��xc(r; s)ds (2.242)

Its Fourier inverse is given by

��xc(r; s) =
1

(2�)3

Z 1

0
4�k2

sin (ks)

ks
��xc(r; k)dk (2.243)

Langreth and Perdew [51] and Langreth and Mehl [50] have carried out an GEA wavevector analysis

for the spherically averaged correlation hole within the random phase approximation (RPA) yielding

��GEAc (r; k) = ��LDAc (r; k) +
2�
p

3

kFT (r)
C(1)

(r�(r))2

�(r)
4
3

exp (�
2
p

3

kFT (r)

C(1)

C(�)
k) (2.244)

where kFT (r) = 2
p
kF (r)=� is the Fermi-Thomas wavevector or inverse screening length and C is

a local function of the electron density. From equation 2.242 we �nd

lim
k!0

��xc(r; k) =

Z 1

0
4�s2��xc(r; s)ds = �1 (2.245)

In particular we have for the correlation hole in momentum space

��c(r; k = 0) = 0 (2.246)

One can see from equation 2.244 that this property is violated by the GEA correlation hole (it

is satis�ed by the LDA correlation hole). To repair this feature Langreth and Mehl and Perdew

propose a wavevector space cut-o�. One replaces the gradient contribution to ��xc(r; k) by zero for

k < kc where kc = ~f jr�(r)j=�(r) is a cut-o� proportional to the inhomogeneity wavevector, i.e.

one removes the long wave length part of the Fourier analysis of the xc-hole. This then leads to

the following approximation for the correlation energy functional [45]

EGGAc [�] = ELDAc [�]�
Z
e��C(�)

(r�(r))2

�(r)
4
3

dr (2.247)

where

� = 1:745 ~f
C(1)

C(�)

jr�j
�
7
6

(2.248)

Other GGA approximations for exchange and correlation have been obtained by Perdew and

Wang [43, 48, 47] using real space cut-o�s of the xc-hole. We will describe the procedure for

the exchange energy functional. The correlation functional can be treated in a similar manner.

The GEA exchange hole in the second order gradient expansion has the following structure

��GEAx (r; s) = kF (r)3
h
Ax(kF (r)s) + x(r)2Bx(kF (r)s)

i
(2.249)

where kF (r) = (3�2�(r))
1
3 is the local Fermi wavevector and x(r) = jr�j=�

4
3 is a dimensionless

inhomogeneity parameter. In the GGA one takes

��GGAx (r; s) = ��GEAx (r; s)�(U(x)� kF (r)s) (2.250)
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The Heaviside function � provides a long range cuto� of the exchange hole. The cut-o� radius is

chosen such that the sum rule is satis�ed

�1 =

Z 1

0
4�s2��xc(r; s)ds =

Z U(x)

0
4�u2

h
Ax(u) + x(r)2Bx(u)

i
du (2.251)

One obtains

EGGAx [�] =

Z
�(r)

4
3F (x)dr (2.252)

with

F (x) =

Z U(x)

0
4�u

h
Ax(u) + x(r)2Bx(u)

i
du (2.253)

The functions U(x) and F (x) can be evaluated numerically and �tted to an analytical expression

for practical applications. A pleasing feature from a theoretical point of view is that the above

approach does not contain any adjustable parameters which need to be �tted to known exchange

energies.

Completely analogous to the exchange case one can also carry out a real-space cut-o� procedure

for the correlation hole leading to parameter free GGA's for the correlation energy. These GGA's

turn out to yield accurate atomic correlation energies [52, 53, 54, 55]

2.13 An integral equation for the exchange-correlation potential

In this section we will establish some connections between density functional theory and Greens

function theory. We will in particular derive an integral equation for the exchange-correlation

potential in terms of the irreducible self-energy. This equation was �rst derived by Sham and

Schl�uter [56] and Sham [57].

We �rst discuss the key concepts of Greens function theory. The one-particle Greens function is

de�ned as the following expectation value

iG(xt; x0t0) = �(t� t0)h	(t)S j ̂(x)e�iĤ(t�t0) ̂+(x0)j	(t0)Si (2.254)

� �(t0 � t)h	(t0)S j ̂+(x)e�iĤ(t0�t) ̂(x0)j	(t)Si

where � is the Heaviside function and

j	(t)iS = e�iEtj	 > (2.255)

is the ground state in the Schr�odinger picture where E is the groundstate energy. The Greens

function as de�ned above has a nice physical interpretation. For t > t0 we add by the action of

 ̂+(x0) a particle to the ground state j	(t0)Si at spin-space point x0. The in this way created

N + 1-particle state will then propagate under the in
uence of the Hamiltonoperator Ĥ from t0 to

t where we take overlap with the N + 1-particle state  ̂+(x)j	(t)iS . The Greens function for t > t0

therefore describes the transition amplitude that a particle which is added to the ground state of

many-particle system will move in the time t� t0 from point x0 to point x. In a similar manner we

have for t0 > t a propagation of a N � 1-particle state. So for t > t0 we are dealing with particle

propagation and for t0 > t with hole propagation.

The Greens function may be written in more compact notation by going to the Heisenberg picture

iG(xt; x0t0) = �(t� t0)h	j ̂(xt)H  ̂
+(x0t0)H j	i � �(t0 � t)h	j ̂+(x0t0)H  ̂(xt)H j	i (2.256)

= h	jT [ ̂(xt)H  ̂
+(x0t0)H ]j	i
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where we de�ned

 ̂(xt)H = eiĤt ̂(x)e�iĤt (2.257)

 ̂+(xt)H = eiĤt ̂+(x)e�iĤt

and the time-ordered product of two fermion operators as

T [Â(t)B̂(t0)] = �(t� t0)Â(t)B̂(t0)� �(t0 � t)B̂(t0)Â(t) (2.258)

The time-ordered expression is especially suitable for a perturbation expansion where the time-

ordering appears in a natural way.

As G describes the time propagation of a N + 1-particle state and a N �1-particle state it contains

information about the excitation spectrum of the system. This is made explicit by writing

iG(xt; x0t0) = �(t� t0)
X
n

e�i(E
N+1
n �E)(t�t0)h	j ̂(x)j	N+1

n ih	N+1
n j ̂+(x0)j	i (2.259)

� �(t0 � t)
X
n

e�i(E�E
N�1
n )(t0�t)h	j ̂+(x0)j	N�1

n ih	N�1
n j ̂(x)j	i

where EN+1
n and EN�1n are the energies of the eigenstates j	N+1

n i and j	N�1
n i of the N + 1- and

N � 1-particle systems. From this equation we can see that G only depends on x and x0 and the

time di�erence t� t0. We can therefore de�ne the Fourier transform of G by

G(x; x0;!) =

Z +1

�1
G(x; x0; t� t0)e�i!(t�t

0)d!

2�
(2.260)

Using the following expression for the Heaviside step function

�(�) = lim
�#0

�1

2�i

Z +1

�1

e�i!�

! + i�
d! (2.261)

we �nd an expression for G which clearly reveals its analytical structure

G(x; x0;!) =
X
n

fn(x1)f
�
n(x01)

! � �n + i�
+
gn(x1)g

�
n(x01)

! � �n + i�
(2.262)

where fn and gn are de�ned as

fn(x) = h	j ̂(x)j	N+1
n i =

p
N + 1

Z
	�(x1 : : : xN )	N+1

n (x1 : : : xNx)dx1 : : : dxN (2.263)

gn(x) = h	N�1
n j ̂(x)j	i =

p
N

Z
	N�1�
n (x1 : : : xN�1)	(x1 : : : xN�1x)dx1 : : : dxN�1 (2.264)

and where �n = EN+1
n �E and �n = E � EN+1

n correspond to the electron a�nities ��n and the

ionisation energies ��n. In the above derivation we assumed all the levels EN+1
n and EN�1n of the

N � 1 and N + 1 systems to be discrete. This is of course not true for a real electronic system such

as an atom or a molecule where a continuous spectrum always exists. For an in�nite system such

a solid there is even no discrete spectrum at all. For these cases one has to replace the summation

by an integral over the energies. This changes the analytical structure of G of equation 2.262

,i.e. in the addition to the simple poles corresponding to the discrete levels we obtain branch cuts

corresponding to the continuum states.

If we want to �nd approximations for G we need an equation of motion. Such an equation can be

derived using the Heisenberg equation of motion

i@t ̂(xt)H = [ ̂(xt)H ; Ĥ ] (2.265)
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which using the commutation relations 2.13 and the form of the Hamiltonian 2.4 gives

i@t ̂(xt)H =

�
�

1

2
r2 + v(r) +

Z
w(r; r0) ̂+(x0t)H  ̂(x0t)Hdx

0

�
 ̂(xt)H (2.266)

With the above equation and the de�nition of G one �nds

(i@t1 +
1

2
r2

1 � v(r1))G(x1t1; x
0
1t
0
1) =

�(x1 � x01)�(t1 � t01)� i

Z
w(r1; r2)G2(x1t1; x2t1; x

0
1t
0
1; x2t

+
1 )dr2 (2.267)

where t+1 means t1 + � where � # 0. Here we de�ned the two-particle Green function as

G2(x1t1; x2t2; x
0
1t
0
1; x

0
2t
0
2) = (�i)2h	jT [ ̂(x1t1)H  ̂(x2t2)H  ̂

+(x02t
0
2)H  ̂

+(x01t
0
1)H ]j	i (2.268)

and where the time-ordered product of a arbitrary number of fermion operators has been de�ned

as

T [Â1(t1)Â2(t2) : : : Ân(tn)] = sign(P )ÂP (1)(tP (1))ÂP (2)(tP (2)) : : : ÂP (n)(tP (n)) (2.269)

where the permutaion P is chosen such that tP (1) > tP (2) > : : : > tP (n). The two-partcle Greens

function G2 has a similar physical interpretation as G as a transition amplitude but now with

two particles added or removed from the system. Another important quantity is the self-energy �

de�ned by the equation

(i@t1 +
1

2
r2

1 � v(r1))G(x1t1; x
0
1t
0
1) =

�(x1 � x01)�(t1 � t01)� i

Z
w(r1; r2)�(x1t1; x2t2)G(x2t2; x

0
1t
0
1)dx2dt2dr2 (2.270)

The Fourier transform of the equation yields

[! � h(x1)]G(x1; x
0
1;!)�

Z
�(x1; x2;!)G(x2; x

0
1;!)dx2 = �(x1 � x01) (2.271)

If we de�ne the Greens function G0 for a system of non-interacting particles by the equation

[! � h(x1)]G0(x1; x
0
1;!) = �(x1 � x01) (2.272)

We obtain the equation

G(x1; x
0
1;!) = G0(x1; x

0
1;!) +

Z
G0(x1; x2;!)�(x2; x3;!)G(x3; x

0
1;!)dx2dx3 (2.273)

This equation is known as Dysons equation. We will write this more symbolically as

G = G0 +G0�G (2.274)

In the same operator notation we have

[! � h� �]G = 1 (2.275)

We now split up the self-energy in Hartree part and a remainder �xc as follows

�(x1; x2;!) = �(x1 � x2)vH(x1) + �xc(x1; x2;!) (2.276)
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where vH is the repulsive potential of the electronic cloud. Let us now rewrite the Dyson equation

as h
! � hs � ~�

i
G = 1 (2.277)

where

hs(r) = �
1

2
r2 + v(r) + vH(r) + vxc(r) (2.278)

is the Kohn-Sham Hamiltonian and we de�ned ~� as

~�(x1; x2;!) = �xc(x1; x2;!)� �(x1 � x2)vxc(x1) (2.279)

One obtains an alternative Dyson equation in terms of the Kohn-Sham Greens function Gs

G = Gs +Gs ~�G (2.280)

where Gs satis�es

[! � hs]Gs = 1 (2.281)

By the de�nition of the Kohn-Sham system the diagonal of Gs yields the ground state density of

the system

�(r) = �iGs(x1t; x1t+) = �i
Z
d!

2�
Gs(x1; x1;!) (2.282)

being equal to the diagonal Greens function of the fully interacting system, i.e.

�(r) = �i
Z
d!

2�
G(x1; x1;!) (2.283)

From the Dyson equation it then follows thatZ
dx1

Z
dx2

Z
d!

2�
G(x; x1;!)~�(x1; x2;!)G(x2; x;!) = 0 (2.284)

which by de�nition of ~� yields the following integral equation for vxc.Z
K(r1; r2)vxc(r2)dr2 = Q(r1) (2.285)

where

K(r1; r2) =

Z
d!

2�
Gs(r1; r2;!)G(r2; r1;!) (2.286)

Q(r) =

Z
d!

2�

Z
dr1

Z
dr2Gs(r; r1;!)�xc(r1; r2;!)G(r2; r;!) (2.287)

Which is an integral equation for the exchange-correlation potential. The equation can be solved

self-consistently once an explicit expansion of G in terms of Gs is given. One of the simplest

approximations is

G = Gs (2.288)



42 A REVIEW ON DENSITY FUNCTIONAL THEORY

�xc(r1; r2) = �i
Z
d!

2�

Gs(r1; r2;!)

jr1 � r2j
= �


s(r1; r2)

jr1 � r2j
(2.289)

yielding

K(r1; r2) =

Z
d!

2�
Gs(r1; r2;!)Gs(r2; r1;!) = �s(r1; r2) (2.290)

Q(r) =

Z
dr1dr2


s(r1; r2)

jr1 � r2j

Z
d!

2�
Gs(r; r1;!)Gs(r2; r;!) (2.291)

These equations together with�
�

1

2
r2 + vs(r)

�
�1(r) = �i�i(r) (2.292)

NX
i

j�i(r)j2 = �(r) (2.293)

yield the x-only OPM equations.

The integral equation for vxc can also be derived in an alternative way. One can express the

exchange-correlation energy functional as

Exc[�] = itr(ln (1� ~�Gs) + ~�G)� i�xc[�] (2.294)

where in diagrammatic perturbation theory �xc is expressed as a sum of so-called skeleton diagrams

in terms of the Greens function G excluding two �rst order graphs. For a derivation we refer to

Sham and Schl�uter [56] and Sham [57]. Functional di�erentiation of the above expression then

yields the integral equation for vxc (see for example the references [58, 59]) The integral equation

for vxc has been used in the so-called GW-approximation [2, 60, 61, 62] to estimate band gap

corrections to the LDA [63] for semiconductors and insulators.



Chapter 3

A review of functional calculus

3.1 Introduction

In this review we present some aspects of nonlinear functional analysis [64, 65] .We thereby concen-

trate on di�erential and integral calculus on function spaces. Of most practical importance is the

�nding of extrema of functionals. This is the central problem in the calculus of variations which is

for instance widely used in the Lagrangian formalism in classical mechanics. In order to do calculus

on more general spaces than the real numbers R and the complex numbers C those general spaces

have to satisfy some requirements. Roughly said, they must look like the space of real numbers.

The important features to be carried over to these spaces are its vectorspace structure (adding and

multiplying), its topological structure (there is a distance between two points) and the complete-

ness property (the real numbers form a continuum). General spaces with these properties are called

Banach spaces. Special cases of Banach spaces are of course the real numbers R and the complex

numbers C themselves.

3.2 Banach spaces

3.2.1 De�nition

Many for theorems in ordinary calculus depend on three basic properties of the real numbers. Any

extension of ordinary calculus to more general spaces should exhibit these basic properties. These

are summed up in the following cryptic statements:

a] You can add and multiply points

b] There is a distance between points

c] There is a continuum of points

We will now discuss each statement separately. This then leads to the de�nition of Banach

space.

First of all a Banach space B is a vectorspace which means that if x; y 2 B and � 2 R or C then:

x; y 2 B ) x+ y 2 B
x 2 B and � 2 R or C ) �x 2 B

43
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We thus just add and multiply as for the real numbers.

Secondly a Banach space is a normed space which means that we have on B a function kk : B ! R�0

from B to the positive real numbers including zero with the following properties:

k�xk = j�jkxk
kx+ yk � kxk+ kyk
kxk = 0 , x = 0

These properties are a copy of the properties of the length of an ordinary vector in three-dimensional

space. The introduction of a norm now allows us to de�ne the distance between two points by the

following formula:

d(x; y) = kx� yk

We have for instance:

d(x; y) = 0 , x = y

So now we can talk about the nearness of points. This is a very important ingredient in calculus

because now we can talk about the convergence of limits or about continuous functions which map

nearby points to nearby points.

The third important property of the real numbers is its completeness. This is best illustrated with

an example. Consider the space of rational numbers Q embedded in the space of real numbers R.

Both Q and R are normed vectorspaces but they di�er in one property. Between two points in Q
there are points which do not lie in Q. We have for instance

p
2 2 [6

5
; 3
2
] but

p
2 is not an element of

Q. This is not the case for the real numbers. Between two real numbers there is no no-real number.

The real numbers thus form a continuum. How is this property characterised mathematically ?

We continue our example. We can approach
p

2 2 R as close as we like with a sequence of rational

numbers xn 2 Q. The limit of this sequence is in R of course well-de�ned and given by
p

2. This

limit is however not de�ned in Q as we walk out of the space of rational numbers into the space of

real numbers. One can in Q however still notice 'convergence' as the di�erence jxn � xmj goes to

zero if n and m go to in�nity. Sequences with this property are called Cauchy sequences. Cauchy

sequences do not always converge in Q but they do converge in R. This then �nally leads to

the de�nition of complete spaces. A complete space is a space in which every Cauchy sequence

converges to an elemant of the space.

Now we can �nally state the de�nition of a Banach space. A Banach space is a complete, normed

vectorspace.

3.2.2 Example

To make things more concrete we will now give an example of a Banach space. Consider the

collection of continuous functions de�ned on the interval [a; b] 2 R. This space we will denote by

C[a; b]. This is a Banach space if the norm is appropriately chosen. One can check all requirements:

a] Adding of two continuous functions or multiplying a continuous function by a real number

yields again a continuous function. So C[a; b] is a vectorspace over the �eld of real or complex

numbers.

b] We de�ne the norm of a function by:

kfk = max
x2[a;b]

jf(x)j (3.1)
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This makes C[a; b] a normed space. One can easily check the requrements for the norm.

c] We still have to check that C[a; b] with the given norm is complete space. This is always the

most di�cult part to check. Suppose we have a Cauchy sequence of continuous functions ffng .

Then for any point x 2 [a; b] :

jfn(x)� fm(x)j � max
x2[a;b]

jfn(x)� fm(x)j = kfn � fmk ! 0 (n;m!1)

This means that fn(x) for each x 2 [a; b] is Cauchy sequence in R and as R is complete this Cauchy

sequence converges to some f(x) 2 R. This gives a limit function f(x). We still have to prove that

this limit function is continuous. For �xed n we have for all x 2 [a; b] :

jf(x)� fn(x)j = lim
m!1

jfm(x)� fn(x)j � max
x2[a;b]

lim
m!1

jfm(x)� fn(x)j =

= max
x2[a;b]

jf(x)� fn(x)j = kf � fnk

Thus the sequence of continuous functions converges uniformly to f and hence its limit function f

is continuous and f 2 C[a; b].

3.2.3 The Banach spaces Lp and H1

We now describe two types of Banach spaces which are relevant to quantum mechanics and density

functional theory in particular. The �rst Banach space of importance is the space of functions for

which the Lebesque integralZ
jf(x)jpdx (3.2)

exists where x is usually a n-dimensional real vector and p a positive real number. This space is

usually denoted as Lp(Rn). Another important space is the space of real functions for which the

Lebesque integralZ
jf(x)j2 + jrf(x)j2dx (3.3)

exists which called the Sobolev space H1(Rn) ( the 1 in H1 gives the order of the derivative). As

both spaces are based on the concept of Lebesque integral we will give in the following a short

account on the de�nition of the Lebesque integral based on measure theory. In measure theory one

is interested in the question how to de�ne a volume element for more general spaces than the real

numbers. Such a de�nition is needed if one wants to perform integration on more general spaces

Consider the space B and a family A of subsets of B containing the empty set ;. A positive

measure m (which is intuitively something like a volume) is then de�ned as a mapping from A into

the extended real numbers m : A ! R+ [ f+1g which is countably additive for every disjoint

family of subsets (a1; : : : ; an; : : :) in A with union in A :

m([1i=1ai) =
1X
i=1

m(ai) (3.4)

and

m(;) = 0 (3.5)
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The space (B;A;m) endowed with measure m is called a measure space. The elements of A are

called measurable subsets of B and m(a) is the measure of a 2 A.

A property is said to hold almost everywhere if it holds for all points of B except possibly for points

of a set a of measure m(a) = 0.

As an example we take the space of real numbers R and take for A the collection of subsets of

R generated by the open intervals through union and intersection (which makes R a topological

space). We de�ne the measure m on an open interval ]a; b[; b > a by:

m(]a; b[) = b� a (3.6)

We then have for instance for a < b < c :

m(]a; c[) = c� a = b� a+ c� b = m(]a; b[) +m(]b; c[) (3.7)

On the other hand we have:

m(]a; b[) +m(]b; c[) = m(]a; b[[]b; c[) = m(]a; c[nfbg) (3.8)

and

m(]a; c[) = m(]a; c[nfbg [ fbg) = m(]a; c[nfbg) +m(fbg) (3.9)

Hence it follows that m(fbg) = 0 and so this measure for a single point is zero. By countable

addition it follows for example that the measure of the collection of rational numbers Q is zero:

m(Q) = m([1i=1fqig) =

1X
i=1

m(fqig) = 0 (3.10)

In this measure two functions which di�er on the set Q are almost everywhere equal as they di�er

on a set of measure zero.

The measure we have de�ned here on the real numbers is known as the Lebesque measure and is

the basis of the Lebesque integration theory. For a function f : R ! R the Lebesque integral is

de�ned as follows. Divide the range of f into a �nite number of small intervals and �nd the set ai
of all x 2 R for which f(x) is in the i-th interval. Assign a measure m(ai) to the set ai. Let ki be

some value of f(x) in the i-th interval and let fn be the step function equal to ki when x 2 ai. The

Lebesque integral is then the limit when it exists of:Z
fdm =

X
i

kim(ai) (3.11)

when the sequence of functions (fn) tend to f in a sense we will make more precise in the following.

In order to do this we need some further de�nitions.

A real function f : B ! R on the measure space (B;A;m) is said to be measurable when:

fxja < f(x) < bg 2 A; 8a; b 2 R (3.12)

A function on (B;A;m) is called a step function or simple if it is zero except on a �nite number n

of disjoint sets ai 2 A of �nite measure m(ai) where the function is equal to a �nite constant ki.

The integral of a step function is by de�nition:

Z
B
fdm =

nX
i=1

kim(ai) (3.13)
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For example if we denote the rational numbers on the real interval I = [0; 1] by Q and we de�ne the

step function to be equal to two on Q and one elsewhere then the integral in the Lebesque-measure

is given by:Z
I
fdm = 2m(Q) +m(InQ) = 0 + 1 = 1 (3.14)

We �nally give the de�nition of the integral of a measurable function. We �rst consider the case of

a positive function.Let f be a positive real valued function on the measure space (B;A;m). Then

we de�ne the integral of f with respect to the measure m by:Z
B
fdm � sup f

Z
B
�dmg (3.15)

as � ranges over all step functions with 0 � � � f . If this integral is �nite then f is said to be

integrable. Now an arbitrary real valued function can always be written f = f+� f� with f+ and

f� positive functions. Then f is integrable if both f+ and f� are integrable and its integral is

given by:Z
B
fdm �

Z
B
f+dm�

Z
B
f�dm (3.16)

The integral on the real numbers R or Rn with respect to the Lebesque measure is called Lebesque

integral. The Lebesque integral of two functions is equal if the two functions are equal almost

everywhere. In the remainder of this section we will regard these functions as equal. More precisely

we look at the equivalence class of functions which are equal almost everywhere. In a somewhat

loose notation we will denote the equivalence class to which function f belongs with the same f .

We now de�ne

Lp(R) = ff j
Z
jf(x)jpdx <1g (3.17)

where the integral is a Lebesque integral. For p � 1 we can assign to this space a norm kkp which

makes this space a Banach space

kfkp =

�Z
jf(x)jpdx

� 1
p

(3.18)

This is a consequence of the Minkovski inequality

kf + gkp � kfkp + kgkp (3.19)

for p � 1. We further de�ne the space L1(R) as the space of (classes of ) measurable functions

bounded almost everywhere with norm

kfk1 = ess sup jf(x)j (3.20)

where the essential supremum 'ess sup' is de�ned as the smallest number M such that jf(x)j �M

almost everywhere. This a again a Banach space. An important inequality that can be proven for

the Lp-spaces with 0 � p � 1 is the H�older inequality

kfgk1 � kfkpkgkq (3.21)

with 1=p + 1=q = 1 with f 2 Lp and g 2 Lq. We further de�ne the Sobolev space H1(R) as the

Banach space

H1(R) = ff 2 L2(R)j
Z
jf(x)j2 + jrf(x)j2dx <1 (3.22)
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with corresponding norm

kfk =

Z h
jf(x)j2 + jrf(x)j2dx

i 1
2

(3.23)

( the derivative rf for f 2 L2 can be de�ned by means of a Fourier transform ). We now have

discussed the most important Banach spaces for applications in physics. We will in the next section

discuss functions on Banach spaces which will be called operators or functionals.

3.3 Operators and functionals

Every map F : B1 ! B2 in which B1 and B2 are Banach spaces is called an operator. For the special

case B2 = R this operator is called a functional. The spaces B1 and B2 are in general di�erent

spaces with di�erent norms. We can consider for example the operator F : C[a; b] ! C[a; b] given

by:

F [f ] = f2 (3.24)

or the functional F : C[a; b] !R given by:

F [f ] =

Z b

a
f2(x)dx (3.25)

Special operators are the linear operators from B1 to B2. Those operators have the property that

if f; g 2 B1 and � 2 R then:

F [�f ] = �F [f ]

F [f + g] = F [f ] + F [g]
(3.26)

The space of linear operators from B1 to B2 is also a vectorspace. On this space we can also

introduce a norm by:

kFk = sup
f2B1

f
kF [f ]k2
kfk1

g (3.27)

in which kk1 and kk2 are the norms on the spaces B1 and B2. If the above operatornorm exists for

an operator F then this operator is called bounded. The space of bounded linear operators from

B1 to B2 is again a Banach space which is denoted by [B1; B2]. This space will reappear in the

next section when we want to de�ne higher order derivatives.

We now have obtained all the knowledge necessary to de�ne integration and di�erentiation on

Banach spaces. We can now go on and prove most of the theorems of ordinary calculus by imitating

the proofs. This then yields ordinary calculus as a special case of calculus on Banach spaces.

3.4 Functional di�erentiation

3.4.1 The Fr�echet derivative

In analogy with ordinary calculus on the vectorspace Rn we can de�ne two types of derivatives.

The �rst is the Fr�echet-derivative, which is analogous to the total derivative in vector calculus,

and the second is the Gateaux-derivative which is analogous to the directional derivative in vector

calculus.We will start with the total derivative.
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An operator F : DF ! B2 with DF � B1 in which B1 and B2 are Banach spaces with norms kk1
and kk2 is called di�erentiable in f 2 DF if there exists a linear operator:

�F

�f
(f) 2 [B1; B2] (3.28)

such that for f + h 2 DF :

lim
khk1!0

kF [f + h]� F [f ]� �F
�f (f)[h]k2

khk1
= 0 (3.29)

If �F
�f (f) exists for all f 2 DF then this linear functional is called the Fr�echet-derivative of F . This

de�nition is analogous to the corresponding de�nition of the total derivative in vectorcalculus in

Rn in which case �F
�f

(f) is a n� n-matrix working on the n-component vector h.

We will now give some examples. Consider again the operator F : C[a; b] ! C[a; b] de�ned by

F [f ] = f2. Its Fr�echet-derivative is a linear operator �F
�f

(f) : B1 ! B2 de�ned by:

�F

�f
(f)[h] = 2fh 2 C[a; b] (3.30)

This follows directly from the de�nition of �F
�f :

lim
khk!0

k(f + h)2 � f2 � �F
�f (f)[h]k

khk
= lim

khk!0

kh2k
khk

=

= lim
khk!0

1

khk
max
x2[a;b]

jh2(x)j � lim
khk!0

1

khk
( max
x2[a;b]

jh(x)j)2 = lim
khk!0

khk = 0

Hence we have proven our statement. As a next example we will calculate the Fr�echet-derivative

of the functional F : C[a; b] ! R de�ned by:

F [f ] =

Z b

a
f2(x)dx (3.31)

Its Fr�echet-derivative is given by the linear functional �F
�f (f) : C[a; b] !R given by:

�F

�f
(f)[h] =

Z b

a
2f(x)h(x)dx (3.32)

We again check the de�nition:

lim
khk!0

1

khk
j
Z b

a
(f + h)2dx�

Z b

a
f2dx�

Z b

a
2fhdxj = lim

khk!0

1

khk

Z b

a
h2dx

� lim
khk!0

b� a

khk
( max
x2[a;b]

jh(x)j)2 = lim
khk!0

(b� a)khk = 0

which proves our statement.

We now have de�ned the derivative of an operator as a linear operator. This is in accordance with

the view of regarding the derivative of a function as a linear approximation to that function. In

order to calculate higher order approximations we must carry out a Taylor-expansion and de�ne

higher order derivatives. Before addressing this question we will now give another de�nition of the

derivative which is called the Gâteaux-derivative.
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3.4.2 The Gâteaux-derivative

The Gâteaux-derivative of an operator F : B1 ! B2 in the direction h 2 B1 is a linear operator
�F
�f 2 [B1; B2] de�ned by:

�F

�f
(f)[h] = lim

t!0

F [f + th]� F [f ]

t
(3.33)

The limit should be taken in the norm kk2 of B2 ,thus one has to check:

lim
t!0

k
F [f + th]� F [f ]

t
�
�F

�f
(f)[h]k2 = 0 (3.34)

The existence of the Gâteaux-derivative is guaranteed if F is also Fr�echet-di�erentiable and in that

case they are equal. However existence of the Gateaux-derivative does not guarantee the existence

of the Fr�echet-derivative. This is easy to imagine as F might be di�erentiable in some directions

but not in all directions, or those derivatives might not be equal.

We will now give some examples of the Gateaux-derivative. Consider F : C[a; b] !R de�ned by:

F [f ] =

Z b

a
f

4
3 (x)dx (3.35)

Then the Gateaux-derivative �F
�f (f) : C[a; b] !R is given by:

�F

�f
(f)[h] = lim

t!0

1

t
(

Z b

a
(f + th)

4
3 dx�

Z b

a
f

4
3 dx) =

= lim
t!0

1

t

Z b

a
f

4
3 (1 +

4

3
t
h

f
+O(t2))� f

4
3dx =

= lim
t!0

Z b

a

4

3
f

1
3hdx+O(t) =

Z b

a

4

3
f

1
3hdx

Another important example is the derivation of the Euler-Lagrange equations. Consider the Ba-

nach space of continuously di�erentiable functions on some subspace V of three-dimensional space,

denoted by C1(V ). We can then de�ne the functional F : C1(V ) ! R by:

F [f ] =

Z
V
L(f;rf)dr (3.36)

in which L is a local function of f and rf . The functions f and rf are supposed to disappear on

the edge of V . Then the Gateaux-derivative of F is given by:

�F

�f
(f)[h] = lim

t!0

1

t

Z
V
L(f + th;rf + trh)�L(f;rf)dr =

= lim
t!0

1

t

Z
V
t
@L
@f

h+ t
L

@rf
� rh+O(t2)dr =

=

Z
V

@L
@f

h+
@L
@rf

� rhdr =

Z
V

(
@L
@f

�r �
@L
@rf

)hdr (3.37)

If we are looking for extreme values of F then �F
�f (f)[h] must be zero for all variations h. In that

case we must have:

@L
@f

�r �
@L
@rf

= 0 (3.38)

which yields the famous Euler-Lagrange equations.
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3.4.3 Higher order derivatives

We will now adress the question of higher order derivatives. We note that if F : B1 ! B2 then
�F
�f (f) is a linear operator. It is an element of the space [B1; B2]. So we can de�ne an operator
�F
�f : B1 ! [B1; B2] which assigns to each element f 2 B1 the functional derivative �F

�f (f) in f .

Thus:

�F

�f
: f 7!

�F

�f
(f) 2 [B1; B2] (3.39)

As the space [B1; B2] is also a Banach space we can di�erentiate �F
�f again and obtain a linear

operator:

�2F

�f2
(f) : B1 ! [B1; B2] (3.40)

thus �2F
�f2

(f) 2 [B1; [B1; B2]]. This is called the second order derivative of F . We can now start

allover again and de�ne an operator:

�2F

�f2
: f 7!

�2F

�f2
(f) 2 [B1; [B1; B2]] (3.41)

This operator can then be further di�erentiated and so on. If we go on like this , this procedure

�nally gives our nth-order derivative which is a functional:

�nF

�fn
: f 7!

�nF

�fn
(f) 2 [B1; [B1; [B1; : : : [B1| {z }

n

; B2] : : :]]] (3.42)

Let us make this more concrete with an example. Take the functional F : C[a; b] !R de�ned by:

F [f ] =

Z b

a
f2(x)dx (3.43)

The functional derivative is a linear functional �F
�f (f) : C[a; b] !R given by:

�F

�f
(f)[h] =

Z b

a
2f(x)h(x)dx (3.44)

We will denote this functional by 02f 0. We can now de�ne the operator �F
�f : C[a; b] ! [C[a; b];R]

by:

�F

�f
[f ] =0 2f 0 (3.45)

This assigns to each function f a linear functional. We now can di�erentiate this operator again.

This yields again a linear operator which is an element of [C[a; b]; [C[a; b];R]] de�ned by:

�2F

�f2
(f)[h] = 20h0 (3.46)

The proof of this statement is not di�cult. If we denote the norm on the space [C[a; b];R] by kk3
then we have:

lim
khk1!0

1

khk1
k
�F

�f
(f + h)�

�F

�f
(f)�

�2F

�f2
(f)[h]k3 =
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= lim
khk1!0

k02(f + h)0 �0 2f 0 � 20h0k3
khk1

= lim
khk1!0

k000k3
khk1

= 0

As �2F
�f2

assigns to each point f 2 C[a; b] a linear operator working on a point h 2 C[a; b] which

in its turn assigns a linear operator working on a point k 2 C[a; b] we can also regard �2F
�f2

as an

operator which assigns to each point f 2 C[a; b] a bilinear operator on C[a; b]:

�2F

�f2
: f 7!

�2F

�f2
(f) 2 [C[a; b]� C[a; b];R] (3.47)

de�ned by:

�2F

�f2
(f)[h; k] = 20h0[k] =

Z b

a
2h(x)k(x)dx (3.48)

This is completely general. We can equivalently view �nF
�fn as an operator:

�nF

�fn
: B1 ! [B1 � : : : �B1| {z }

n

; B2] (3.49)

whichs assigns to each f 2 B1 a multilinear operator on the product space B1 � : : : �B1 which is

also a Banach space:

�nF

�fn
(f)(h1; : : : ; hn) 7!

�nF

�fn
(f)[h1; : : : ; hn] 2 B2 (3.50)

This is analogous to the case of vector calculus in which the nth-order derivatives are multilinear

tensors. In our example we have as a �rst order derivative the linear functional:

�F

�f
(f)[h] =

Z b

a
2f(x)h(x)dx (3.51)

and as a second order derivative the bilinear functional:

�2F

�f2
(f)[h; k] =

Z b

a
2h(x)k(x)dx (3.52)

Those operators are often given by their integral kernels when it is possible to regard the functional

derivative as a linear integral operator. In the case of our example we have:

�F

�f
(f)[h] =

Z b

a

�F

�f(x)
h(x)dx (3.53)

�2F

�f2
(f)[h; k] =

Z b

a

Z b

a

�2F

�f(x)�f(y)
h(x)k(y)dxdy (3.54)

where the integral kernels are given by:

�F

�f(x)
= 2f(x) (3.55)

�2F

�f(x)�f(y)
= 2�(x � y) (3.56)

In general we can write:

�nF

�fn
(f)[h1; : : : ; hn] =

Z
�nF

�f(x1) : : : �f(xn)
h1(x1) : : : hn(xn)dx1 : : : dxn (3.57)

This completes our discussing of the higher order derivatives. We can now go on to de�ne Taylor

sequences, but before we do that we will �rst give extremal points of functionals and give an

overview on functional integration.
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3.5 Variational calculus

3.5.1 Extremal points of functionals

One of the most important applications of functional calculus concerns the determination of ex-

tremal points. One usually looks for local or global minima of functionals. Important applications

can be found in almost all areas of physics.

In the following we will discuss local minima of a functional F : B 7! R from a Banach space B

to the real numbers. All the results derived can easily be applied to the case of local maxima as

they are local minima of the functional �F . We �rst state a de�nition. A functional F has a local

minimum at f0 2 B when there exists a neigbourhood V (f0) = ff 2 Bjkf � f0k < �g such that

F [f0] � F [f ] 8f 2 V (f0) (3.58)

Let F be Fr�echet di�erentiable ( Gâteaux di�erentiable in every direction h 2 B ). Then a necessary

condition for F to have a local minimum at f0 is

�F

�f
(f0) = 0 (3.59)

For a proof we de�ne g : R 7! R by g(t) = F [f0 + th] for h 2 B. As f0 is a local minimum we have

g(0) = F [f0] and g(t) � F [f0] . Therefor g : R 7! R has a local minimum at t = 0 and therefore

dg=dt(0) = 0 and we �nd

0 =
dg

dt
(0) =

�F

�f
(f0)[h] 8h 2 B (3.60)

So �F=�f(f0) = 0. The following theorem is useful for practical applications. Let F : B 7! R be

twice di�erentiable. A su�cient condition for f0 to have a minimum at f0 2 B is that

�F

�f
(f0) = 0 (3.61)

and

�2F

�f2
(f)[h; h] � 0 8f; h 2 B (3.62)

To prove this we de�ne k : R 7! R by

k(t) = F [f0 + th] + (1� t)
�F

�f
(f0 + th)[h] (3.63)

Then k(1) = F [f0 + h] and k(0) = F [f0] because the derivative at f0 vanishes

dk

dt
(t) = (1� t)

�2F

�f2
(f0 + th)[h; h] (3.64)

Which yields

F [f0 + h]� F [f0] = k(1) � k(0) =

Z 1

0
(1� t)

�2F

�f2
(f0 + th)[h; h]dt � 0 (3.65)

and we �nd that F [f0 + h] � F [f0] , and therefore f0 must be a local minimum.
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3.5.2 Convex functionals

An important class of functionals for variational calculations is the set of convex functionals. A

functional F : B 7! R is convex when for f1; f2 2 B and 0 � �1; �2 � 1 with �1 + �2 = 1 we have

F [�1f1 + �2f2] � �1F [f1] + �2F [f2] (3.66)

It is readily veri�ed that an equivalent de�nition is

F [
NX
i=1

�ifi] �
NX
i=1

�iF [fi]
NX
i=1

�i = 1 0 � �i � 1 (3.67)

The importance of convexity for variational problems can be inferred from the following statement.

If F : B 7! R is convex and F is twice di�erentiable then

�2F

�f2
(f)[h; h] � 0 8f; h 2 B (3.68)

To prove this we �rst note that due to the convexity of F we have for 0 � t � 1

F [f0 + t(f � f0)] = F [tf + (1� t)f0] � tF [f ] + (1� t)F [f0] (3.69)

and therefore

F [f0 + t(f � f0)]� F [f0]

t
� F [f ]� F [f0] (3.70)

Taking the limit t # 0 and using the di�erentiability of F we �nd

�F

�f
(f0)[f � f0] � F [f ]� F [f0] (3.71)

Similarly by interchanging f and f0 we �nd

�F

�f
(f)[f0 � f ] � F [f0]� F [f ] (3.72)

Adding both inequalities then yields�
�F

�f
(f)�

�F

�f
(f0)

�
[f � f0] � 0 (3.73)

This inequality means that �F=�f is a monotonously increasing functional. If we take f = f0 + th

and take the limit t # 0 and use the fact that F is twice di�erentiable we have

0 � lim
t#0

1

t

�
�F

�f
(f0 + th)�

�F

�f
(f0)

�
[h] =

�2F

�f2
(f0)[h; h] (3.74)

which proves our statement. The converse, which we will not prove here, is also true. If F is twice

di�erentiable and the second derivative is always larger than or equal to zero then F is convex.

From the results of the previous section we can now conclude that if �F=�f(f0) = 0 for a twice

di�erentiable convex functional then f0 is a local minimum of F .

We will now discuss one other quantity which is useful to prove di�erentiability of convex function-

als, which is the tangent functional or subgradient. Suppose that F : B 7! R is a convex functional

which is di�erentiable at f0 then

F [f ]� F [f0] �
�F

�f
(f0)[f � f0] 8f 2 B (3.75)
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This equation which has been derived above is equivalent to equation 3.71. The above equation is

a special case of the more general equation

F [f ]� F [f0] � L[f � f0] 8f 2 B (3.76)

where L : B 7! R is a bounded linear functional. If for a convex functional F such a linear functional

exists at f0 then F is called subdi�erentiable at f0. The functional L is called a subgradient or a

tangent functional. One can prove the following statement. For a proof see [66]. If there is for a

convex functional F a unique tangent functional at f0 2 B then F is Gâteaux di�erentiable at f0
and

L =
�F

�f
(f0) (3.77)

Gâteaux di�erentiability of a convex functional is therefore equivalent to the uniqueness of a tangent

functional. This can be illustrated with the following example. Let the Banach space B be the real

numbers B = R and the function F : R 7! R de�ned as F (x) = jxj. This is a convex function. The

linear functions L1(x) = x and L2(x) = �x are both subgradients at the point x = 0. Therefore

there is no unique subgradient at x = 0 and F is not di�erentiable at x = 0. For x > 0 there is the

unique subgradient L1 and for x < 0 there is a unique subgradient L2. Therefore F is di�erentiable

for x 6= 0.

3.6 Functional integration

3.6.1 The line integral

As a motivation for the de�nition of line integrals in Banach spaces we will �rst give a familiar

example of line integration in ordinary vector calculus. Suppose we have a curve ~
 : R ! R3 in

three-dimensional space starting at ~a = ~
(0) and ending in ~b = ~
(1). Suppose we also have a scalar

function F : R3 !R and we de�ne F
(t) = F (~
(t)) then it follows:

dF


dt
(t) = rF (~
(t)) �

d~


dt
(t) (3.78)

From this formula we can deduce:

F (~b)� F (~a) =

Z 1

0

dF


dt
(t)dt =

Z 1

0
rF (~
(t)) �

d~


dt
(t)dt (3.79)

In general we can for a given vector�eld ~v calculate the line integral along curve ~
 which is de�ned

as: Z
~

~v � d~
 �

Z 1

0
~v(~
(t)) �

d~


dt
(t)dt (3.80)

In general the outcome of this integral is path dependent.Only if there exists some scalar function

F with rF = ~v then the outcome of the integral is path independent. In that case we have a

conservative vector�eld.

Let us generalise this to Banach spaces. Consider a functional F : B !R where B is Banach space

with norm kk. We can then de�ne for a given f; h 2 B the function k : R! R by:

k(t) = F [f + th] (3.81)
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Then:

dk

dt
(t) = lim

s!0

k(t+ s)� k(t)

s
=

= lim
s!0

F [f + th+ sh]� F [f + th]

s
=
�F

�f
(f + th)[h]

This thus yields the Gateaux-derivative in point f + th. This then gives:

F [f + h]� F [f ] = k(1)� k(0) =

Z 1

0

dk

dt
(t)dt =

Z 1

0

�F

�f
(f + th)[h]dt (3.82)

So we have derived the formula:

F [fb]� F [fa] =

Z 1

0

�F

�f
(fa + t(fb � fa))[fb � fa]dt (3.83)

This de�nes the line integral of �F
�f
2 [B; [B;R]] along the path 
(t) = fa+ t(fb�fa) 2 B. This can

be generalised to arbitrary elements v 2 [B; [B;R]]. Suppose we have an operator v : B ! [B;R]

then the integral of v from fa to fb is de�ned by:

Z fb

fa

v[f ]df �
Z 1

0
v(fa + t(fb � fa))[fb � fa]dt (3.84)

(By v(f)[h] we mean v in point f 2 B working on h 2 B.) This integral can also be de�ned for

more general paths by splitting up the general path in small straight pieces on which the integral

is de�ned and then taking the limit of an in�nite number of in�nitesimal pieces. This then leads

to the following de�nition:Z


v[f ]df �

Z 1

0
v(
(t))[

d


dt
(t)]dt (3.85)

where 
 : R ! B is a di�erentiable path in Banach space. Using this de�nition we can prove the

following statements just as for ordinary line integrals:Z


v[f ]df = �

Z
�

v[f ]df (3.86)

Z

1

v[f ]df +

Z

2

v[f ]df =

Z

1+
2

v[f ]df (3.87)

where �
 is 
 with reverse orientation thus with parameter t running from 1 to 0. Further is


1 + 
2 the combined path obtained by �rst walking along path 
1 and subsequently walking along

path 
2. If the integrals are path independent the outcome of the integrals can only depend on the

endpoints of the path and we can denote the integral by:

Z


v[f ]df =

Z fb

fa

v[f ]df (3.88)

where fa = 
(0) and fb = 
(1). In that case the above statements give:

Z fb

fa

v[f ]df = �
Z fa

fb

v[f ]df (3.89)
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Z fc

fa

v[f ]df +

Z fb

fc

v[f ]df =

Z fb

fa

v[f ]df (3.90)

Suppose we have an operator v 2 [B; [B;R]] for which the line integral is path independent. We

will prove for the case of a straight path (the particular path is not important as the integral is

path independent) that if we de�ne the functional F : B ! R by

F [f ] =

Z f

fa

v[k]dk =

Z 1

0
v(fa + t(f � fa))[f � fa]dt (3.91)

with v 2 [B; [B;R]] then

�F

�f
(f) = v(f) 2 [B;R] (3.92)

The proof is analogous to the corresponding proof for the Riemann integral.We calculate:

F [f + th]� F [f ]

t
=

1

t

Z f+th

f
v[k]dk =

1

t

Z t

0
v(f + sh)[h]ds (3.93)

Here we used the path independence property:Z f+th

fa

v[k]dk �
Z f

fa

v[k]dk =

Z f+th

f
v[k]dk (3.94)

Then it follows:

j
F [f + th]� F [f ]

t
� v(f)[h]j = j

1

t

Z t

0
(v(f + sh)[h] � v(f)[h])dsj

�
1

t

Z 1

0
jv(f + sh)[h]� v(f)[h]jds �

1

t
max
s2[0;t]

fjv(f + sh)[h] � v(f)[h]jtg =

= max
s2[0;t]

fjv(f + sh)[h] � v(f)[h]jg ! 0 (t! 0)

Thus we have:

�F

�f
(f)[h] = lim

t!0

F [f + th]� F [f ]

t
= v(f)[h] (3.95)

and hence we have proven our statement. Thus path independency for line-integrals of v implies

that v(f) is the functional derivative of some functional F : B ! R We will now give some

examples. Suppose we have an operator v : C[a; b] ! [C[a; b];R] de�ned by:

v[f ] =
4

3
f

1
3 2 [C[a; b];R] (3.96)

The action of this operator on a function h 2 C[a; b] is de�ned as:

v(f)[h] =
4

3
f

1
3 [h] =

Z b

a

4

3
f

1
3 (x)h(x)dx (3.97)

Then the integral of v from fa to fb is given by:Z fb

fa

v[k]dk =

Z 1

0

4

3
(fa + t(fb � fa))

1
3 [fb � fa]dt =
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=

Z b

a
dx

4

3
(fb � fa)

Z 1

0
dt(fa + t(fb � fa))

1
3 =

=

Z b

a
dx

4

3
(fb � fa)[

3

4

1

fb � fa
(fa + t(fb � fa))

4
3 ]10 =

=

Z b

a
dx(f

4
3

b � f
4
3
a ) = F [fb]� F [fa]

where F : C[a; b] ! R is de�ned by:

F [f ] =

Z b

a
f

4
3 (x)dx (3.98)

One can check that the functional derivative of F yields v(f) and hence the result is path in-

dependent. Our �nal example in this section also involves gradients. De�ne the functional F :

C1(V ) ! R in which C1(V ) is the space of continuous di�erentiable functions on some subset of

three-dimensional space R3 by:

F [f ] =

Z
V

(rf)2

f
4
3

dr (3.99)

The functions f and rf are supposed to disappear on the edge of V . Using the Euler-Lagrange

equations 3.37 we �nd for the functional derivative:

v(f) =
�F

�f
(f) =

@

@f
(
(rf)2

f
4
3

)�r �
@

@rf
(
(rf)2

f
4
3

) =

= �
4

3

(rf)2

f
7
3

�r � (2
rf
f

4
3

) = �
4

3

(rf)2

f
7
3

� 2
r2f

f
4
3

+
8

3

(rf)2

f
7
3

=

=
4

3

(rf)2

f
7
3

� 2
r2f

f
4
3

2 [C1(V );R] (3.100)

We will now integrate this derivative from 0 2 C1(V ) to f 2 C1(V ). Then we must calculate:

Z f

0
v[k]dk =

Z 1

0
v(tf)[f ]dt =

Z
V
drf

Z 1

0
dt

4

3

(trf)2

(tf)
7
3

� 2
tr2f

(tf)
4
3

=

=

Z
V
drf(

4

3

(rf)2

f
7
3

Z 1

0
dtt�

1
3 � 2

r2f

f
4
3

Z 1

0
dtt�

1
3 ) =

=

Z
V
dr(2

(rf)2

f
4
3

� 3
r2f

f
1
3

) =

Z
V
dr

(rf)2

f
4
3

� 3

Z
V
drr � (

rf
f

1
3

) =

=

Z
V

(rf)2

f
4
3

= F [f ] (3.101)

which recovers our starting functional.
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3.6.2 Integrability conditions

In the calculation of line integrals it is often useful to know whether a given line integral is path

independent because in that case we can try to deform the path to a contour for which the integral

is easy to calculate without changing the outcome of the integral. We thus like to have an easy

to verify criterion which tells us whether a given line integral is path independent. For everyday

three-dimensional vector�elds such a criterion is easy to give. The line integral along the �eld is

path independent if this �eld is rotationless. Mathematically this means that its curl should vanish.

This condition is readily derived. Suppose we have a vector�eld v : R3 ! R3. If the line integral

along this vector�eld is path independent then this vector�eld should be the gradient of some scalar

function f : R3 !R thus:

v = rf (3.102)

Or in terms of vector components:

vi = @if (3.103)

If f is twice di�erentiable then it follows that:

@kvi � @ivk = @k@if � @i@kf = 0 (3.104)

and hence:

r� v = 0 (3.105)

In the derivation of this condition we used the fact that we could interchange the di�erentiation with

respect to di�erent variables. In general it is true for a n-times di�erentiable function f : R3 !R
that:

@i1@i2 : : : @inf = @ip(1)@ip(2) : : : @ip(n)f (3.106)

where p is an arbitrary permutation of the numbers 1; 2; : : : ; n. A direct generalisation of this

statement to n-times di�erentiable operators F : B1 ! B2 on Banach space would be:

�nF

�fn
(f)[h1; h2; : : : ; hn] =

�nF

�fn
(f)[hp(1); hp(2); : : : ; hp(n)] (3.107)

where hi 2 B1. Using the de�nition of di�erentiation one can prove this statement. In particular

we have for the bilinear operator �2F
�f2

(f) 2 [B1 �B1; B2] that:

�2F

�f2
(f)[h; k] =

�2F

�f2
(f)[k; h] (3.108)

for h; k 2 B1. If it is possible to view this operator as an integral operator then the integral kernel

should be symmetric:

�2F

�f(x)�f(y)
=

�2F

�f(y)�f(x)
(3.109)

Suppose we have in point f 2 B1 a linear operator v(f) : B1 ! B2 which is the functional derivative

of an operator F : B1 ! B2, thus:

v(f) =
�F

�f
(f) 2 [B1; B2] (3.110)
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If we let this operator work on an element h 2 B1 and we take the derivative in direction k 2 B1

then:

�v

�f
(f)[h][k] = lim

t!0

v(f + tk)� v(f)

t
[h] =

= lim
t!0

1

t
(
�2F

�f2
(f + tk)[h]�

�F 2

�f2
(f)[h]) =

�2F

�f2
(f)[h; k] (3.111)

Thus using the symmetry of the second order derivative (equation 3.108) we can conclude that if

v 2 [B1; [B1; B2] is the derivative of a twice di�erentiable operator F : B1 ! B2 then:

�v

�f
(f)[h][k] =

�v

�f
(f)[k][h] (3.112)

Using the integral kernel notation:

�v

�f
(f)[h][k] =

Z
�v(x)

�f(y)
h(x)k(y)dxdy (3.113)

we must have for the integral kernels:

�v(x)

�f(y)
=
�v(y)

�f(x)
(3.114)

This is a necessary condition for the path independence for the line integral of v. We now give

some examples. Consider a functional F : C2[a; b] !R on the space C2[a; b] of twice continuously

di�erentiable functions on the interval [a; b]. The functions are also required to vanish at the

endpoints of the interval so we are really working in a subspace of C2[a; b] . Let the functional F

be de�ned by:

F [f ] =

Z b

a

1

2
(
df

dx
(x))2dx (3.115)

Its functional derivative v(f) = �F
�f (f) 2 [C2[a; b];R] is given by:

v(f) =
d2f

dx2
2 [C2[a; b];R] (3.116)

This is easily derived using the Euler-Lagrange equations 3.37. Its action on a function h 2 C2[a; b]

is given by:

d2f

dx2
[h] =

Z b

a

d2f

dx2
(x)h(x)dx (3.117)

As v(f) 2 [C2[a; b];R] is the functional derivative of functional F the operator �v
�f 2 [C2[a; b]; [C2[a; b];R]]

should be a symmetric linear operator. This is easily checked:

�v

�f
(f)[h][k] = lim

t!0

1

t

Z b

a
(
d2

dx2
(f + tk)�

d2f

dx2
)h(x)dx =

=

Z b

a

d2k

dx2
(x)h(x)dx = �

Z b

a

dk

dx
(x)

dh

dx
(x)dx (3.118)

In the last step we used partial integration and the fact that h(a) = h(b) = 0. In this derivation all

the limits are taken in the norm sense. A more careful derivation using norms shows that this last
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result is indeed correct. This last formula is obviously symmetric in h and k. If we use the integral

kernel notation we have:

�v(x)

�f(y)
=

d2

dx2
�(x� y) (3.119)

which is also symmetric.

As a �nal example we consider on the same space an operator v(f) 2 [C2[a; b];R] with a nonsym-

metric derivative.Let v(f) be de�ned by:

v(f)[h] =

Z b

a
(
df

dx
(x))2h(x)dx (3.120)

Its derivative is given by:

�v

�f
(f)[h][k] = lim

t!0

1

t

Z b

a
((
d

dx
(f + tk))2 � (

df

dx
)2)h(x)dx =

=

Z b

a
2
df

dx
(x)

dk

dx
(x)h(x)dx (3.121)

This formula is not symmetric in h and k.We can also write this as:

�v

�f
(f)[h][k] =

Z b

a

Z b

a

df

dx
(x)

d�(x � y)

dy
h(x)k(y)dxdy (3.122)

So the integral kernel is given by:

�v(x)

�f(y)
=
df

dx

d

dy
�(x � y) (3.123)

This kernel is nonsymmetric so any line integral along v will be path dependent. This ends our

discussion of functional integration. There is one important topic left which is very useful in the

approximation of functionals and that is the de�nition of Taylor-sequences. We will deal with this

question in the next section.

3.7 Taylor expansions

In this section we will derive the Taylor formula for operators F : B1 ! B2. For given f; h 2 B1

de�ne the function k : R! B2 by:

k(t) =

NX
n=0

1

n!
(1� t)n

�nF

�fn
(f + th) [h; : : : ; h]| {z }

n

(3.124)

we now will use the following formula for the Riemann integral:

k(1) � k(0) =

Z 1

0

dk

dt
(t)dt (3.125)

in order to calculate dk
dt (t) we must calculate:

d

dt
(
�nF

�fn
(f + th)) = lim

s!0

1

s
(
�nF

�fn
(f + th+ sh)[h; : : : ; h] �

�nF

�fn
(f + th)[h; : : : ; h]) =
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=
�n+1F

�fn+1
(f + th) [h; : : : ; h]| {z }

n

[h] =
�n+1F

�fn+1
(f + th) [h; : : : ; h]| {z }

n+1

(3.126)

It thus follows that:

dk

dt
(t) =

NX
n=1

�1

(n� 1)!
(1� t)n�1

�nF

�fn
(f + th)[h; : : : ; h]

+

NX
n=0

1

n!
(1� t)n

�n+1F

�fn+1
(f + th)[h; : : : ; h] =

1

N !
(1� t)N

�N+1F

�fN+1
(f + th)[h; : : : ; h] (3.127)

We further have:

k(1) � k(0) = F [f + h]�
NX
n=0

1

n!

�nF

�fn
(f)[h; : : : ; h] (3.128)

Using equation 3.125 for the Riemann integral this yields:

F [f + h] = F [f ] +

NX
n=1

1

n!

�nF

�fn
(f)[h; : : : ; h] +

Z 1

0

1

N !
(1� t)N

�N+1F

�fN+1
(f + th)[h; : : : ; h]dt(3.129)

If F : B1 ! B2 is in�nitely di�erentiable and if the restterm:

RN (f; h) =

Z 1

0

1

N !
(1� t)N

�N+1F

�fN+1
(f + th)[h; : : : ; h]dt (3.130)

goes to zero for N !1 ,thus if:

lim
N!1

kRN (f; h)k2 = 0 (3.131)

then we have within the convergence radius:

F [f + h] = F [f ] +

1X
n=1

1

n!

�nF

�fn
(f)[h; : : : ; h] (3.132)

In the integral kernel notation we have:

F [f + h] = F [f ] +

1X
n=1

1

n!

Z
�nF

�f(x1) : : : �f(x2)
h(x1) : : : h(xn)dx1 : : : dxn (3.133)

We now have derived most formulas needed in practical application of functional calculus. This

�nal chapter therefore ends our review of functional calculus. A more rigorous discussion on all the

discussed topics can be found in [64, 65].



Chapter 4

Density functionals for Coulomb

systems

4.1 Introduction

In this section we will discuss the several functional analytical properties of density functionals

for electronic systems with Coulombic interparticle interactions. To derive continuity and di�er-

entiability of the density functionals we restrict ourselves to a certain set of external potentials,

mathematically denoted as L1(R3) + L3=2(R3) with contains the physically important Coulomb

potential as well as any �nite sum of Coulomb potentials relevant to molecular systems. The dis-

cussion in this section is largely based on the mathematical papers by Lieb [19] and Englisch and

Englisch [67, 68]

4.2 Conditions on the electron density and external potentials

The electron density corresponding to a normalized N -electron wave function 	 is de�ned as

�(r) = N
X

�1:::�N

Z
j	(r�1; r2�2 : : : rN�N )j2dr2 : : : drN (4.1)

We �rst put some constraints on the wave function. First of all because of the probability inter-

pretation one likes the wavefunction to be normalizable to one, so we require k	k <1 where the

norm is de�ned as

k	k =
X

�1:::�N

Z
j	(r1�1 : : : rN�N )j2dr1 : : : drN (4.2)

Secondly because of the superposition principle in quantum mechanics one requires that also some

in�nite linear combinations exist and are normalizable. More precisely we �rst de�ne

	M =

MX
i=1

am	m (4.3)

with k	mk = 1 and

MX
i=1

jaij2 = 1 (4.4)

63
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One can easily check this to be a Cauchy sequence

lim
M!1

k	M+1 �	Mk ! 0 (M !1) (4.5)

Then we would like the limit function to exist, i.e. we would like that our space of normalizable

functions contains some limit functions 	 such that

lim
M!1

k	�	Mk = 0 (4.6)

so we require the above Cauchy sequence to converge, more compactly we like our space of functions

to be complete with respect to the square integral norm. It can be proven that the smallest space

which is complete with respect to the above norm is the space L2 of functions 	 for which the

Lebesque integral of j	j2 exists. For a de�nition of the Lebesque integral we refer to the previous

chapter. A third requirement on wavefunctions is that their kinetic energy expectation value must

be �nite. The expectation values of the potential energy operators we will discuss later on. So we

require that

T [	] =
1

2

NX
i=1

X
�1:::�N

Z
jri	(r1�1 : : : rN�N )j2dr1 : : : drN <1 (4.7)

Here r	 is de�ned almost everywhere (a precise de�nition of r	 for a L2-function can be given

using Fourier transforms ). This implies that

X
�1:::�N

Z
j	(r1�1 : : : rN�N )j2 +

NX
i=1

jri	(r1�1 : : : rN�N )j2dr1 : : : drN <1 (4.8)

and so we now �nd that 	 2 H1(R3N ). All these constraints on 	 have consequences for the

constraints on the electron density �. First of all because 	 2 L2(R3N ) we �nd from equation 4.1

that � 2 L1(R3) which means that the Lebesque integral of the electron density is �niteZ
�(r)dr <1 (4.9)

We now will show that the �niteness of the kinetic energy implies that � must also be in L3(R3)

which together with the previous results implies that � 2 L1(R3) \ L3(R3).

If we consider a wave function 	 2 H1(R3N ) which yields density � then

r�(r) = N
X

�1:::�N

Z
	�(r�1 : : : rN�N )r	(r�1 : : : rN�N )dr2 : : : drN + c:c: (4.10)

Using the Schwarz inequality

j
Z
f(x1 : : : xN )g�(x1 : : : xN )dx1 : : : dxnj2

�
Z
jf(x1 : : : xN )j2dx1 : : : dxN

Z
jg(x1 : : : xN )j2dx1 : : : dxN (4.11)

we �nd

jr�(r)j2 �

4N2
X

�1:::�N

Z
j	(r�1 : : : rN�N )j2dr2 : : : drN

X
�1:::�N

Z
jr	(r�1 : : : rN�N )j2dr2 : : : drN
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= 8�(r)
1

2
N

X
�1:::�N

Z
jr	(r�1 : : : rN�N )j2dr2 : : : drN (4.12)

So we �nd that

TW [�] =
1

2

Z
jr
q
�(r)j2dr =

1

8

Z
(r�(r))2

�(r)
dr � T [	] <1 (4.13)

Therefore
p
�(r) 2 H1(R3). If we now use the Sobolev inequality for functions f 2 H1(R3)

Z
jrf(r)j2dr � 3(

�

2
)
4
3

�Z
jf(r)j6dr

� 1
3

(4.14)

we �nd thatZ
�3(r)dr �

1

3
(
2

�
)
4
3

Z
jr
q
�(r)j2 <1 (4.15)

so we conclude that � 2 L3(R3) which together with � 2 L1(R3) implies � 2 L1(R3) \ L3(R3).

Some de�nitions are useful for further discussions in this section. We de�ne the sets

SN = f�j�(r) � 0;
p
� 2 H1(R3);

Z
�(r)dr = Ng (4.16)

and

RN = f�j�(r) � 0; � 2 L3(R3);

Z
�(r)dr = Ng (4.17)

The set RN is convex, that is, if �1 and �2 2 RN then � = �1�1 + �2�2 2 RN with 0 � �1; �2 � 1

and �1 + �2 = 1 . This follows fromZ
�(r)dr = �1

Z
�1(r)dr + �2

Z
�2(r)dr = N (4.18)

and

k�1�1 + �2�2k3 � �1k�1k3 + �2k�2k3 <1 (4.19)

The set SN is also convex. This follows from

r� = �1r�1 + �2r�2 = 2�1
p
�1r

p
�1 + 2�2

p
�2r

p
�2 = �1r�1 + �2r�2 (4.20)

with �1 =
p

2�1�1 and �2 =
p

2�2�2 and from the Schwarz inequality

(�1r�1 + �2r�2)2 � (�21 + �22)((r�1)2 + (r�2)2) (4.21)

This yields

(r�)2 � 4�(�1(r
p
�1)

2 + �2(r
p
�2)

2) (4.22)

and we �ndZ
(
p
�)2dr � �1

Z
(
p
�1)

2dr+ �2

Z
(
p
�2)

2dr <1 (4.23)

So � 2 SN . In particular it follows that the von Weisz�acker kinetic energy functional 4.13 is a

convex functional, i.e.

TW [�1�1 + �2�2] � �1TW [�1] + �2TW [�2] (4.24)
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We will now prove the following statement. For any electron density � 2 SN there is a Slater

determinant wavefunction 	 2 H1(R3N ) which yields this density (i.e. with satis�es relation 4.1 ).

The proof is by explicit construction. We write r = (r1; r2; r3) and de�ne

f(r1) =
2�

N

Z r1

�1
dv1

Z +1

�1
dv2

Z +1

�1
dv3�(v1; v2; v3) (4.25)

The function f is monotonously increasing with f(�1) = 0 and f(+1) = 2�. We de�ne the

orbitals �n by

�n(r) = �n(r1; r2; r3) =

s
�(r1; r2; r3)

N
exp (inf(r1)) (4.26)

for n = 0; : : : ; N � 1. Then

j�n(r)j2 =
�(r)

N
(4.27)

and for n 6= m we haveZ
��m(r)�n(r)dr =

1

N

Z
�(r)ei(n�m)f(r1)dr =

1

2�

Z +1

�1

df

dr1
ei(n�m)f(r1)dr1

=
1

2�i(n�m)
(ei(n�m)f(+1) � ei(n�m)f(�1)) = 0 (4.28)

So the orbitals �n form an orthonormal set which sum to the prescribed density and therefore the

corresponding Slater determinant wavefunction will yield the same density.

After having discussed the density and the expectation value of the kinetic energy operator we will

now discuss the expectation value of the potential energy operators. Because 	 2 H1(R3N ) it

follows [19] that for

Ŵ =
1

2

X
i6=j

1

jri � rj j
(4.29)

we have

h	jŴ j	i <1 (4.30)

Also a lower bound for this quantity can be proven. If 	 yields density � we have

h	jŴ j	i >
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 � C

Z
�
4
3 (r)dr (4.31)

with C = 1:68 [69]. We now turn to the expectation values of the external potential V̂ . From the

condition����
Z
�(r)v(r)dr

���� <1 (4.32)

and � 2 L1(R3) \ L3(R3) we can deduce some constraints on the external potential v(r). If

� 2 L1(R3) then the above integral exists for bounded potentials,i.e. for potentials v 2 L1(R3).

This follows directly from����
Z
�(r)v(r)dr

���� � ess sup jv(r)j
Z
�(r)dr <1 (4.33)
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if v 2 L1(R3). If � 2 L3(R3) then the above integral exists for potentials in the set L
3
2 (R3). This

follows from the H�older inequality

kfgk1 � kfkpkgkq (4.34)

with 1=p+ 1=q = 1. If v 2 L
3
2 (R3) then we �nd using this inequality����

Z
�(r)v(r)dr

���� = k�vk1 � k�k3kvk 3
2
<1 (4.35)

The most general set of potentials for which the expectation value h	jV̂ j	i exists is therefore the

set

L
3
2 (R3) + L1(R3) = fvjv = u+ w; u 2 L

3
2 (R3); w 2 L1(R3)g (4.36)

This set is a Banach space with norm

kvk = inffkuk 3
2

+ kwk1jv = u+wg (4.37)

An important potential in this Banach space is Coulombic potential as it can be written as

1

r
= u(r) + w(r) (4.38)

where r = jrj and

u(r) =
�(1� r)

r
w(r) =

�(r � 1)

r
(4.39)

where � is the Heaviside function, �(x) = 0 if x � 0 and �(x) = 1 if x > 0. One can readily

check that u 2 L
3
2 (R3) and w 2 L1(R3). The Banach space L

3
2 (R3) + L1(R3) does not contain

external potentials that go to in�nity as jrj ! 1. This choice precludes some physically interesting

potentials such as the harmonic oscillator potential. These potentials can be handled with the

methods to be disussed but then one has to put additional restrictions on � such that the integral

of �v makes sense.

4.3 Properties of the energy functional E[v]

For the external potentials in the set L
3
2 (R3) +L1(R3) we de�ne the total energy functional E[v]

as

E[v] = infh	jĤ j	i (4.40)

where 	 2 H1(R3N ) and where the wave function 	 is normalized to one k	k = 1. We will prove

some properties of this functional. First of all we have that E[v] is concave, that is

E[�1v1 + �2v2] � �1E[v1] + �2E[v2] (4.41)

for all v 2 L
3
2 (R3) + L1(R3) and 0 � �1; �2 � 1 and �1 + �2 = 1. This follows directly from the

variational principle. If 	 is a wave function corresponding to the in�mum in equation 4.40 then

E[v] = h	jT̂ + V̂ + Ŵ j	i = �1h	jT̂ + V̂1 + Ŵ j	i+ �2h	jT̂ + V̂2 + Ŵ j	i
� �1E[v1] + �2E[v2] (4.42)
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where we used �1 + �2 = 1. A simple application of the above relation is the following. Consider a

molecular Hamiltonian with N atoms of positive nuclear charge Zi at positions Ri.

v(r) = �
NX
i=1

Zi

jr�Rij
(4.43)

if we de�ne the total nuclear charge

Z =

NX
i=1

Zi (4.44)

and de�ne �i = Zi=Z then we �nd using the concavity property of E[v] that

E[v] = E[

NX
i=1

�
�iZ

jr�Rij
] �

NX
i=1

�iE[�
Z

jr�Rij
]

=

NX
i=1

�iE[�
Z

jrj
] = E[�

Z

jrj
] (4.45)

So we conclude that the total electronic energy of a molecule with total nuclear charge Z is always

larger than or equal to the total energy of an atom with the same nuclear charge Z and the same

number of electrons. For instance the electronic energy of the hydrogen molecule is larger than the

electronic energy of the helium atom.

A second property of E[v] is that it is monotonously decreasing, that is, if v1(r) � v2(r) for all r

(almost everywhere) then E[v1] � E[v2]. This follows again from the variational property. If 	 is

a wave function corresponding to the in�mum in equation 4.40 then

E[v2] = h	jT̂ + V̂2 + Ŵ j	i = h	jT̂ + V̂1 + Ŵ j	i+ h	jV̂2 � V̂1j	i

� E[v1] +

Z
�(r)(v2(r)� v1(r))dr � E[v1] (4.46)

We further state without proof a third property of E[v], which is : E[v] is continuous in the

L
3
2 +L1-norm. So if we have a sequence of external potentials fvig in the Banach space L

3
2 +L1

with norm kk converging to v 2 L
3
2 + L1 then

lim
i!1

kvi � vk = 0 ) lim
i!1

jE[vi]�E[v]j = 0 (4.47)

The proof of this can be found in the paper by Lieb [19].

4.4 The Hohenberg-Kohn functionals FHK[�] and FEHK[�]

We will now discuss the Hohenberg-Kohn functional which has been introduced by Hohenberg and

Kohn in their well-known paper. First we will prove the Hohenberg-Kohn theorem. Suppose that

	1 and 	2 2 H1(R3N ) are non-degenerate ground state wave functions corresponding to external

potentials v1 and v2 2 L1+L
3
2 with corresponding electron densities �1 and �2. Then if v1 6= v2+C

where C is constant then �1 6= �2.

As a �rst step we have that if v1 6= v2 + C that 	1 6= 	2. This follows by contradiction. Suppose

	1 = 	2 = 	 then by subtraction of the Hamiltonian for 	1 and 	2 we �nd that

(v1 � v2)	 = (E1 �E2)	 (4.48)
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If v1 � v2 is not constant in some region then 	 must vanish in this region for the above equation

to be true. However if v1; v2 2 L1 + L
3
2 then 	 cannot vanish on an open set (a set with nonzero

measure) by the unique continuation theorem. So we obtain a contradiction and we �nd 	1 6= 	2.

So di�erent potentials ( di�ering more than a constant) give di�erent wavefunctions. In the following

we will denote 	1 = 	[v1] and 	2 = 	[v2].

These di�erent wave functions also yield di�erent densities. This follows again by contradiction. If

�1 = �2 = � then

E[v1] = h	[v1]jT̂ + V̂1 + Ŵ j	[v1]i < h	[v2]jT̂ + V̂1 + Ŵ j	[v2]i

= h	[v2]jT̂ + V̂2 + Ŵ j	[v2]i+

Z
�(r)(v1(r)� v2(r))dr

= E[v2] +

Z
�(r)(v1(r)� v2(r))dr (4.49)

Likewise

E[v2] < E[v1] +

Z
�(r)(v2(r)� v1(r))dr (4.50)

Adding the both inequalities yields the contradiction

E[v1] +E[v2] < E[v1] +E[v2] (4.51)

So we conclude that �1 6= �2, which proves our statement.

We now de�ne the set AN as

AN = f�j�comes from a non-degenerate ground stateg (4.52)

where we only consider ground state densities from potentials in the set L1 + L
3
2 . The set AN

is a subset of the previously de�ned set SN . The densities in the set AN we will call pure state

v-representable densities, shortly denoted as PS-V-densities. From the Hohenberg-Kohn theorem

there is a unique external potential v (to within a constant) and a unique ground state wave

function 	[�] (to within a phase factor) which yields this density. On the set of PS-V densities we

can therefore de�ne the Hohenberg-Kohn functional FHK as

FHK [�] = h	[�]jT̂ + Ŵ j	[�]i (4.53)

we can then de�ne the energy functional Ev as

Ev[�] =

Z
�(r)v(r)dr + FHK [�] (4.54)

If �0 is a ground state density corresponding to external potential v0 and � an arbitrary other

ground state density then

Ev0 [�] =

Z
�(r)v0(r)dr + FHK [�] = h	[�]jT̂ + V̂0 + Ŵ j	[�]i

� h	[�0]jT̂ + V̂0 + Ŵ j	[�0]i = Ev0 [�0] (4.55)

Therefore

E[v] = inf
�2AN

�Z
�(r)v(r)dr + FHK [�]

�
(4.56)
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For application of the above formula we have to known FHK on the set AN . As the set AN is

di�cult to determine we need an extension of FHK to a larger better known set. We will however

�rst discuss the above functional. The functional FHK has some mathematical inconveniences. First

of all its domain AN is not convex, that is, if �1; �2 2 AN then not necessarily �1�1 + �2�2 2 AN
with 0 � �1; �2 � 1 and �1 + �2 = 1. We will prove this in a later instant.

The functional FHK is however convex, that is, if �1; �2 2 AN and if �1�1 + �2�2 2 AN with

0 � �1; �2 � 1 then

FHK [�1�1 + �2�2] � �1FHK [�1] + �2FHK [�2] (4.57)

This is readily proved. Suppose that the ground state densities �1; �2; �1�1+�2�2 2 AN correspond

to the external potentials v1; v2 and v. ThenZ
�(r)v(r)dr + FHK [�] =

Z
�(r)v(r)dr + h	[�]jT̂ + Ŵ j	[�]i =

= h	[�]jĤ j	[�]i = �1h	[�]jĤj	[�]i+ �2h	[�]jĤj	[�]i

� �1h	[�1]jT̂ + Ŵ j	[�1]i+ �2h	[�2]jT̂ + Ŵ j	[�2]i+

Z
(�1�1(r) + �2�2(r))v(r)dr

= �1FHK [�1] + �2FHK [�2] +

Z
�(r)v(r)dr (4.58)

and we obtain the convexity of FHK . The functional FHK is de�ned on the set AN . This is not a

convex set. There are convex combinations of PS-V ground state densities which are not in AN . An

example of this is a convex combination of densities corresponding to a q-fold degenerate ground

state multiplet

� =

qX
i=1

�i�i

qX
i=1

�i = 1 0 � �i � 1 (4.59)

which in general is not in AN . We will demonstrate this at the end of this section. We can however

readily extend our functional FHK to this type of densities. We de�ne

BN = f� =
X
i

�i�ij�i comes from the same v for all i;
X
i

�i = 1; 0 � �i � 1g (4.60)

We call these densities ensemble v-representable densities or E-V-densities. We will now extend the

functional FHK to the set BN of ensemble v-representable densities. The corresponding ensemble

functional we will denote by FEHK . For a degenerate ground state multiplet f iig with q-fold

degeneracy corresponding to some external potential v we de�ne the ensemble density matrices

D̂ =

qX
i=1

�ij iih ij
qX
i=1

�i = 1; 0 � �i � 1 (4.61)

the corresponding ensemble density is given by

�(r) = TrD̂�̂(r) (4.62)

where �̂(r) is the density operator. We now prove the following extension of the Hohenberg-Kohn

theorem to arbitrary degenerate ground states. Suppose D̂1 and D̂2 are ground state ensemble

density matrices belonging to v1 and v2 resp., with corresponding densities �1 and �2. If v1 6= v2+C
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with C a constant then �1 6= �2.

The proof is analogous to the proof of the non-degenerate case. First the sets of ground state

ensemble density matrices corresponding to the two di�erent potentials v1 and v2 are disjoint.

Suppose v1 generates the ground state multiplet A1 = fj�ii; i = 1 : : : q1g and v2 generates the

ground state multiplet A2 = fj ii; i = 1 : : : q2g. All the wave functions within these multiplets may

without loss of generality be chosen orthonormal. Then none of the wave functions in the sets A1

and A2 are equal. This follows from the same argument as used in the proof of the Hohenberg-Kohn

theorem for the non-degenerate case. In particular, as the sets A1 and A2 are only de�ned to within

a unitary transformation no j ii in A2 is a linear combination of the j�ii in A1. This then implies

that two ground state ensemble density matrices constructed from the ground states in A1 and A2

are di�erent

D̂1 =

q1X
i=1

�ij�iih�ij 6=
q2X
i=1

�ij iih ij = D̂2 (4.63)

where
P
�i =

P
�i = 1. This follows for instance by taking the inproduct on both sides with j mi

as the j ii are not linear combinations of the j�ii.
Secondly, if Ĥ1 = T̂ + V̂1 + Ŵ and Ĥ2 = T̂ + V̂2 + Ŵ then

TrD̂1Ĥ2 > TrD̂2Ĥ2 (4.64)

This follows directly from

TrD̂1Ĥ2 =

q1X
i=1

�ih�ijĤ2j�ii >
q1X
i=1

�ih ijĤ2j ii =

=

q1X
i=1

�iE[v2] = E[v2] =

q2X
i=1

�2h ijĤ2j ii = TrD̂2Ĥ2 (4.65)

Now we can show that D̂1 and D̂2 yield di�erent densities. We proceed again by reductio ad

absurdum. Suppose �1 = �2 = �. Using the last result we �nd

E[v1] = TrD̂1Ĥ1 = TrD̂1(Ĥ2 + V̂1 � V̂2) =

= TrD̂1Ĥ2 +

Z
�(r)(v1(r)� v2(r))dr > TrD̂2Ĥ2 +

Z
�(r)(v1(r)� v2(r))dr =

= E[v2] +

Z
�(r)(v1(r)� v2(r))dr (4.66)

Likewise we have

E[v2] > E[v1] +

Z
�(r)(v2(r)� v1(r))dr (4.67)

which added to the last inequality leads to the contradiction

E[v1] +E[v2] > E[v1] +E[v2] (4.68)

Therefore D̂1 and D̂2 must give di�erent densities, which proves the theorem.

Within the set of ensemble ground state density matrices corresponding to the same potential how-

ever, two di�erent density matrices can yield the same density. The energy TrD̂Ĥ for those di�erent
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density matrices is however the same. For every E-V-density � we can therefore unambiguously

de�ne

FEHK [�] = TrD̂[�](T̂ + Ŵ ) (4.69)

where D̂[�] is any of the ground state ensemble density matrices corresponding to �. We can now

de�ne an extension of the energy functional Ev to the set of E-V-densities

Ev[�] =

Z
�(r)v(r)dr + FEHK [�] = TrD̂[�]Ĥ (4.70)

Similarly as for FHK we easily can prove

E[v] = inf
�2BN

�Z
�(r)v(r)dr + FEHK [�]

�
(4.71)

The functional FEHK is an extension of FHK as we have

FEHK [�] = FHK [�] if � 2 AN (4.72)

This follows directly from the fact that for a non-degenerate ground state j	[�]i corresponding to

� we have D̂[�] = j	[�]ih	[�]j ,so

FEHK [�] = TrD̂[�](T̂ + Ŵ ) = h	[�]jT̂ + Ŵ j	[�]i = FHK [�] (4.73)

We can furthermore prove that FEHK is convex by the same proof as for FHK . Nothing is however

known on the the convexity of the set of E-V-densities BN which constitute the domain of FEHK .

As we will now demonstrate the subset of PS-V-densities AN of BN is not convex. More precisely

we will now show that there are E-V-densities which are not PS-V-densities. As any E-V-density

is a convex combination of PS-V densities this then demonstrates the non-convexity of AN .

Consider an atom with total angular momentum quantum number L > 0 which has a 2L + 1-

degenerate ground state. The external potential v is the Coulomb potential. The degeneracy is due

to the fact that the Hamiltonian of the system is invariant with respect to rotations. The ground

state wave-functions then transform among one another according to a 2L+ 1-dimensional unitary

representation of the rotation group. We assume that there is no accidental degeneracy. If we

denote the ground state wave functions by fj [�i]i = j ii; i = 1 : : : 2L + 1g and the corresponding

electron densities by �i then the following convex combination

�� =
1

2L+ 1

2L+1X
i=1

�i (4.74)

is invariant under all rotations and therefore spherically symmetric. However the �i are not spher-

ical. In fact not any of the densities corresponding to linear combinations of the ground states j ii
is spherically symmetric. As the �j is obtained from j ji which by a unitary transformation can be

obtained from any other j ii and the external potential is invariant under rotations we �nd thatZ
�i(r)v(r)dr =

Z
�j(r)v(r)dr =

Z
��(r)v(r)dr (4.75)

for all 0 � i; j � 2L+ 1. Let us now suppose that �� is generated from a ground state wave function

 [��], then this wave function is not a linear combination of the j ii otherwise �� would not be

spherically symmetric. Then we �ndZ
��(r)v(r)dr + FHK [��] =

Z
��(r)v(r)dr + h [��]jT̂ + Ŵ j [��]i = h [��]jĤj [��]i
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>
2L+1X
i=1

1

2L+ 1
h [�i]jĤj	[�i]i =

2L+1X
i=1

1

2L+ 1
h [�i]jT̂ + Ŵ j	[�i]i+

2L+1X
i=1

1

2L+ 1

Z
�i(r)v(r)dr =

=

2L+1X
i=1

1

2L+ 1
FHK [�i] +

Z
��(r)v(r)dr (4.76)

This then gives

FHK [��] >
2L+1X
i=1

1

2L+ 1
FHK [�i] (4.77)

But we already knew that FHK was convex on the set of ground state densities which leads to a

contradiction and therefore we must conclude that �� is not a ground state density of any potential.

The density �� is however a convex combination of ground state densities corresponding to the same

external potential and therefore by de�nition an ensemble v-representable density. We therefore

have constructed a E-V-density which is not a PS-V-density. Therefore AN is a real subset of BN
and moreover AN is not convex.

4.5 The Levy and Lieb functionals FLL[�] and FL[�]

The functionals FHK and FEHK have the unfortunate mathematical di�culty that their domains of

de�nition AN and BN ,although they are well-de�ned, are di�cult to characterize, i.e. it is di�cult

to know if a given density � belongs to AN or BN . Although there are reasons to assume that all

reasonably well-behaved (that is, twice di�erentiable, bounded and positive ) densities belong to

BN this remains until now an unproven statement. It is therefore desirable to extend the domains

of de�nition of FHK and FEHK to an easily characterizable (preferably convex) set of densities.

This can be achieved using the constrained search procedure introduced by Levy. We de�ne the

Levy-Lieb functional FLL as

FLL[�] = inf
 !�

h jT̂ + Ŵ j i (4.78)

where the in�mum is searched over all normalized anti-symmetric N -particle wave functions in

H1(R3N ) yielding density �. As shown earlier such a density is always in the convex set SN which

is again a subspace of L1 \  L3. One can furthermore show, as has been done by Lieb [19], that the

in�mum is always a minimum, i.e. there is always a minimizing wave function.

Let us discuss some properties of FLL. The functional FLL is an extension of the Hohenberg-Kohn

functional FHK which was de�ned on AN to the larger set SN , i.e

FLL[�] = FHK [�] if � 2 AN (4.79)

This is readily derived. Suppose � is some ground state density corresponding to some external

potential v and ground state wave function 	[�] thenZ
�(r)v(r)dr + FHK [�] = h	[�]jĤ j	[�]i = inf

 !�
h jĤ j i =

=

Z
�(r)v(r)dr + inf

 !�
h jT̂ + Ŵ j i =

Z
�(r)v(r)dr + FLL[�] (4.80)
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We de�ne a corresponding energy functional

Ev[�] =

Z
�(r)v(r)dr + FLL[�] (4.81)

If �0 is the ground state density corresponding to v with corresponding ground state wave function

 [�0] then

Ev[�] = inf
 !�

h jĤ j i � h [�0]jĤ j [�0]i = Ev[�0] (4.82)

MinimizingEv over the set SN therefore yields the ground state density �0 corresponding to external

potential v. The functional FLL has however one inconvenient property, it is not convex. We take

the example of the previous section where we presented a density �� which did not correspond

to a ground state wavefunction. It was however a convex combination of degenerate ground state

densities �i with corresponding ground states j [�i]i corresponding to an external potential v. Then

we �ndZ
��(r)v(r)dr + FLL[��] = inf

 !��
h jĤ j i

>
1

2L + 1

2L+1X
i=1

h [�i]jĤj [�i]i =
1

2L + 1

2L+1X
i=1

FLL[�i] +

Z
��(r)v(r)dr (4.83)

and we �nd

FLL[��] >
1

2L+ 1

NX
i=1

FLL[�i] (4.84)

which proves the non-convexity of FLL. This is somewhat unfortunate as convexity is an important

property which can be used to derive di�erentiability of functionals. We will therefore now de�ne

a di�erent but related functional with the same domain SN which is also convex. This is the Lieb

functional FL de�ned as

FL[�] = inf
D̂!�

TrD̂(T̂ + Ŵ ) (4.85)

where the in�mum is searched over all N -particle density matrices

D̂ =
X
i=1

�ij ih j
X
i=1

�i = 1  2 H1(R3N ) (4.86)

which yield the given density �(r) = TrD̂�̂(r). One can also for this case prove the in�mum to be

a minimum, i.e. there is a minimizing density matrix. This functional is an extension of FEHK to

the larger set SN , that is

FL[�] = FEHK [�] if � 2 BN (4.87)

This follows directly from the fact that if � 2 BN then there is a potential v which generates a

ground state ensemble density matrix D̂[�] which yields �. SoZ
�(r)v(r)dr + FEHK [�] =

Z
�(r)v(r)dr + TrD̂[�](T̂ + Ŵ ) = TrD̂[�]Ĥ

= inf
D̂!�

TrD̂Ĥ =

Z
�(r)v(r)dr + inf

D̂!�
TrD̂(T̂ + Ŵ ) =

Z
�(r)v(r)dr + FL[�] (4.88)
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We can again de�ne an energy functional

Ev[�] =

Z
�(r)v(r)dr + FL[�] (4.89)

which by a similar proof as for FLL assumes its minimum at the ground state density corresponding

to potential v. We further have the following relations

FL[�] = FLL[�] if � 2 AN (4.90)

and

FL[�] < FLL[�] if � 2 BN and � 62 AN (4.91)

The �rst relation follows from the fact that is the density � is a pure state v-representable density

then the minimizing density matrix for FL is a pure state density matrix. The second relation

follows from the fact that if � is an ensemble v-representable density there is a ground state ensemble

density matrix D̂[�] for which we haveZ
�(r)v(r)dr + FL[�] =

Z
�(r)v(r)dr + TrD̂[�](T̂ + Ŵ ) = h ijĤj ii (4.92)

where j ih is any of the ground states in the degenerate ground state multiplet. Any wave function

yielding density � can not be a linear combination of these ground state wave-functions otherwise

� would be pure state v-representable. Therefore its expectation value with the Hamiltonian must

be larger, i.e

h ijĤj ii < inf
 !�

h jĤ j i =

Z
�(r)v(r)dr + FLL[�] (4.93)

which proves our statement.

We will now demonstrate another important property of FL , which is its convexity. If � =

�1�1 + �2�2 then we have

�1FL[�1] + �2FL[�2] = �1 inf
D̂1!�1

TrD̂1(T̂ + Ŵ ) + �2 inf
D̂2!�2

TrD̂2(T̂ + Ŵ ) =

= inf
D̂1;D̂2!�1;�2

Tr(�1D̂1 + �2D̂2)(T̂ + Ŵ ) � inf
D̂!�

TrD̂(T̂ + Ŵ ) = FL[�] (4.94)

We therefore now have established that FL is a convex functional on a convex space. This is

important information which enables one to derive the Gâteaux di�erentiability of the functional

FL at the set BN of ensemble v-representable densities. We will discuss this feature of FL in the

next section.

4.6 Gâteaux di�erentiability of FL

We now turn to the question of the di�erentiability of the functional FL. A convenient property

of FL which it shares with the functional FLL is that it is de�ned on a convex set SN . This means

that whenever �; �0 2 SN that also �0 + t(� � �0) 2 SN when 0 � t � 1. In view of the de�nition

of the Gâteaux derivative

lim
t!0

FL[�0 + t(�� �0)]� FL[�0]

t
=
�FL

��
(�0)[�� �0] (4.95)
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this is a convenient property. If the functional derivative �FL=��(�0) exists then it is a linear

functional on the space L1\L3. These linear functionals can be identi�ed with the Banach space of

potentials L
3
2 + L1. The potential is then regarded as the bounded linear functional with assigns

to each density the value of the integral of �v. More mathematically formulated, the dual space of

L1 \ L3 ( which is the space of bounded linear functionals on L1 \L3 ) is the space L
3
2 + L1 [19].

If we use the convexity of FL we �nd for 0 � t � 1 that

FL[�0 + t(�� �0)] = FL[t�+ (1� t)�0] � tFL[�] + (1� t)FL[�0] (4.96)

and it follows that

FL[�0 + t(�� �0)]� FL[�0]

t
� FL[�]� FL[�0] (4.97)

If we assume Gâteaux di�erentiability at density �0 then we �nd

FL[�]� FL[�0] � lim
t#0

FL[�0 + t(�� �0)]� FL[�0]

t
=
�FL

��
(�0)[�� �0] (4.98)

Conversely, from the results of section 3.5.2 , we know because of the convexity of FL that if there

is a unique linear continuous functional (which is called a tangent functional or a subgradient)

L : L1 \ L3 7! R such that

FL[�]� FL[�0] � L[�� �0] (4.99)

is satis�ed for all � 2 SN then FL is Gâteaux di�erentiable at �0 with

�FL

��
(�0) = L (4.100)

To prove the di�erentiability of FL at �0 it is therefore su�cient to prove the existance of a unique

continuous tangent functional at �0. We will �rst prove the following statement. The functional

FL has a continuous tangent functional �v 2 L
3
2 + L1 at �0 2 SN if there is a v 2 L

3
2 + L1 such

that

E[v] =

Z
�0(r)v(r)dr + FL[�0] (4.101)

is satis�ed. This is readily derived. Suppose the above relation is satis�ed for some v. We will

show �v to be tangent functional. We have

FL[�0] +

Z
�0(r)v(r)dr = E[v] � inf

D̂!�
TrD̂Ĥ = FL[�] +

Z
�(r)v(r)dr (4.102)

Therefore

FL[�]� FL[�0] � �
Z
v(r)(�(r) � �0(r))dr = L[�� �0] (4.103)

Where we de�ne the linear functional L : L1 \  L3 7! R by

L : � 7! �
Z
v(r)�(r)dr (4.104)

This functional is continuous. If we split up v 2 L
3
2 +L1 as v = u+w where u 2 L

3
2 and w 2 L1

then we have

jL[�� �0]j �
Z
ju(r)jj�� �0jdr+

Z
jw(r)jj�� �0jdr � kuk 3

2
k�� �0k3 + kwk1k�� �0k1(4.105)
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So if �! �0 in the norm on L1 \L3 then jL[�� �0]j goes to zero, which proves the continuity of L.

We will now show that if�v is a tangent functional then equation 4.101 is satis�ed. If equation 4.103

is satis�ed then

E[v] � inf
�2SN

�
FL[�] +

Z
�(r)v(r)dr

�
� inf

�2SN

�
FL[�0] +

Z
�0(r)v(r)dr

�
=

= FL[�0] +

Z
�0(r)v(r)dr � E[v] (4.106)

which proves our statement.

We will now show that if �0 2 BN then FL has a unique tangent functional �v 2 L
3
2 + L1 at �0.

(Unique means here that v is determined to within an overall constant). Therefore FL is Gâteaux

di�erentiable on the set of ensemble v-representable densities. From the previous results it follows

that to prove this we must show that for every �0 2 BN there is a unique potential v (to within

a constant) which satis�es equation 4.101. If �0 2 BN then there is an external potential v and a

ground state ensemble density matrix D̂[�0] yielding density �0. Then obviously

E[v] = TrD̂[�0]Ĥ =

Z
�0(r)v(r)dr + FL[�0] (4.107)

We must now show its uniqueness. Suppose that we have a ~v 6= v + C which satis�es

E[~v] =

Z
�0(r)~v(r)dr + FL[�0] (4.108)

As we have FL[�0] = TrD̂[�0](T̂ + Ŵ ) we can also write

E[~v] =

Z
�0(r)~v(r)dr + TrD̂[�0](T̂ + Ŵ ) = Tr ~HD̂[�0] =

X
i

�ih ij ~Hj ii (4.109)

where ~H is the Hamiltonian corresponding to external potential ~v and j ii are ground states

corresponding to potential v. However as the j ii are not ground states for ~H we obtain

E[~v] =
X
i

�ih ij ~Hj ii > E[~v] (4.110)

which is a contradiction and therefore v must be unique. We therefore have proven the di�eren-

tiability of FL on the set of ensemble-v-representable densities. We can further prove that FL is

not di�erentiable at the non-E-V-densities. As proven by Lieb, for any density � 2 SN there is a

density matrix D̂[�] which minimizes the constrained search for FL. Let us write

D̂[�] =
X
i

�ij iih j (4.111)

Suppose that � is not E-V-representable, i.e. � 62 BN . Since � is not ensemble v-representable

there is at least one j ii which cannot be a ground state for a potential v. Therefore

E[v] <
X
i

�ih ijĤj ii =

Z
�(r)v(r)dr + FL[�] (4.112)

It follows that equation 4.101 can never be satis�ed for non-E-V-densities, which yields that FL is

not di�erentiable at the non-E-V-densities.
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Let us summarize the results of this section. The functional FL is di�erentiable at the ensemble

v-representable densities and nowhere else. This means that the Euler-Lagrange equation

�FL

��(r)
+ v(r)� � = 0 (4.113)

is well-de�ned on the set BN . Here � is a Lagrange multiplier to ensure the correct normalization

of the density. The energy functional is minimized for the ground state ensemble densities corre-

sponding to external potential v. As the Euler-Lagrange equation is well-de�ned for these densities,

they are found as the solution of the above Euler-Lagrange equation. This then puts the variational

equations within density functional theory on rigorous grounds.

4.7 The Kohn-Sham equations

Very important in any practical application of density functional theory are the Kohn-Sham equa-

tions. The Kohn-Sham system is introduced as the non-interacting system of particles which yield

the same density as the fully interacting system of particles. If we consider a system non-interacting

particles then Ŵ = 0. For this system our functionals FHK ; FEHK ; FLL and FL then only contain

the kinetic energy operator. We therefore denote these functionals as THK ; TEHK ; TLL and TL and

de�ne

THK [�] = h [�]jT̂ j [�]i (4.114)

TEHK [�] = TrD̂[�]T̂ (4.115)

TLL[�] = inf
 !�

h jT̂ j i (4.116)

TL[�] = inf
D̂!�

TrD̂T̂ (4.117)

The functionals TLL and TL are de�ned on the same set SN as FLL and FL for the interacting

system. The functionals THK and TEHK are now de�ned on the sets A0
N and B0N of PS-V and E-V

densities for the non-interacting system. The set A0
N is not convex, and convexity is unknown for

the set B0N . The various convexity or non-convexity properties of the functionals FHK ; FEHK ; FLL
and FL carry directly over to the functionals THK ; TEHK ; TLL and TL. For TL we can similarly to

FL prove that it is Gateaux di�erentiable on the set of non-interacting ensemble v-representable

densities B0N .

Let us now de�ne the exchange-correlation functional Exc;L

Exc;L[�] = FL[�]�
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 � TL[�] (4.118)

The functional Exc;L is de�ned on the set SN . As FL is di�erentiable on BN and TL is di�erentiable

on B0N the exchange-correlation functional Exc;L is di�erentiable on the intersection of both sets

BN \ B0N .

Suppose now that an external potential in a non-interacting system vs generates density � 2 B0N
then the variational equation corresponding to the energy functional of the non-interacting system

Evs [�] = TL[�] +

Z
�(r)vs(r)dr (4.119)
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is given by

�TL

��(r)
+ vs(r)� �s = 0 (4.120)

where �s is a Lagrange-multiplier to ensure the correct normalization of the density. As � is an

enesemble v-representable ground state we also have�
�

1

2
r2 + vs(r)

�
�i(r) = �i�i(r) (4.121)

�(r) = TrD̂[�]�̂(r) =
X
i

�ij�i(r)j2 (4.122)

On the other hand if � is also in BN and is generated by an external potential v then � is obtained

from the solution of the Euler-Lagrange equation

�FL

��(r)
+ v(r)� � = 0 (4.123)

with � again a Lagrange multiplier for the density normalization. So if � 2 BN \ B0N we �nd

�TL

�(r)
+ v(r) +

Z
�(r0)

jr� r0j
dr0 +

�Exc;L

��(r)
� � = 0 (4.124)

If we denote vxc;L(r) = �Exc;L=��(r) we obtain (to within a constant)

vs(r) = v(r) +

Z
�(r0)

jr� r0j
dr0 + vxc;L(r) (4.125)

We therefore can �nd the ground state density for the interacting system by the solution of the

equations�
�

1

2
r2 + v(r) +

Z
�(r0)

jr� r0j
dr0 + vxc;L(r)

�
�i(r) = �i�i(r) (4.126)

�(r) = TrD̂[�]�̂(r) =
X
i

�ij�i(r)j2 (4.127)

which constitute the Kohn-Sham equations. Note however that the above equations are only

valid for densities in BN \ B0N . Englisch and Englisch have however proved that for interacting

ensemble v-representable densities the above Kohn-Sham equations always have a solution, which

means BN = B0N . It further means that TL is di�erentiable for all densities which are ensemble

v-representable with respect to the interacting system. This then puts the Kohn-Sham equations

on rigorous grounds.
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Chapter 5

An exchange-correlation potential

with correct asymptotic behaviour

In this work we analyse the properties of the exchange-correlation potential in the Kohn-Sham form

of density functional theory, which leads to requirements for approximate potentials. Ful�lment of

these requirements is checked for existing gradient-corrected potentials. In order to examine the

behaviour of approximate potentials over all space we compare these potentials with exact Kohn-

Sham potentials calculated from correlated densities using a newly developed iterative procedure.

The main failures in the existing gradient corrected potentials arise in the asymptotic region of the

atom where these potentials decay too fast and at the atomic nucleus where the potentials exhibit

a Coulomb-like singular behaviour. We show that the main errors can be corrected by a simple

potential in terms of the density and its gradients leading to considerably improved one-electron

energies compared to the local density approximation. For Be and Ne it is shown that the electron

density is improved in the outer region.

5.1 Introduction

In the past few years there has been considerable progress within density functional theory [5] in

the calculation of properties of electronic systems ranging from solids to atoms and molecules. This

progress is due to the introduction of gradient-corrected density functionals [44, 45, 43, 50] that

give an overall improvement to the exchange-correlation energies of the local density approximation

(LDA). For instance the atomisation energies of a standard set of molecules are improved by an

order of magnitude compared to LDA[70], thereby correcting the overbinding of LDA. There are

also succesful applications of nonlocal corrections in transition metal chemistry [71] and solid state

and surface physics [47]. (Although the gradient corrected potentials are still local, we follow the

conventional nomenclature of "nonlocal corrections" to distinguish from the LDA.) However several

other features are not improved by the present day nonlocal corrections. This is especially the case

for properties that are sensitively dependent on the behaviour of the exchange-correlation potential.

One can for instance prove rigorously [31, 72] that the eigenvalue of the highest occupied Kohn-

Sham orbital represents the ionisation energy of the system. However, typical errors in LDA for this

quantity are 5 eV. This same error prevents the calculations of bound state solutions for negative

ions as LDA gives an unbound outer electron with positive eigenvalue. The origin of this error

can be traced to the incorrect asymptotic decay of the LDA exchange-correlation potential. This

potential has an exponential decay into the vacuum as can directly be seen from the expontial decay

81
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of the density itself. On physical grounds however (see for a proof [31]) the outer electron should

experience the mean �eld of the ion it leaves behind, i.e. a potential that decays Coulombically like

�1=r. The LDA electron is therefore too weakly bound and for negative ions even unbound. This

breakdown of LDA in the outer region of the atom or molecule is also re
ected in the exchange-

correlation energy per particle �xc(r) which can equivalently be seen als the potential due to the

exchange-correlation hole and which has an asymptotic decay like �1=2r. The LDA in this case

gives again an exponential decay. In the electron gas this quantity �xc is usually expressed in terms

of the Wigner-Seitz radius rs representing the mean electronic distance which is proportional to

��
1
3 . If the local density approximation is applied to the outer regions of atoms and molecules rs

grows exponentially and loses its meaning as a mean interelectronic distance which should grow

linearly. If one believes (for intuitive physical reasons) that the mean electronic distance determines

�xc then the bad representation of this quantity by LDA explains the failure of LDA in this region.

One might now wonder if the present day nonlocal gradient corrections give any improvement for

this asymptotic failure of LDA. Somewhat surprisingly, this is not the case. Although they give

large improvements in energies they give little improvement in the asymptotic behaviour of the

exchange-correlation potential. This is immediately apparent from the fact, undoubtedly noted

by many DFT practitioners, that the gradient corrected potentials yield almost no improvement

in the LDA eigenvalues, which are generally in error by 5-6 eV. In this paper we discuss, apart

from the fairly well known asymptotic behaviour, other requirements which are to be ful�lled

by the exact exchange or exchange-correlation potential. Those requirements apply to limiting

or special situations (r ! 1, r # 0, transition regions from one atomic shell to the next, limit

of homogeneous electron gas) and also comprise invariance conditions (translational, rotational).

They are useful in constructing approximate Kohn-Sham potentials. In section 5.3 we use the

formulated requirements to examine some of the presently used nonlocal functionals, in particular

the Becke correction for exchange and the Perdew correction for correlation. In order to investigate

the potentials at arbitrary ~r, we need the exact Kohn-Sham potential over all space. In section 5.4

we discuss a general procedure to construct the Kohn-Sham exchange-correlation potential from a

given electron density �. The procedure is simple and is applicable to both atoms and molecules

and to systems with an arbitrary number of electrons. This procedure is used to generate exact

Kohn-Sham potentials from very accurate (highly correlated) densities of Be and Ne. This a�ords

detailed insight in the strengths and weaknesses of existing approximations. As a �rst step towards

improved potentials, we propose in section 5.5 a model Kohn-Sham potential which exhibits the

correct asymptotic behaviour and also displays atomic shell structure. This potential gives a large

improvement over the LDA eigenvalues and is in fact capable of yielding good ionisation energies as

determined from the highest occupied Kohn-Sham orbital energy. It also improves the asymptotic

decay of the electron density. In section 5.6 we present a summary and conclusions.

5.2 Nonlocal exchange-correlation potentials : requirements

In this section we will discuss some of the requirements that approximate exchange-correlation

potentials have to satisfy. In connection with this we shall demonstrate in the next section which

of these requirements are lacking with some of the presently used nonlocal potentials.

Scaling. The exchange energy within density functional theory may be de�ned as [23]:

Ex[�] =

Z
�(r)�x(r)dr (5.1)
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in which the the potential of the exchange-hole �x(r) or equivalently the exchange energy density

per electron is de�ned as:

�x(r) = �
1

2�(r)

Z j
s(r; r
0

)j2

jr� r
0 j

dr
0

(5.2)

Here 
s is the Kohn-Sham one-particle density matrix, constructed from a determinant of Kohn-

Sham orbitals. The exchange functional of eq. 5.1 is a functional of the density as the Kohn-Sham

orbitals of which the one-particle density matrix 
s is composed are uniquely determined by the

density (an explicit scheme for doing this is presented in section 5.4). The exchange functional

satis�es the following scaling relation [22]:

Ex[��] = �Ex[�] (5.3)

in which �� is the following scaled density:

��(r) = �3�(�r) (5.4)

The exchange potential which is de�ned as the functional derivative of the exchange functional

satis�es the following scaling relation [23, 22]:

vx([��]; r) = �vx([�];�r) (5.5)

Using the scaling relation 5.3 one can prove the Levy-Perdew relation [22]:

Ex[�] = �
Z
�(r)r � rvx(r)dr (5.6)

Any approximate exchange potential should satisfy equation 5.5. It is then possible to de�ne an

approximate exchange energy using the Levy-Perdew relation 5.6. We will return to this relation

between potential and energy below.

There are no known scaling relations for the correlation energy functional de�ned as:

Ec[�] = Exc[�]�Ex[�] (5.7)

in which Exc is the Kohn-Sham exchange-correlation energy which can be de�ned for instance using

the coupling strength integration method [73, 24, 25, 26]

Asymptotic behaviour. An approximate functional or potential also has to satisfy some require-

ments with respect to asymptotic behaviour. First of all it follows from equation 5.2 using the sum

rule property of the one-particle density matrix 
s that:

�x(r) � �
1

2r
(r !1) (5.8)

Thus the potential of the exchange hole has a Coulombic asymptotic behaviour. The exchange

potential has to ful�l a similar type of relation [35, 49]:

vx(r) � �
1

r
(r !1) (5.9)

The asymptotic behaviour of the potential due to the (coupling strength integrated) Coulomb hole

is not known. We can only say that the correlation potential must decay faster than a Coulombic
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potential at in�nity. This follows from the asymptotic �1=r decay of the total Kohn-Sham potential

[74, 72]:

vxc(r) � �
1

r
(r !1) (5.10)

and the similar behaviour of the exchange potential of eq. 5.9. This result is consistent with the fact

that the Coulomb hole of the coupling strength integrated two-particle density matrix integrates

to zero electrons.

Weak inhomogeneity. Further known properties of the exchange functional follow from the

gradient expansion of the weakly varying electron gas [10] or from the semi-classical expansion of

the Kohn-Sham one-particle density matrix [75]. This gives the following approximate nonlocal

correction to the exchange energy (for the spin unpolarised case):

Ex[�] = ��
Z

(r�)2

�
4
3

dr (5.11)

This is the nonlocal correction used in the X��-approximation [76]. For weakly varying densities

there is a known gradient expansion for the correlation energy. The nonlocal correction is (up to

second order) given by:

Ec[�] =

Z
C(�)

(r�)2

�
4
3

dr (5.12)

in which C(�) is a local function of the electron density [42].

Translational and rotational invariance. Two requirements which must be ful�lled by any

density functional representing a physical quantity are translational and rotational invariance. The

question of translational invariance for instance arises naturally in the discussion of the asymptotic

�1=r behaviour of the energy densities and the exchange or exchange-correlation potentials, where

r should not refer to the distance from the arbitrary origin of the coordinate system. Denoting a

physical quantity by A, translational invariance means:

A[�0] = A[�] (5.13)

with

�0(r) = �(r+ ~R) (5.14)

in which ~R is an arbitrary translation vector. This means physically that A should not change

when we translate our coordinate system. If we de�ne:

a([�]; r) =
�A

��(r)
[�] (5.15)

then it follows that:

a([�0]; r) = a([�]; r + ~R) (5.16)

This does not hold for arbitrary a([�]; r) but it does hold if a is the functional derivative of a

translational invariant functional A. This equation is easily proved if one uses:

�A[�] =

Z
��(r)a([�]; r)dr =

Z
��(r + ~R)a([�]; r + ~R)dr =

Z
��

0

(r)a([�]; r + ~R)dr (5.17)
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Comparing this equation with:

�A[�0] =

Z
��0(r)a([�0]; r)dr (5.18)

yields equation 5.16 as both variations should be equal for any variation ��0(r) = ��(r + ~R). We

will now take A = Ex and a = vx. Noting the explicit r dependence in the Levy-Perdew relation

between Ex and vx one might wonder whether this relation is translationally invariant. The exact

exchange potential of course satis�es the translational invariance equation 5.16. Then it follows

from the Levy-Perdew relation 5.6, if we insert �0, that:

Ex[�0] = Ex[�] + ~R �
Z
�(r)rvx([�]; r)dr (5.19)

Translational invariance requires the last term in this equation to be zero. As this should be true

for any vector ~R we obtain (after carrying out a partial integration):Z
vx(r)r�(r)dr = 0 (5.20)

Translational invariance thus gives an additional condition on the potential. The above formula is

a special case of a more general result which follows directly from equation 5.13:

A[�] = A[�0] = A[�+ ~R � r�+O(R2)] = A[�] +

Z
�A

��(r)
~R � r�(r)dr +O(R2) (5.21)

As this equation should be valid for any translation vector ~R it follows that:Z
�A

��(r)
r�(r)dr = 0 (5.22)

This equation has also been noted without proof in reference [23]. Equation 5.20 is then obtained

by taking A = Ex in the last equation. In particular for A = Exc we obtain:Z
vxc(r)r�(r)dr = 0 (5.23)

For the case of rotational invariance we require equation 5.13 to be valid for:

�0(r) = �(Rr) (5.24)

in which R is a rotation operation within three-dimensional coordinate space. For the functional

derivative of A we then have:

a([�0]; r) = a([�];Rr) (5.25)

This equation is proven in the same way as equation 5.16. If we take a = vx and use equation 5.25

we see that the Levy-Perdew equation 5.6 is already rotationally invariant. In general rotational

invariance gives the following constraint on the functional derivative of A:Z
�A

��(r)
r�r�(r)dr = 0 (5.26)

which can be proved by performing an in�nitisimal rotation instead of a translation in equation

5.21. This gives :Z
vxc(r)r�r�(r)dr = 0 (5.27)
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We have now summarised some properties of the exact exchange-correlation potential, which

are at the same time requirements to be ful�lled by approximate potentials. We will concentrate in

the remainder of this paper on the potential rather than on the energy. One of the reasons is that

the potential, being a unique, local function of the position ~r, is more easily obtained, analysed

and modelled (see below). Of course, even if one has obtained a good model potential that very

closely approximates the exact Kohn-Sham potential, the exchange-correlation energy still has to

be determined. This problem will be adressed in a subsequent paper.

5.3 The nonlocal exchange and correlation potentials of Becke and

Perdew

Using the conditions formulated in the previous section we shall now discuss some of the currently

used exchange-correlation functionals and potentials that include nonlocal corrections. These are

the potentials derived from Becke's nonlocal exchange functional [44] and Perdews nonlocal cor-

relation functional [45]. First we discuss Becke's nonlocal exchange functional [44] which in spin

polarised form is given by:

Ex[��] =
X
�

Z
�
4
3
� (r)f(x�(r))dr (5.28)

in which x� = jr��j=�
4
3
� is a dimensionless quantity and � is a spin index. The function f is given

by:

f(x) = ��
x2

1 + 6�x sinh�1 (x)
(5.29)

The form of equation 5.28 is chosen such that the exchange functional satis�es the scaling relation

5.3. The function f is chosen such that the potential of the exchange hole �x(r) or equivalently

the exchange energy density per electron behaves asymptotically as�1=2r (eq. 5.8). To enforce

relation 5.8 the function f in equation 5.28 must satisfy the following asymptotic relation:

f(x) � �
1

6

x

log (x)
(r !1) x!1) (5.30)

which is easily veri�ed if exponentially decaying densities are inserted. If one also wants to obtain

the gradient expansion result of equation 5.11 for slowly varying densities f must satisfy:

f(x) � ��x2 (x # 0) (5.31)

The form chosen by Becke is one of the simplest interpolations of f between these two limits and

therefore his energy functional satis�es the important requirements of correct r ! 1 and x ! 0

behaviour as well as translational and rotational invariance. However, the potential of the Becke

energy expression decays asymptotically like [77, 49]:

vBeckex (r) �
k

r2
(r !1) (5.32)

in which k is some constant instead of the exact [35, 49]:

vx(r) � �
1

r
(5.33)
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In the following we will prove that any functional of the form of equation 5.28 satisfying the asymp-

totic relation 5.30 will not satisfy asymptotic relation 5.33. Such a proof has also been given by

Engel et al. [49] and is only presented here for reasons of clarity and completeness. We will however

also use the following short proof to make some statements about the behaviour of the exchange

potential near the atomic nucleus for exchange functionals of the form of equation 5.28

For simplicity we use the spin unpolarised form but everything goes exactly through for the

spin polarised case by just adding a spin index everywhere in the derivation. This is due to the

fact that the exchange energy in the spin polarised case is just a simple sum of contributions of �

and � spins in which both contributions have the same structure.

We will take the functional of the form:

Ex[�] =

Z
�
4
3 (r)f(x(r))dr (5.34)

with

x =
jr�j
�
4
3

(5.35)

The second derivative of the function f is assumed to exist. The functional derivative of Ex of 5.34

is then given by:

�Ex

��(r)
= vx(r) =

4

3
�
1
3 (f � x

df

dx
+ x2

d2f

dx2
)

+
X
i;j

@i�@i@j�@j�

jr�j3
(
df

dx
� x

d2f

dx2
)�

r2�

jr�j
df

dx
(5.36)

We insert for the density the exponential �(r) = Ne��r. This exponential is exact in two regions

of the atom: near the atomic nucleus where we have � = 2Z with Z the nuclear charge and for the

outer asymptotic region where � = 2
p
�2� with � the chemical potential (negative of the ionisation

energy). This gives:

vx(r) =
4

3
�
1
3 (f � x

df

dx
+ x2

d2f

dx2
)� �x

d2f

dx2
+

2

r

df

dx
(5.37)

In order to satisfy the asymptotic behaviour of �x (equation 5.8) f must satisfy the asymptotic

relation 5.30. If we now insert the large x behaviour of f (equation 5.30) into equation 5.37 we get

retaining only the terms of lowest order in 1= log x:

vx(r) � �
1

3r

1

log x
� �

1

3r

1

log���
1
3

� �
1

�

1

r2
(r !1) (5.38)

We thus see that the exchange potential has a���1=r2 behaviour instead of a Coulombic behaviour.

Hence it follows that the requirements of correct asymptotic behaviour of �x (relation 5.8) and of

vx (relation 5.33) are incompatible for exchange functionals of the form 5.34.

From equation 5.37 we can also draw the following conclusion concerning the behaviour for r ! 0:

If df
dx jx=x(~0) 6= 0 then:

vx(r) �
k

r
(r # 0) (5.39)
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in which the constant k is given by:

k = 2
df

dx
jx=x(~0) (5.40)

This is an unphysical behaviour of the exchange potential near the nucleus. In practice however

(that is for the Becke functional) the constant k is very small compared to the nuclear charge (a

typical value for k is 0.02 for the noble gases).

We will now discuss some properties of the Perdew nonlocal correlation functional which is of the

form [45]:

Ec[�] =

Z
f(��; ��)e�g(�)jr�j

(r�)2

�
4
3

dr (5.41)

In this formula f is a local function of �� and �� which are spin densities and g is a local function of

the total density. The form of this functional is adapted from the correlation part of the Langreth-

Mehl functional in such a way that the functional reduces to the gradient expansion expression

of equation 5.12 for slowly varying densities. The corresponding potential decays exponentially to

in�nity. This is not a bad feature as the correlation potential should decay faster than Coulombic

although maybe one should expect a correlation potential decaying like ��=r4 in which � is the

polarisability of the system. This term occurs in the exact exchange-correlation potential [74] and

describes the polarisation of the system by an asymptotic electron, which is clearly a correlation

e�ect.

Near the nucleus the Perdew potential also has a Coulombic singular behaviour. The origin of this

unphysical singularity can be traced, like in the Becke potential, to terms in the potential that

contain the Laplacian of the density, which due to the Slater-like behaviour of the atomic density

near the nuclues leads to a Coulombic potential. These terms also occur in potentials of other

nonlocal density functionals such as the one from Langreth and Mehl [50] and in the Generalized

Gradient Approximation (GGA) of Perdew and Wang [46]. These functionals consequently also

su�er from this same de�ciency.

5.4 Constructing the potential from the density

We have demonstrated that the most widely used gradient corrected exchange and correlation

potentials su�er from incorrect asymptotic behaviour at r! 0 and r !1. In order to investigate

these potentials over the whole r range one needs the exact Kohn-Sham potential at arbitrary

position. In this section we present an iterative scheme of obtaining the Kohn-Sham potential

from a given electron density �. This scheme is di�erent from most other schemes used thus far

[78, 74, 79] and in particular is not limited to two-electron systems but is applicable to systems

with any number of electrons. Recently during the writing of this paper we have noticed that

work along similar lines has been carried out [80]. However our procedure is somewhat simpler

and as we tested has the same convergence rate. In contrast to reference [80] in which calculations

within a basis set were performed we use a completely numerical approach obtaining a basis set

free representation of the potential.

We start from the Kohn-Sham-equations:

(�
1

2
r2 + vs(r))�i(r) = �i�i(r) (5.42)
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in which vs is the Kohn-Sham-potential. The Kohn-Sham-orbitals are required to satisfy:

NX
i

j�i(r)j2 = �(r) (5.43)

where N is the number of electrons in the system. Multiplying equation 5.42 by ��i and summing

over i gives after dividing by �:

vs(r) =
1

�(r)

NX
i

1

2
��i (r)r

2�i(r) + �ij�i(r)j2 (5.44)

We now de�ne an iterative scheme using this equation. We want to calculate the potential corre-

sponding to the density �. Suppose that at some stage in the iteration we have calculated orbitals

�oi with eigenvalues �oi and density �o and potential vo. In the next step we de�ne the new potential:

vn(r) =
1

�(r)

NX
i

1

2
�o�i (r)r2�oi (r) + �oi j�

o
i (r)j

2

=
�o(r)

�(r)
vo(r) (5.45)

Using this potential we calculate new orbitals and a new density and de�ne in the same way a new

potential. This procedure is continued until the density calculated from the orbitals is the same as

the given density. In practice until:

max
r

j1�
�o(r)

�(r)
j < � (5.46)

with � a given threshold. To achieve convergence one should take care to keep the prefactor in the

last term of equation 5.45 in each iteration within an acceptable range:

1� � <
�o(r)

�(r)
< 1 + � (5.47)

for example with � = 0:05. We noticed in the application of this procedure that one has to make

sure that the potential is set to zero in in�nity otherwise one might fail to converge.This is due

to the fact that one can add an arbitrary constant to both the potential and the one electron

eigenvalues without changing the density. This may also play a role in the practical application

of the procedure of reference [80] where explicit use is made of the one electron eigenvalues in the

potential construction procedure. The �xing of the potential in in�nity is however easily carried

out in our program in which di�erential equations are solved numerically. In that case boundary

conditions at in�nity and at the nucleus immediately �x the solution.

The scheme is not guaranteed to converge as there are densities which are not non-interacting

v-representable (however many densities which are not v-representable by one determinant are

v-representable by a linear combination of determinants [81] which can be accomplished in our

scheme by using fractional occupation numbers). However if the procedure converges then its limit

is unique as guaranteed by the Hohenberg-Kohn theorem applied to a non-interacting electron sys-

tem [10].



90 AN EXCHANGE-CORRELATION POTENTIAL

We have calculated exact potentials for the beryllium and the neon atoms as for these atoms

accurate densities from con�guration interaction calculations are available. Both densities have

been published by Bunge and Esquivel [82, 83] in a large basis of Slater functions. The use of

Slater functions is advantageous because they give a much better representation of the density tail

in the outer regions of the atom than for instance Gaussian functions. For the calculation of the

potentials from these densities we used a modi�cation of the Herman-Skilman atomic program [84]

based on numerical integration. For the results of table 1 we have used our atomic and molecular

density functional package based on Slater Type Orbitals (STO's) with which it is possible to

carry out self-consistent calculations using the Becke-Perdew potential. In the local density

approximation we use for the correlation potential the VWN-parametrisation of the electron gas

data [85]. For the open shell atoms discussed in this article we performed spherically averaged

spinpolarised calculations. The exact exchange-correlation potentials are displayed in �gure 5.1a

and �gure 5.2a for Be and Ne respectively and r times these potentials in �gs.5.1c and 5.2c. Both

potentials have the same structure, a characteristic peak between the atomic shells (in our case

between the K and the L-shell) and a Coulombic asymptotic behaviour. These features are most

clearly displayed in the plots of rV . The appearance of the intershell peak has been observed before

[74, 79] and can be understood from the work of Buijse et al. [86]. In ref. [86] it has been observed

that an important contribution to the Kohn-Sham potential is the socalled kinetic potential Vkin
de�ned in terms of the conditional amplitude �:

�(x2; : : : ; xN jx1) =
	(x1; : : : ; xN )p

�(x1)=N
(5.48)

Vkin(x1) =

Z
��(�

1

2
r2

1)�dx2 : : : dxN = +
1

2

Z
jr1�j2dx2 : : : dxN (5.49)

The conditional amplitude �(x2; : : : ; xN jx1) describes the system of N � 1 electrons with positions

x2; : : : ; xN when one electron is known to be at position x1 and is the amplitude connected with

the conditional probability of �nding the other electrons when one electron is known to be at x1.

Vkin makes a signi�cant (positive) contribution to the Kohn-Sham potential at those positions x1
of the reference electron where the conditional amplitude changes rapidly, so that r1� is large. As

discussed in ref. [86], this is the case when x1 crosses the border region between two atomic shells,

since the exchange hole is localized within one atomic shell if the reference position is in that shell

but "jumps" to the next shell when the reference position crosses the border (see refs. [87, 88, 89]).

The intershell peak of Vxc is therefore an exchange e�ect and re
ects the fact that the atomic shell

structure has its origin in the antisymmetry principle. The peak in the potential helps to build the

shell structure in the total density by reducing the density in the intershell region. It is obvious

from the �gures that the LDA potentials almost completely lack this important feature of the exact

potential. This is particularly clear from the pronounced appearence of peaks in the di�erence plots

of (VXC � VLDA) and r(VXC � VLDA) in �gs. 5.1b,d and 5.2b,d. The LDA potential also has a

wrong asymptotic behaviour for r!1, as is evident from the fact that rVLDA does not go to �1

but to 0. The exact potential has a much improved asymptotic behaviour. However, the quality of

the exact potential we generate depends on the quality of the correlated wavefunction and density

on which it is based. The asymptotic region is notoriously di�cult to describe accurately, since

wavefunctions are almost invariably obtained from energy optimization algorithms which have a

strong bias towards improving the energetically important inner region. In the case of Neon we

observe that for large r (r � 3 bohr) there is a spurious minimum in the curve for the exact VXC
(�g.5.2c) which we ascribe to inaccuracy of the correlated density at such large r. It is nevertheless
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Figure 5.1: Exchange-correlation potentials of the beryllium atom.
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Figure 5.2: Exchange-correlation potentials of the neon atom.
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clear that the "exact" rVXC approaches �1 much better than the LDA potential does. For Be

it is not evident that the calculated "exact" VXC su�ers from poor accuracy of the asymptotic

behaviour of the CI density, but we do feel that some suspicion is warranted concerning the (too?)

slow approach by rVXC to the limiting value of �1 (�g.5.1c). This suspicion is aggravated by the

strange minimum between 6 and 8 bohr in the curve of r(VXC � VLDA) in �g.5.1d.

In panels a and c of �gures 5.1 and 5.2 we have also added Beckes gradient-corrected exchange

potential [44] and Perdews correlation potential[45] to the LDA potential. The plots demonstrate

that these potentials make rather small corrections to the LDA potential. This makes it under-

standable that the one-electron energies shown in table 1, which are rather poor for LDA when

compared to the experimental ionisation energies, do not improve when the Becke-Perdew non-local

corrections are included in the SCF calculation. Panels b and d of the �gures display directly the

comparison between the non-local corrections to the potential and the di�erence (VXC � VLDA)

to which they should be equal. It can be seen that the nonlocal Becke-Perdew potential behaves

singularly near the atomic nucleus. This potential has in this region the Coulombic singular be-

haviour discussed earlier. At somewhat larger distances it crosses the horizontal axis and gives a

small positive peak which is located at the right spot in the intershell region. For Be this does not

lead to good agreement with (VXC � VLDA) in the intershell region, but for Ne VBECKE�PERDEW
quite nicely approximates (VXC � VLDA) just at the position of the intershell peak. At larger dis-

tances the Becke-Perdew potential is almost zero and there is no correction to the LDA potential,

in agreement with the failure to give improvement of the LDA eigenvalues. The large deviation in

the asymptotic region between the Becke-Perdew potential and the exact nonlocal potential is most

clearly exhibited in panels d: the exact nonlocal corrections correctly tend to a constant which ap-

proximates �1, whereas the Becke-Perdew potential tends to zero. The panels d also demonstrate

that the Becke-Perdew potential multiplied by the radial distance does not tend to zero at the

atomic nucleus but to a �nite value, indicating the Coulombic behaviour of this potential in this

region.

5.5 A model potential

In this section we will make a �rst step towards the construction of model potentials that more

closely resemble the exact Kohn-Sham potential. The advantage in modeling potentials instead

of energy expressions is the fact that potentials are uniquely de�ned by the exact density. The

quality of model potentials can therefore be judged by comparing to exact potentials calculated

from accurate densities.

In modeling the potentials one should incorporate the general features of atomic shell structure

and asymptotic Coulombic behaviour. One might also wish the potential to satisfy some scaling

properties. To incorporate the shell structure we use for our model potential the dimensionless

parameter x = jr�j=�
4
3 . This parameter is proportional to the length of the gradient of the local

Wigner-Seitz radius and can be interpreted as the change in mean electronic distance (at least in

regions with slowly varying density where rs � ��1=3 is meaningful, i.e. in the regions where LDA

is applicable). As an illustration of the behaviour of this parameter we display both this parameter

and r2�(r) in �gure 5.3 for the krypton atom. Whereas the electron density �(r) is monotically

decreasing in an atom, r2�(r) exhibits the shell structure. We observe that x also oscillates with

the atomic shells, with maxima approximately at the in
ection points of r2�(r), and thus seems a

suitable parameter to model the shell structure of the exact potential. For the asymptotic behaviour

of the potential we then have to take into account that x behaves for an exponentially decaying
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Figure 5.3: The electron density times the radial distance squared and the parameter x = jr�j=�
4
3

for the krypton atom.

density � � e��r asymptotically as ���1=3, i.e. increases exponentially (see �g. 5.3). We thus

choose our nonlocal correction to the LDA potential of the form

vxc(r) = �
1
3 (r)f(x(r)) (5.50)

This form of the potential scales like an exchange potential [22, 23]:

vxc([��]; r) = �vxc([�];�r) (5.51)

We do not know the scaling behaviour of the correlation part of the potential but as the major

part of the potential comes from the exchange we take the above form as an approximation. For

systems with small density variations (small values of x) we want the nonlocal correction potential

also to be small. We therefore require f(0) = 0. We further know that [31, 72]:

vxc(r) � �
1

r
(r !1) (5.52)

This means that f must asymptotically satisfy:

f(x) � �
1

3

x

log (x)
(x!1) (5.53)

Our problem of �nding a smooth interpolation between these limiting situations is similar to the

one that Becke faced for the exchange energy density. Inspired by his solution we take:

f(x) = ��
x2

1 + 3�x sinh�1 (x)
(5.54)
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ATOM HF LDA NL(BP) MODEL EXPT

H 0.500 0.234 0.280 0.440 0.500

He 0.918 0.571 0.585 0.851 0.903

Be 0.309 0.206 0.209 0.321 0.343

Ne 0.850 0.490 0.496 0.788 0.792

Ar 0.591 0.381 0.380 0.577 0.579

Kr 0.524 0.346 0.344 0.529 0.517

Xe 0.457 0.310 0.308 0.474 0.446

ION HF LDA NL(BP) MODEL EXPT

F� -0.097 -0.099 0.128 0.125

Cl� -0.022 -0.023 0.140 0.133

Br� -0.008 -0.009 0.140 0.124

I� +0.005 +0.004 0.139 0.112

MOLEC HF LDA NL(BP) MODEL EXPT

N2 0.622 0.328 0.322 0.557 0.573

F2 - 0.339 0.334 0.607 0.582

CO 0.551 0.334 0.336 0.529 0.515

Table 5.1: ionisation energies and electron a�nities from the highest occupied Kohn-Sham orbital

This gives the �nal form of our model potential for the nonlocal corrections. In spin polarised form:

v�xc(r) = ���
1
3
� (r)

x2�

1 + 3�x� sinh�1 (x�)
(5.55)

In order to check if with this potential we have captured the main features of the Kohn-Sham

potential which the LDA potential is lacking, i.e. shell-structure and a Coulombic asymptotic

behaviour, we compare to exact potentials in �gs. 5.1 and 5.2. The parameter � in our model

potential was �tted in such a way that our model potential resembled as closely as possible the

di�erence between the exact and the LDA potential for the beryllium atom. For this procedure we

choose the beryllium atom instead of the neon atom because its density appears to be the most

accurate of the two. This leads to a value of � of 0:05. The model potential for neon in �gure

5.2 uses the same parameter �. The model potentials in �gures 5.1 and 5.2 have been calculated

selfconsistently using our density functional program package.

As can be seen from �gure 5.1 for the beryllium atom our potential is in reasonable agreement with

the exact potential. In particular �gs. 5.1c,d show that the intershell peak is fairly well represented

and the asymptotic behaviour is essentially correct in that r(VLDA + VMODEL) approaches �1.

Concerning the remaining di�erence, there is obviously room for improvement, although we suspect

that part of the di�erence between our model potential and the exact potential in the asymptotic

region is due to the possible inaccuracy in the latter mentioned before. The model potential does

clearly improve upon the Becke-Perdew potential. For the neon atom (�gure 5.2) the asymptotic

behaviour of the model potential appears to be quite good (assuming that the minimum of the

"exact" potential between 5 and 6 bohr is incorrect). However, in the inner region of the neon
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atom the model potential is not so well behaved. Although it does exhibit an intershell peak,

the approximation of this feature to the true intershell peak is rather poor. As a matter of fact

the Becke-Perdew potential gives a better approximation to the exact nonlocal potential precisely

at the intershell peak. Nevertheless, considering the whole r range we can say that for both the

beryllium and the neon atom our simple model potential gives a considerable improvement of the

LDA potential, especially in the asymptotic region were the Becke-Perdew potential gives almost

no correction.

We might now ask whether these improvements are re
ected in the quality of the eigenvalues. In

order to investigate this question we calculated for several atoms and molecules the eigenvalue

of the highest occupied Kohn-Sham orbital. This eigenvalue should be equal to the ionisation

energy of the system (or electron a�nity for negative ions). We have done this for both LDA,

LDA with the Becke-Perdew potential added and for LDA with our model potential (� = 0:05)

added. The results for H and a number of atoms with noble gas con�gurations are presented in

table 5.1. In this table we also compare with the self-interaction free eigenvalues of the Hartree-

Fock approximation. From the table we can see that the LDA eigenvalues have a large discrepancy

with experiment, with a mean absolute error of 5.40 eV. We can also see that these values are

not improved by inclusion of the Becke-Perdew potential. The model potential on the other hand

gives a considerable improvement compared to the LDA eigenvalues, with a mean absolute error

of 0.56 eV. A nice feature of the model potential is also that it yields bound state solutions for

the negative ions. We see that the improvements are not restricted to atoms but also occur for

molecules. Table 5.2 shows results for the alkali and alkaline earth atoms and ions. The same

quality is obtained as for the noble gas atoms and ions.

Does the improvement of the asymptotic behaviour achieved by the model potential, apart from

showing up clearly in the one-electron energies, also have observable consequences for the density?

ln tables 5.2,5.3 and 5.4 we investigate a number of moments of orbital and total densities. Table 5.2

demonstrates that the radial extent of the highest occupied orbital in the alkali and alkaline earth

atoms is signi�cantly a�ected by the asymptotic correction introduced by the model potential.

Maximum errors of the LDA potential amount to 9% and 18% for hri and hr2i respectively of

the alkalis and 6% and 13% for the alkaline earths. The �rst members of the two series, Li and

Be, show comparitively small errors of 0.2% and 0.3% for Li and 1% and 2% for Be. The errors

are much smaller for the ions, probably since they possess very tight closed shells. Although the

e�ects are rather small for Be, making this atom perhaps not a good test case, we happen to have

a very accurate CI density available for this atom and therefore we compare in table 5.3 for Be

the moments of the total density as obtained from various calculations. Also the Hartree-Fock

data are shown in this table, in order to see how much of the e�ect of correlation is taken into

account by the LDA or model potential. Judging by this example, for hrpi with p positive the

LDA potential corrects the Hartree-Fock result in spite of the wrong asymptotic behaviour of this

potential, the model potential gives improvement over LDA but in general only something like 50%

of the di�erence between Hartree-Fock and exact is covered by the model potential. For hr�1i and

hr�2i there is no improvement over the Hartree-Fock results.

For Neon (table 5.4) it is seen that for hrpi with p positive the model potential considerably improves

the LDA result. With respect to the di�erence with Hartree-Fock the picture is di�erent from that

for Be: the LDA potential does not correct the Hartree-Fock results but gives as expected a too

di�use density. For hr�1i and hr�2i there is again no improvement over the Hartree-Fock results.

The LDA potential appears to give a too di�use, the model potential a too contracted density in

the inner region.
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ATOM LDA MODEL EXPT

< r > < r2 > � < r > < r2 > � �

Li < 2s > 3.822 17.345 0.12 3.815 17.410 0.19 0.20

Na < 3s > 3.995 18.753 0.11 3.703 16.256 0.21 0.19

K < 4s > 4.839 26.962 0.10 4.428 22.739 0.18 0.16

Rb < 5s > 5.125 30.041 0.09 4.664 25.036 0.18 0.15

Cs < 6s > 5.674 36.481 0.08 5.170 30.475 0.16 0.14

Be < 2s > 2.621 8.263 0.20 2.595 8.118 0.32 0.34

Mg < 3s > 3.137 11.572 0.17 2.985 10.528 0.29 0.28

Ca < 4s > 3.991 18.304 0.14 3.771 16.437 0.24 0.22

Sr < 5s > 4.339 21.468 0.13 4.079 19.066 0.23 0.21

Ba < 6s > 4.880 26.909 0.12 4.588 23.897 0.21 0.19

ION LDA MODEL EXPT

< r > < r2 > � < r > < r2 > � �

Li+ < 1s > 0.585 0.468 2.19 0.576 0.453 2.65 2.78

Na+ < 2p > 0.803 0.839 1.34 0.795 0.821 1.70 1.74

K+ < 3p > 1.428 2.421 0.92 1.430 2.428 1.15 1.16

Rb+ < 4p > 1.720 3.428 0.80 1.713 3.404 1.01 1.00

Cs+ < 5p > 2.087 4.959 0.69 2.078 4.920 0.88 0.85

Be2+< 1s > 0.421 0.240 4.81 0.417 0.235 5.45 5.66

Mg2+< 2p > 0.684 0.599 2.46 0.681 0.592 2.88 2.95

Ca2+< 3p > 1.260 1.866 1.58 1.263 1.879 1.85 1.87

Sr2+< 4p > 1.555 2.775 1.34 1.553 2.772 1.58 1.60

Ba2+< 5p > 1.912 4.129 1.14 1.909 4.123 1.35 1.35

Table 5.2: expectation values of < r > and < r2 > for the highest occupied orbitals with corre-

sponding eigenvalue

< r�2 > < r�1 > < r > < r2 > < r3 > < r4 > < r5 >

HF 57.618 8.409 6.129 17.319 63.151 270.656 1325.49

LDA 56.766 8.339 6.091 17.019 61.475 261.641 1276.385

MODEL 57.837 8.446 6.022 16.704 59.796 250.937 1198.763

EXACT 57.597 8.427 5.975 16.284 56.946 233.167 1085.87

Table 5.3: density moments for the beryllium atom

< r�2 > < r�1 > < r > < r2 > < r3 > < r4 > < r5 >

HF 414.890 31.113 7.891 9.372

LDA 411.916 30.998 8.016 9.853 15.967 32.500 80.692

MODEL 416.406 31.275 7.895 9.477 14.799 28.576 66.239

EXACT 414.967 31.110 7.935 9.545 14.941 29.006 67.904

Table 5.4: density moments for the neon atom
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5.6 Summary and conclusions

In this work we have formulated a number of conditions for approximate exchange-correlation po-

tentials. Potentials of gradient-corrected density functionals that are currently used with much

success to calculate atomic exchange and correlation energies as well as bond energies of molecules

do not obey some of these conditions. In order to make comparisons over all space to (almost)

exact Kohn-Sham potentials we devised an iterative scheme to obtain the corresponding Kohn-

Sham potential from a given density. The scheme is applicable to both atoms and molecules and

is not limited to systems with few electrons. In this paper highly accurate CI densities for Be and

Ne have been used to generate accurate Kohn-Sham potentials. Comparison to potentials derived

from existing gradient-corrected functionals demonstrated that these potentials cover only a small

part of the di�erence between the LDA potential and the exact one. This is at �rst sight a little

surprising: how can we have large improvements in energies and almost no improvement in the

potential? Several explanations may be advanced. First of all the approximate nonlocal functional

might "oscillate" around the exact functional giving a good approximation of the energies but a

bad approximation of its functional derivative. Other de�ciencies are inherent to the derivation of

the functionals. For instance both the nonlocal exchange-correlation functional of Langreth and

Mehl [50] and the Perdew-Wang generalised gradient expansion [46] use a long-range cut-o� of the

exchange-correlation energy density. Langreth and Mehl use a low-k (large distance) cut-o� in

the momentum distribution of the exchange-correlation energy and Perdew and Wang perform a

real-space cut-o� in the exchange-correlation hole. This neglect of this asymptotic region re
ects

itself in the potential which thereby loses its asymptotic Coulombic behaviour. However the Becke

functional shows that even a correct behaviour of the exchange hole potential does not garantee a

good behaviour of the exchange potential.

A model potential has been presented which corrects some of the de�ciencies of the current

potentials, notably the asymptotic behaviour. The improved asymptotic behaviour shows up very

clearly in the one-electron energies. The error in the highest occupied LDA eigenvalue (which should

represent in the exact case the ionisation energy) is reduced by almost an order of magnitude by

using the model potential. The model potential also corrects signi�cantly the higher moments of

the density, notably for di�use outer orbitals. Because of this correction of the highest occupied

orbitals, the model potential may be useful in the calculation of highly excited di�use states and in

general for density dependent properties such as dipole and quadrupole moments and derivatives

thereof (infrared intensities).

In spite of some success, the present model potential is clearly de�cient in some respects, notably

the behaviour in the atomic intershell region. It will therefore require further improvement. This

problem will be addressed in a subsequent paper of this series. We feel that the most signi�cant

success of the nonlocal corrections to LDA apply to bond energies of molecules. In particular the

potential derived from the Becke gradient correction to the exchange energy density displays very

interesting structure in molecules [90] that may explain the success of the Becke energy expression

for bond energies. We feel that further modeling of exchange-correlation potentials should not only

try to optimize the potential for atoms but should take into account the special e�ects of chemical

bonding.

Acknowledgements: We would like to thank Gijsbert Wiesenekker for his help in the program-

ming of the iterative scheme of section 5.4.



Chapter 6

Structure of the optimized e�ective

Kohn-Sham exchange potential and

its gradient approximations

An analysis of the structure of the optimized e�ective Kohn-Sham exchange potential vx and its

gradient approximations is presented. The potential is decomposed into the Slater potential vS
and the response of vS to the density variations vresp, the latter exhibits the distinct atomic shell

structure. The peaks of vresp are interpreted as a consequence of the Fermi hole localization. It is

the approximation of vresp that raises the main problem for the gradient approaches. A direct �t of

vx is made with the gradient-dependent Pad�e approximant form that possesses proper asymptotic

and scaling properties and reproduces its shell structure.

6.1 Introduction

The optimized potential model (OPM) [34, 33, 91, 35] provides a direct way to calculate local

potential v(r) of the Kohn-Sham equations (Hartree atomic units will be used throughout the

paper)�
�

1

2
r2 + v(r)

�
�i(r) = �i�i(r) (6.1)

Within the OPM the optimized e�ective potential (OEP) v(r) is de�ned as a potential of (6.1) with

the eigenfunctions �i(r), whose Slater determinant  minimizes the expectation value of the total

Hamiltonian H of a many-electron system

h jĤ j i (6.2)

v(r) can be subdivided in the usual way

v(r) = vext(r) + vH(r) + vx(r) (6.3)

where vext(r) is the external potential, vH(r) is the Hartree potential of electrons

vH(r) =

Z
�(r0)

jr� r0j
dr0 (6.4)

99
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with the electron density �(r) built from the occupied orbitals �i(r)

�(r) =
NX
i=1

j�i(r)j2 (6.5)

and vx(r) is called the exchange optimized e�ective potential. The important features of atomic vx
such as its asymptotic behaviour at short and long distances from a nucleus [33, 57, 31, 35, 92, 49]

and the shell structure [33, 50, 93, 35, 94] were established in the OPM.

The correct long-distance asymptotics was proved for the vx of the OPM in the pioneer work

of Talman and Shadwick [33]. On the other hand, an interpretation of the shell structure, the

"peaks" of vx in the atomic intershell regions remained an open problem. Another problem is

�nding approximations to vx. Even for atomic systems the rigorous OPM calculations are rather

involved [93, 35, 36], because they require the simultaneous self-consistent solution of the one-

electron Kohn-Sham equations and an integral equation for vx. Owing to this, it is desirable

to develop an e�ective approximation to vx within the density functional theory (DFT). Recent

progress of the DFT is due to the generalized gradient approximation (GGA) [50, 51, 45, 95, 44,

43, 47, 96] that gives a remarkable improvement to the exchange-correlation energies of the local

density approximation (LDA) [10, 11, 97, 98, 99]. It was shown [92, 49, 36, 94, 32], however, that

the standard GGA exchange potentials do not possess the proper asymptotic behaviour and shell

structure. The corresponding gradient corrections add little to the LDA exchange potential.

In this paper we analyze a structure of the exchange OEP vx and its gradient approximations.

In Section 6.2 properties of vx are discussed. vx is decomposed into the Fermi hole or Slater

potential vS and the response of vS to the density variation vresp and the peaks of atomic vx are

interpreted as a consequence of the Fermi hole localization. In Section 6.3 the atomic OEP and

its components vS and vresp are compared with those of the LDA, GGA and the pioneer gradient

expansion approximation (GEA) of Herman et al. [76, 100]. In Section 6.4 a gradient �t to vx is

presented, which possesses the proper asymptotic and scaling properties and reproduces the shell

structure of the OEP. The results of atomic calculations with the �tted potentials are compared

with those of the OPM, LDA, GGA and GEA. The comparison is made for the form of potentials,

orbital eigenvalues and also for the exchange energies, the latter have been calculated for the �tted

potential via the Levy-Perdew relation [22].

6.2 Properties of the exchange optimized e�ective potential

The exchange OEP vx(r) possesses the following scaling property [22, 23]

vx([��]; r) = �vx([�];�r) (6.6)

where ��(r) = �3�(�r). For �nite systems it has the asymptotic form [33, 57, 31, 35]

vx(r) ! �
1

jrj
(jrj ! 1) (6.7)

Using 6.1,6.2 the OPM provides a radial integral equation [33, 91] for the atomic OEP v(r) (r is

the radial coordinate), which can be solved numerically. Figure 1 illustrates the typical features of

the OEP exchange part vx for Kr extracted from [91]. One can see from this Figure the �niteness

of vx at the nucleus

vx(r) = const (r = 0) (6.8)
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Figure 6.1: Exchange optimized e�ective potential for Kr

and its shell structure, i.e. the non-monotonous dependence of vx on r with the local maxima

("peaks") in the regions between the atomic shells.

In order to trace the origin of the intershell peaks of vx, we use its de�nition as the functional

derivative of the exchange energy Ex[�]

vx(r) =
�Ex[�]

��(r)
(6.9)

that holds true in the OPM and express the exchange part of 6.2 as an integral of the Fermi hole

or Slater potential vS [101]

Ex =
1

2

Z
�(r)vS(r)dr (6.10)

vS(r) = �
Z
f(r; r0)

jr� r0j
dr0 (6.11)

In equation 6.11 f(r; r0) is the Fermi hole density [101, 102] built from the occupied Kohn-Sham

orbitals �i(r)

f(r; r0) = �(r)�1
NX
i=1

NX
j=1

�i(r)�
�
i (r

0)��j (r)�j(r
0) (6.12)

The expression 6.10 formally looks like an energy of the electronic interaction with an external

potential. In reality, being an internal potential of the electronic system, vS has the non-zero
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response vresp to density variations and, according to equations 6.9-6.11, vx can be expressed as

the arithmetical mean of vS and its response vresp

vx(r) =
1

2
[vS(r) + vresp(r)] (6.13)

vresp(r) =

Z
�(r0)

�vs(r
0)

��(r)
dr0 = �

Z
�(r0)dr0

Z
�f(r0; r

00

)

��(r)

dr
00

jr0 � r
00 j

(6.14)

with
�vs(r

0)
��(r) and

�f(r0;r
00

)
��(r) being the linear response functions [6].

In Figure 2 OEP vx [91] and its components 1
2
vS and 1

2
vresp are plotted for Ca, Kr and Cd. The

relative contribution of vresp to vx ranges from 0.5, its asymptotic value at long distances r, and

from � 0:35 within the shell regions to the near zero values in the intershell regions. In all cases

vS is a monotonous function of r, while vresp possesses the distinct peaks in the intershell regions

and, hence, the shell structure of vx originates mainly from vresp.

From Figures 2a-c and eq.6.14 the shell structure can be interpreted in terms of the di�erent

response of the Fermi hole density f(r2; r
00

) to the perturbations ��(r) of the electron density in

the shell and intershell regions. At the intershell points vx is closer to 1
2
vS and vS looks in fact

like an external potential which has, by de�nition, zero response to the density perturbations. In

the sense of integral contribution to 6.14, intershell points appear as the points outside the area

of the Fermi hole 6.12, which determines vresp. But this is true, because, owing to an exchange

e�ect, the Fermi repulsion of electrons with like spins, for various pairs r0 and r
00

the Fermi hole

f(r0; r
00

) is mainly localized within the shell regions [102, 103]. One can expect (and we can see

it from Figure 2) the smaller response of f(r0; r
00

) when �(r) is perturbed somewhere outside its

localization region, in particular, at the intershell points. To sum up, the intershell peaks of vx can

be interpreted as a consequence of localization of the Fermi hole and successful approximations to

vx should re
ect this feature.

It is interesting to note, that the shell structure of the exchange potential is only the secondary

e�ect of the Fermi repulsion. The main e�ect is contained in the Pauli potential [104], which

appears as a kinetic contribution to the total potential of the Euler equation for �
1
2 (r) and has

much more pronounced intershell peaks [105, 106, 107]. The analysis of the shell structures in the

Euler equation will be given elsewhere [108].

6.3 Comparison of the OPM, LDA, GGA and GEA exchange po-

tentials

In the recent papers [92, 49, 35, 94] OEP vx has already been compared with various DFT approx-

imations. In this paper the comparison is made not only for vx, but also for its components vS and

vresp. All the standard DFT schemes approximate the exchange energy density �x(�; r)

Eapproxx [�] =

Z
�approxx ([�]; r)dr (6.15)

and, according to equations 6.10 and 6.15, the corresponding approximation to vS can be simply

related to �approxx

v
approx
S (r) =

2�approxx ([�]; r)

�(r)
(6.16)
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Figure 6.2: Exchange optimized e�ective potential and its components for a) Ca, b) Kr and c) Cd
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Figure 6.3: Exchange potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and c) Cd
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while vapproxresp can be obtained by the functional di�erentiation of equation 6.16.

In the LDA all the potentials vLDAx , vLDAS and vLDAresp have the same form

vLDAx (r) = �2(
3

8�
)
1
3�

1
3 (r); vLDAS (r) = �3(

3

8�
)
1
3�

1
3 (r);

vLDAresp (r) = �(
3

8�
)
1
3 �

1
3 (r) (6.17)

In the GEA [76, 100] vLDAS is modi�ed with the density gradient correction

vGEAS (r) = vLDAS (r)� 0:015(
3

4�
)
1
3 �

1
3 (r)� = vLDAS (r) + ~vGEAS (r) (6.18)

� = 2
2
3 (
r�(r)

�
4
3 (r)

)2 (6.19)

and in vGEAresp the additional Laplacian term appears

vGEAresp (r) = vLDAresp (r)� 0:005(
3

4�
)
1
3 �

1
3 (r)(� � 6�) = vLDAresp (r) + ~vGEAresp (r) (6.20)

� = 2
2
3
r2�(r)

�
5
3 (r)

(6.21)

vGEAx (r) = vLDAx (r)� 0:01(
3

4�
)
1
3�

1
3 (r)(� �

3

2
�) = vLDAx (r) + ~vGEAx (r) (6.22)

All the gradient corrections in eqs.6.18,6.20,6.22 contain the empirical parameter determined in

[76, 100].

In the GGA [44] vGEAS is further modi�ed with the correction function f(�) in order to provide the

correct long-distance asymptotics of vGGAS

vGGAS (r) = vLDAS (r) + f(�)~vGEAS (r) (6.23)

f(�) =
0:56(4�

3
)
1
3

1 + 0:0252�
1
2 sinh�1 �

1
2

(6.24)

and in vGGAresp the function f(�) appears together with its �rst and second derivatives

vGGAresp (r) = vLDAresp (r) + f(�)~vGEAresp (r)� 0:03(
3

4�
)
1
3 �

1
3 (r)[

df

d�
(�� + 2�)�

d2f

d�2
�� ] (6.25)

vGGAx (r) = vLDAx (r) + f(�)~vGEAx (r)� 0:015(
3

4�
)
1
3 �

1
3 (r)[

3

2

df

d�
(�� + 2�)�

3

2

d2f

d�2
�� ] (6.26)

� = 2
4
3
r�(r)r�(r)

�
5
3 (r)

(6.27)

Eq. 6.24 contains an empirical parameter determined in [44]. Being the functional derivatives of

the corresponding exchange energy functionals, vLDAx , vGEAx , vGGAx and also their components have

the proper scaling property 6.6.
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Figure 6.4: Slater potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and c) Cd
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Figure 6.5: Response potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and c) Cd
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In Figures 3-5 OEP vx [91] and its components vS and vresp are compared for Ca, Kr and Cd

with the corresponding potentials of LDA, GEA and GGA. The potentials were calculated with

the OPM densities �. All the approximate total exchange potentials fail to reproduce the correct

asymptotics 6.7 of the OEP. At long distances vLDAx falls o� exponentially, vGEAx diverges (See

Figure 3b where the potentials for Kr are represented in logarithmic scale for larger distances),

vGGAx decreases similarly to vLDAx and only at very long distances it is proportional to � 1
r2

[49]. At

the nucleus vLDAx is �nite, while the gradient potentials vGEAx and vGGAx diverge, being proportional

to �1
r [92, 32].

Both LDA and GGA potentials do not possess the distinct shell structure. vLDAx is an everywhere

monotonous function of r and vGGAx exhibits a peak only for the outermost intershell regions of

Ca and Cd, being a monotonous function of r for the rest of the space. Contrary to this, vGEAx

possesses clear shell structure. Amplitudes of the peaks obtained within the GEA di�er from those

of the OPM, but the locations of the peaks are nearly the same as in the OPM (See Figure 3a-c).

The abovementioned discrepancies between vx and vapproxx originate mainly from those between

vresp and vapproxresp , while the correspondence between vS and v
approx
S is de�nitely better. All consid-

ered approximations to vS are �nite at the nucleus and approximate rather closely vS at short and

intermediate distances r (See Figure 4). In particular, the GGA provides especially good approxi-

mation for vS . By the construction [44], vGGAS has the correct asymptotics 6.7 for r !1 and it is

very close to vS for all distances. Hence, the well-known success of the GGA in calculation of the

integral characteristics, such as Ex, can be attributed to its locally very good approximation to vS
and, which is the same, to the exchange energy density �x. vLDAS and vGEAS are not so good: vLDAx

falls of exponentially and vGEAS diverges at long distances and both potentials exhibit appreciable

discrepancies with vS at r � 2a:u:

However, all the approaches show more pronounced de�ciencies in approximating vresp (See Figure

5). Due to the presence of the unbalanced Laplacian contributions to vapproxresp , both GEA and GGA

diverge at the nucleus, which causes the abovementioned divergence of the corresponding total

exchange potentials. All the approaches fail to reproduce the correct asymptotics vresp(r) ! �1
r

for r !1: vLDAresp decreases exponentially, vGEAresp diverges and vGGAresp yields the positive asymptotics,

vGGAresp (r) ! 1
r , that cancels the correct asymptotics of vGGAS and produces the incorrect asymptotics

of the total exchange GGA potential vGGAx . In the intershell regions vLDAresp is a monotonous function

of r, vGGAresp has the peaks, but for all intershell regions, with the exception of the outermost one,

they are much smaller than those of the OPM. Contrary to the LDA and GGA, GEA reproduces

the peaks of vresp, but with substantial deviations of amplitudes for vGEAresp and vresp peaks.

One can see from the above analysis and discussion, that the methods to obtain vx as functional

derivative of the current approximate expressions for Ex do not meet the high demand to provide

satisfactory approximation not only for vS, but also for its functional derivative. The alternative

way of a direct �tting of vx to a gradient function with a due account of the accurate asymptotic

and scaling properties is presented in the next section.

6.4 A gradient �t to vx

To �t vx, we use the Pad�e approximant approach, which has been used previously for the �tting of

�x [49, 109, 85, 110, 94]. The following Pad�e approximant form is considered as a �tting potential

vfx

vfx(r) = vLDAx (r)� 2
1
3 �

1
3 (r)[P

n(�)
n+1 (�

1
2 sinh�1 �

1
2 )� � P

m(�)
m+1 (j�j)�] (6.28)



A GRADIENT FIT TO Vx 109

where P
k(y)
l (x) is a [k=l]-Pad�e function of degrees k and l [111]

P
k(y)
l (x) =

a
y
0 + a

y
1x+ ::: + a

y
kx

k

1 + b
y
1x+ :::+ b

y
l x

l
(6.29)

The simpliest Pad�e function P
n(�)
n+1 (�

1
2 sinh�1 �

1
2 ) with n = 0 is the Becke's f(�) (eq.6.24), which

has also been used in [32] as a model of the exchange-correlation potential. The whole expression

6.28 can be considered as the Pad�e approximant modi�cation of the GEA exchange potential 6.22.

It appears that with the following restriction for the coe�cients a�n and b
�
n+1

b
�
n+1 = 3a�n (6.30)

the Pad�e approximant form eqn.6.28 of arbitrary orders n and m possesses the scaling property

6.6, accurate long-distance asymptotics 6.7 and �niteness 6.8 at the nucleus.

The forms 6.28 with n;m = 0 � 2 have been used to �t vx with the coe�cients determined from

the least squares minimization of the weighted di�erence [vx(r)� vfx(r)] for the closed-shell atoms

Be, Ne, Mg, Ar, Ca, Zn, Kr, CdX
A

X
i

fwA(ri)[vx(ri)� vfx(ri)]g2 = min (6.31)

In equation 6.31 the inner summation is over the radial mesh points ri, the outer one is over atoms

and weighting functions wA(ri) of the following form have been chosen

wA1 (ri) =
pir

2
i �
A(ri)

EAx
(6.32)

wA2 (ri) =
pir

2
i [3�

A(ri) + r d�
A

dr jr=ri ]
EAx

(6.33)

where pi are the weighting parameters. The radial densities are inserted in equation 6.32 to provide

weights to the points ri according to their contributions to the sum of the orbital energies of the

Kohn-Sham equations. The weights in eqn.6.33 represent the corresponding contributions to the

atomic exchange energy EAx , which can be calculated for a given vx via the Levy-Perdew relation [22]

Ex =

Z
[3�(r) + rr�(r)]vx(r)dr (6.34)

Energies EAx are inserted in equations 6.32, 6.33 in order to make an uniformly representative

functional for both light and heavy atoms.

The minimized value of the functional (eqn. 6.31) decreases considerably with increasing of degrees

n and m of the �t of eqn. 6.28 from the least n = 0, m = 0 to n = 0, m = 1, but higher degrees

appear to produce little e�ect. As a result, the following simple particular case of the form of eqn.

6.28 has been chosen as a �tting potential

vfx(r) = vLDAx (r)� 2
1
3 �

1
3 (r)[

a
�
0�

1 + 3a
�
0�

1
2 sinh�1 �

1
2

�
(a
�
0 + a

�
1�)�

1 + b
�
2�

2
] (6.35)

The optimized form of vfx , naturally, depends essentially on the actual weighting function wA(ri)

chosen. To illustrate this, in Figure 6 the non-local potential correction vnl of the OPM (a di�erence

between vx and vLDAx ) is compared for Ca, Kr and Cd with the corresponding corrections for
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ORBITAL OPM vf1x vf2x vfxc GGA LDA

1s 144.50 144.60 145.11 146.32 144.38 143.85

2s 15.26 15.20 15.36 15.68 15.05 14.98

2p 12.43 12.37 12.54 12.89 12.26 12.22

3s 1.77 1.73 1.77 1.85 1.67 1.66

3p 1.08 1.05 1.09 1.18 0.99 0.98

4s 0.195 0.144 0.165 0.206 0.116 0.111

Table 6.1: Orbital energies for Ca (with the opposite sign and in a.u.) calculated within OPM,

LDA, GGA and with the �tting potentials vf1x , vf2x and vfxc

the GEA, GGA and for two �ts vf1x and vf2x of the form of eqn. 6.35 with the di�erent sets of

the optimized coe�cients: a
�1
0 = 0:0123, a

�1
0 = 0:0087, a

�1
1 = 0:0004, b

�1
1 = 0:0011 for vf1x and

a
�2
0 = 0:0204, a

�2
0 = 0:0086, a

�2
1 = 0:0005, b

�2
1 = 0:0022 for vf2x . For both �ts the radial mesh frig of

Numerov method [112] with the adaptive step size has been used. vf1x has been optimized for the

weighting function wA1 (ri) (eqn. 6.32) with all the weighting parameters pi set equal, i.e. pi = 1,

while vf2x has been optimized for the weighting function wA2 (ri) (eqn. 6.33) with the mesh weights

of the Numerov quadrature being used as weighting parameters pi. Due to a large concentration

of the mesh points near the nucleus, the function wA1 (ri) provides the greater contribution of the

inner radial points in equation 6.31 as compared to wA2 (ri). As a result, v
f1
nl reproduces the shell

structure of the OPM potential better than any other potential presented (See Figure 4) and is

close to vnl in the core region, while v
f2
nl goes closer to vnl in the valence region.

It is interesting to note that, as regards to a
�
0 value, vf2x is placed in between vf1x and the model

exchange-correlation potential vfxc of [32]. The latter is a particular case of eqn.6.35 with a
�
0 = a

�
1 =

b
�
2 = 0 and with a

�
0 = 0:05 chosen to reproduce the �rst ionisation potential of Be atom. As it was

shown in [32], vfxc yields a good estimate of ionisation energies for various atomic and molecular

systems and it goes close to the accurate Kohn-Sham potential in the outer valence regions.

The abovementioned features of the potentials are re
ected in Tables 1-3 where the orbital energies

�i of eq.6.1 calculated with various exchange potentials are presented for Ca, Kr and Cd. LDA

underestimates electron exchange and its orbital energies are smaller (in absolute magnitude) than

those of the OPM. GGA yields energies, which are close to the LDA ones for valence and outer

core orbitals, and only for the deep core orbitals the GGA energies grow de�nitely greater. In all

cases (with the only exceptions of 2s- and 2p- orbitals of Cd) vf1x provides an improvement to the

GGA orbital energies. Typical �i errors vary within 0:05 � 0:15 a.u. for vf1x , which means small

relative errors for the core orbital energies and quite appreciable errors for the valence ones. vf2x
provides further improvement for the valence and outer core energies, though its deep core orbital

energies are worse than those of vf1x . vfxc gives the best energies of the highest occupied orbitals for

Ca and Kr, while the deep core energies are de�nitely overestimated. For Cd the highest orbital

energy for vfxc deviates more from OPM than vf2x does, but it is quite close to its accurate ionisation

energy 0.330 a.u. vfxc, being an approximation to the exchange-correlation rather than exchange-

only potential, should indeed yield the ionisation energy. Note that, by the construction (eqn.6.35),

all �tted potentials have the accurate long-distance asymptotics (eqn.6.7). One can see, that this

property by itself cannot guarantee high quality of the calculated energies of the highest occupied

orbitals that depends critically on the vfx behaviour at shorter distances in the outer valence region.

In Table 6.4 the non-local corrections Enlx of the OPM to the LDA exchange energies are compared

for the closed-shell atoms Be, Ne, Mg, Ar, Ca, Zn, Kr, Cd with those of the approximate schemes.



A GRADIENT FIT TO Vx 111

Figure 6.6: Non-local corrections of OPM, GEA, GGA and of the �tting potentials to the LDA

exchange potential for a) Ca, b) Kr and c) Cd
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Figure 6.7: Dimensionless arguments � and � for Kr

ORBITAL OPM vf1x vf2x vfxc GGA LDA

1s 511.09 511.21 512.08 514.22 510.87 509.89

2s 66.64 66.52 66.76 67.32 66.35 66.21

2p 60.27 60.17 60.42 61.05 60.02 59.94

3s 9.65 9.41 9.50 9.68 9.30 9.25

3p 7.37 7.15 7.24 7.44 7.05 7.02

3d 3.30 3.10 3.20 3.41 3.02 3.01

4s 0.97 0.83 0.87 0.96 0.78 0.77

4p 0.501 0.358 0.399 0.480 0.305 0.300

Table 6.2: Orbital energies for Kr (with the opposite sign and in a.u.) calculated within OPM,

LDA, GGA and with the �tting potentials vf1x , vf2x and vfxc
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ORBITAL OPM vf1x vf2x vfxc GGA LDA

1s 943.01 943.10 944.24 947.13 942.70 941.38

2s 137.00 137.12 137.41 138.18 136.94 136.76

2p 127.68 127.82 128.14 129.00 127.67 127.56

3s 25.56 25.49 25.65 25.98 25.35 25.31

3p 21.76 21.71 21.86 22.21 21.61 21.57

3d 14.75 14.71 14.86 15.21 14.64 14.62

4s 3.70 3.61 3.65 3.74 3.56 3.54

4p 2.50 2.40 2.44 2.54 2.35 2.34

4d 0.56 0.47 0.52 0.63 0.43 0.42

5s 0.267 0.208 0.250 0.321 0.170 0.168

Table 6.3: Orbital energies for Cd (with the opposite sign and in a.u.) calculated within OPM,

LDA, GGA and with the �tting potentials vf1x , vf2x and vfxc

ATOM OPM GGA vf1x vf2x vfxc GEA

Be 0.360 0.345 0.175 0.193 0.367 0.826

Ne 1.121 1.102 0.908 1.183 2.147 2.275

Mg 1.402 1.387 1.233 1.611 2.921 2.766

Ar 2.339 2.287 2.023 2.663 5.034 4.409

Ca 2.614 2.597 2.457 3.238 6.047 4.915

Zn 4.112 4.215 4.651 6.464 12.193 7.611

Kr 5.274 5.241 5.649 8.024 15.760 9.351

Cd 7.419 7.376 8.400 11.776 22.758 12.859

Table 6.4: Non-local corrections to the LDA exchange energies (with the opposite sign and in a.u.)

calculated within OPM, GGA, GEA and via the Levy-Perdew relation with the �tting potentials

vf1x , vf2x and vfxc

For the �tted potentials Enlx are calculated from the Levy-Perdew relation (eqn.6.34) and for GGA

and GEA they are calculated directly from the corresponding energy expressions (eqn.6.15).

Though non-variational, vf1x yields a reasonable estimation of Enlx for the atoms considered. Its

quality is worse, than the highly superior quality of the GGA [44] energies, but better than that of

GEA [76, 100]. vf2x also yields somewhat better Enlx values than the GEA, though in this case for

all atoms heavier than Ne the calculated Enlx values are substantially overestimated. vfxc provides

the largest overestimation of Enlx for Mg and heavier atoms. A comparison of the results for �tted

potentials shows, not unexpectedly, that, in order to provide a reasonable estimate for the total

exchange energy, it is more important to have a better �t for the inner region than for the outer

one.

A natural question arises whether it possible to construct a potential that would combine the

advantages of vf1x , vf2x and vfxc and would provide a close �t to vx at all distances. Our experience

gives a negative answer to this question for the case of the Pad�e approximant form (eqn. 6.28). The

reason for this is the concerted oscillatory behaviour of the dimensionless arguments � (eq. 6.19)

and � (eq. 6.21) as functions of r (See Figure 7 for Kr as a typical example). � and � are the natural

parameters of the gradient expansion for �x and vx and their utilization ensures the accurate scaling

property (eqn. 6.6) for various gradient approximations. However, because of their oscillations,

there always exist core and valence regions where both � and � have a similar behaviour, so that
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the gradient approximations always produce concerted, related to each other non-local corrections

for these regions. Due to this, the local 
exibility of the �t (eqn. 6.28) is substantially restricted

and better �tting for the inner part of vx produces at the same time worse �tting for the outer part

and vice versa. As a result, the increase of a
�
0 and removal of the �-dependent part of (eqn.6.35),

when passing on from vf1x through vf2x to vfxc, brings better energies of the highest occupied orbitals

but worse Enlx values.

From the above discussion vf1x seems to be the more optimal �t to vx as compared with vf2x .

The former provides systematical improvement for the orbital energies of the GGA, while keeping

reasonable estimation of the exchange energies and it can be used in the Kohn-Sham equations as a

simple approximation to vx and also as a starting point for more re�ned approximations. For such

a re�nement one can consider (in addition to the standard � and �) other gradient parameters that

should have distinctly di�erent behaviour in the core and valence regions. Using these parameters

for the interpolation between vf1x in inner regions and vfxc in the outer ones, one can hope to

construct uniformly close �t to vx, or indeed to vxc if required. The corresponding work is in

progress.

6.5 Conclusions

In this paper an analysis of the structure of the optimized e�ective Kohn-Sham exchange potential

and its gradient approximations has been presented. The potential has been decomposed into the

Slater potential and its response to the density variations, the latter exhibits the distinct atomic

shell structure. The intershell peaks of the potential originate from the smaller response of the

Fermi hole density, which is localized in the shell regions, to the density perturbations at the in-

tershell points. It has been shown, that the approximation of the response potential is a major

problem for the gradient approach. A direct �t of the potential has been made with the the Pad�e

approximant form that possesses proper asymptotic and scaling properties and reproduces shell

structure of the OEP.

Acknowledgements: This investigation was supported in part by the Netherlands Foundation

for Scienti�c Research (NWO).



Chapter 7

Analysis of electron interaction and

atomic shell structure in terms of

local potentials

The Kohn-Sham potential vs of an N-electron system and the potential veff of the Euler-Lagrange

equation for the square root of the electron density are expressed as the sum of the external potential

plus potentials related to the electronic structure, such as the potential of the electron Coulomb

repulsion, including the Hartree potential and the screening due to exchange and correlation, a

potential representing the e�ect of Fermi-Dirac statistics and Coulomb correlation on the kinetic

functional, and additional potentials representing "response" e�ects on these potentials. For atoms

several of these potentials have distinct atomic shell structure: one of them has peaks between

the shells, while two others are step functions. In one of those step functions the steps represent

characteristic shell energies. Examples of the potentials extracted from the optimized potential

model (OPM) are presented for Kr and Cd. Correlation potentials, obtained by subtracting the

exchange potential of the OPM from (nearly) exact Kohn-Sham potentials, are discussed for Be

and Ne.

7.1 Introduction

Local one-electron potentials are key ingredients of density functional theory (DFT) [5] The poten-

tial vs(r) of the familiar Kohn-Sham one-electron equations [11] (Hartree atomic units will be used

throughout the paper)

(�
1

2
r2 + vs([�]; r))�i(r) = �i�i(r) (7.1)

and the e�ective potential veff ([�]; r) of the Euler-Lagrange equation for the square root of the

electron density [113, 114, 115, 116, 107]

(�
1

2
r2 + veff ([�]; r))

q
�(r) = �

q
�(r) (7.2)

accumulate various e�ects of the electron interaction in many-electron systems. They provide an

informative picture of the electron interaction in terms of potential barriers and wells in physical

115
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space. Evidently, the complete e�ect of electron correlation has been folded into these local poten-

tials. In this paper we will analyze the relationship between the potentials and electron correlation.

This analysis leads to a decomposition of the potentials in various components, which have been

calculated within the (exchange only) optimized potential model [33] for the atoms Kr and Cd.

For Be and Ne the correlation part of the exchange-correlation potential has been obtained from

nearly exact vs corresponding to the electron density as given by highly correlated wavefunctions.

A distinct structure (peaks, steps) is observed in the various potentials, that can be rationalized

in terms of aspects of the electron correlation. The observed structure will be very helpful when

one tries to model the potentials accurately and e�ciently by judiciously chosen functionals of the

density and its derivatives.

7.2 De�nition of local potentials

To analyze the structure of vs and veff , we begin with the electronic energy expression of the

constrained-search DFT [18] for a trial density �

Ev[�] =

Z
�(r)vext(r)dr + min

 !�
h jT̂ + Ŵ j i (7.3)

where vext is the external (usually, Coulombic) potential, T̂ and Ŵ are operators of the kinetic

energy and electron repulsion and the minimum is searched over all antisymmetric normalized

wavefunctions  , which yield �. One can express E in terms of local potentials

Ev[�] = TW [�] + (T [�]� TW [�]) + Vext[�] +W [�] = �
1

2

Z q
�(r)r2

q
�(r)dr+

Z
�(r)vkin([�]; r)dr +

Z
�(r)vext(r)dr +

1

2

Z
�(r)vcond([�]; r)dr (7.4)

Here TW [�] is the von Weizs�acker kinetic energy functional which is N times the kinetic energy of

the normalized "density orbital"
p
�=N , and the explicit e�ect of the Fermi statistics and electron

interaction on the true kinetic functional T [�], i.e. the di�erence T [�]� TW [�], is represented with

the local potential vkin. According to [86], the latter potential can be de�ned via the conditional

probability amplitude � [113]

�(s1; ~x2; :::; ~xN jr1) =
 �(~x1; :::; ~xN )p

�(r1)=N
(7.5)

of the (non-degenerate) function  �, which minimizes the energy functional (7.3) for the prescribed

density � (f~xig = f~ri; sig, f~rig are the space and fsig are the spin variables)

vkin([�]; r1) =
1

2

Z
jr1�(s1; ~x2; :::; ~xN jr1)j2ds1d~x2:::d~xN : (7.6)

�(s1; ~x2; :::; ~xN jr1) embodies all e�ects of electron correlation (exchange as well as Coulomb) in

that its square is the probability distribution of the remaining N � 1 electrons associated with

positions ~x2:::~xN when one electron is known to be at r1. vkin can be interpreted as a measure of

how strongly the motion of the reference electron at r1 is correlated with the other electrons in the

system, in the sense that it re
ects the magnitude of change in � with changing r1.
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vcond describes the e�ective Coulomb repulsion of the reference electron by the other electrons. It

is expressed through the conditional density [86]

�cond([�]; r1; r2) = g([�]; r1; r2)�(r2) =

= (N � 1)

Z
��(s1; ~x2; :::; ~xN jr1)�(s1; ~x2; :::; ~xN jr1)ds1ds2d~x3:::d~xN (7.7)

vcond([�]; r1) =

Z
�(r2)

g([�]; r1; r2)

jr1 � r2j
dr2 (7.8)

and can be considered as the potential of a interparticle Coulomb interaction screened due to

exchange-correlation e�ects, with the pair-correlation function g(r1; r2) being the screening fac-

tor. Evidently, vcond can be broken up into the Hartree potential and a screening potential due

to the exchange-correlation hole density �(r2)(g(r1; r2)�1) surrounding the reference electron at r1:

vcond([�]; r1) =

Z
�(r2)

jr1 � r2j
dr2 +

Z
�(r2)(g([�]; r1; r2)� 1)

jr1 � r2j
dr2 = vH([�]; r1) + vscr([�]; r1)(7.9)

The potentials vH and vscr are long-ranged, having asymptotic N=r resp. �1=r behaviour.

Minimization of (7.4) with respect to � leads to the Euler-Lagrange equation (7.2) with the following

expression for veff

veff ([�]; r) = vext + vH([�]; r) + vscr([�]; r) + vkin([�]; r)

+vrespscr ([�]; r) + v
resp
kin ([�]; r) (7.10)

Here the potential vrespscr is an integral of the linear "response" of g,
�g(r1;r2)
��(r3)

vrespscr ([�]; r3) =
1

2

Z
�(r1)�(r2)

jr1 � r2j
�g([�]; r1; r2)

��(r3)
dr1dr2 (7.11)

This potential is a measure of the sensitivity of the pair-correlation function g to density variations.

These density variations are to be understood in the following way. If we change the ground state

density � to �+ �� (v-representable), then of course Ev[�+ ��] will be higher than Ev[�] as we do

not change the external potential vext. By the Hohenberg-Kohn theorem a wavefunction  [�+ ��]

can be obtained as the ground state wavefunction corresponding to a unique external potential

v + �v ( which will minimize Ev+�v ). For this system we of course also have a corresponding

Kohn-Sham system and a pair-correlation function g([� + ��]; r1; r2). So the derivative of g in the

above potential vrespscr may be regarded as linear response in the above sense of g to density changes

�� caused by potential changes �v.

v
resp
kin is the response of the potential vkin to density variation

v
resp
kin ([�]; r1) =

Z
�(r2)

�vkin([�]; r2)

��(r1)
dr2 (7.12)

Like vscr and vkin, the potentials vrespscr and v
resp
kin can be related directly to the electron correlation

in the ground state. Their sum can according to ref. [86] be expressed in terms of the conditional

amplitude:

vrespscr ([�]; r1) + v
resp
kin ([�]; r1) = vN�1([�]; r1)

=

Z
��(s1; ~x2; :::; ~xN jr1)HN�1�(s1; ~x2; :::; ~xN jr1)ds1d~x2d~x3:::d~xN �EN�10 (7.13)
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where HN�1 is the hamiltonian of electrons 2 � N (interacting) in the given external potential.

The value of vN�1 at position r is the energy expectation value of the system of N � 1 electrons

described by the conditional amplitude �(s1; ~x2; :::; ~xN jr) minus the ground state energy of the

N � 1 electron system.

An expression for the Kohn-Sham potential vs can be derived from equation (7.10) for veff and

a suitable expression for the Pauli potential vP [117, 115, 116, 107] , the di�erence between veff
and vs. The formula of [115] for the Pauli potential is useful. It may be interpreted with the

help of the relation derived in [86] between the Pauli potential and the Kohn-Sham determinantal

wavefunction  s, which may be built from the Kohn-Sham orbitals �i(r) of eq.(7.1):

vP ([�]; r) = veff ([�]; r) � vs([�]; r) = vs;kin([�]; r) + vN�1s ([�]; r) (7.14)

where vs;kin and vN�1s are the analogues of (7.6) and (7.13) but now constructed with the conditional

amplitude �s of the determinant  s. Due to the simple one-determinantal nature of  s, vs;kin can

be expressed straightforwardly in terms of the Kohn-Sham orbitals (cf. [115]):

vs;kin([�]; r1) =
1

2

Z
jr1�s(s1; ~x2; :::; ~xN jr1)j2ds1d~x2:::d~xN =

1

2

NX
i=1

�����r1
�i(r1)

�
1
2 (r1)

�����
2

(7.15)

It has been argued [86] that from the relation between vkin resp. vs;kin and the conditional

amplitude � resp. �s, one may expect large peaks in the kinetic potentials at shell boundaries due

to the special behaviour of the exchange hole, a point to which we will return below.

The second contribution to vP can also be obtained easily from the one-electron nature of HN�1
s

and the one-determinantal �s:

vN�1s ([�]; r1) =

Z
��
s(s1; ~x2; :::; ~xN jr1)HN�1

s �s(s1; ~x2; :::; ~xN jr1)ds1d~x2d~x3:::d~xN �EN�1s;0

= ��
NX
i=1

�i
j�i(r1)j2

�(r1)
(7.16)

Here EN�1s;0 is the energy of the N � 1 Kohn-Sham system in the following sense:

EN�1s;0 =

Z
 N�1s (~x2; : : : ; ~xN )�HN�1

s (~x2; : : : ; ~xN ) N�1s (~x2; : : : ; ~xN )d~x2 : : : d~xN (7.17)

where  N�1s is the N � 1-particle Kohn-Sham determinant with one electron removed and where

HN�1
s is the Kohn-Sham Hamiltonian Hs with one electron removed ( the Kohn-Sham potential

vs([�]; r) is however still determined by the N -electron density � so this is not strictly the Kohn-

Sham Hamiltonian of the ion):

HN�1
s (~x2; : : : ; ~xN ) =

NX
i=2

�
1

2
r2
i + vs([�];~ri): (7.18)

� = ENs;0 � EN�1s;0 is equal to the highest occupied one-electron Kohn-Sham energy, �M , which in

turn is equal to the negative of the exact �rst ionisation energy, �M = EN0 �EN�10 .

The components of vP are the Kohn-Sham analogues of the components vkin and v
resp
kin of veff

(eq.7.10), de�ned in terms of the exact wavefunction in eqs. (7.6) and (7.12). To demonstrate this

we note that

Ts[�] = TW [�] +

Z
�(r)vs;kin([�]; r)dr = TW [�] + TP [�] (7.19)
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and since vP = �TP =�� [115]

vP ([�]; r) = vs;kin([�]; r) + v
resp
s;kin([�]; r) (7.20)

where

v
resp
s;kin([�]; r1) =

Z
�(r2)

�vs;kin([�]; r2)

��(r1)
dr2

Comparison to eq. 7.14 identi�es v
resp
s;kin with vN�1s , and indeed vN�1s will not have a response term

corresponding to the term vrespscr in vN�1 (eq.7.13) since the Kohn-Sham system of electrons is non-

interacting.

Combining now equation 7.20 with equation 7.10 for veff one obtains for vs

vs([�]; r) = vext(r) + vH([�]; r) + vscr([�]; r) + vrespscr ([�]; r)

+(vkin([�]; r) � vs;kin([�]; r)) + (v
resp
kin ([�]; r) � v

resp
s;kin([�]; r)): (7.21)

It is to be expected that the potentials vkin and vs;kin, and the potentials v
resp
kin and v

resp
s;kin, will

be rather similar in atoms with predominantly exchange e�ects and only dynamical (no near-

degeneracy) correlation, in which case the exchange-correlation potential vxc = vs � vext � vH
would be dominated by vscr + vrespscr . As a matter of fact, since the exchange-correlation energy

Exc[�] can be written as the sum of a kinetic part

Txc[�] = T [�]� Ts[�] =

Z
�(r)(vkin([�]; r) � vs;kin([�]; r))dr (7.22)

and an interparticle part

Wxc[�] =
1

2

Z
dr1dr2

�(r1)�(r2)

jr1 � r2j
(g([�]; r1; r2)� 1); (7.23)

the exchange-correlation potential can be split into a kinetic part that corresponds to the second

line of equation 7.21 and a two-particle interaction part that corresponds to vscr + vrespscr :

vxc([�]; r1) =
�Exc

��(r1)
=

�Txc

��(r1)
+

�Wxc

��(r1)
= txc([�]; r1) + wxc([�]; r1) (7.24)

txc([�]; r1) = vkin([�]; r1)� vs;kin([�]; r1) +

Z
dr2�(r2)(

�vkin([�]; r2)

��(r1)
�
�vs;kin([�]; r2)

��(r1)
)

= vkin([�]; r1)� vs;kin([�]; r1) + v
resp
kin ([�]; r1)� v

resp
s;kin([�]; r1) (7.25)

wxc([�]; r1) =

Z
dr2

�(r2)(g([�]; r1; r2)� 1)

jr1 � r2j
+

1

2

Z
dr2dr3

�(r2)�(r3)

jr2 � r3j
�g([�]; r2; r3)

��(r1)
(7.26)

= vscr([�]; r1) + vrespscr ([�]; r1) (7.27)

If the Kohn-Sham wavefunction  s is regarded as a good approximation to the exact ground state

wavefunction  � then it follows from the above formula that txc is very small and the major part

of the exchange-correlation potential then originates from the second term wxc. In systems with

strong near-degeneracy correlation, however, such as dissociating molecules, a one-determinantal

wavefunction cannot be close to the exact wavefunction and in fact there are then regions (such as

the bond-midpoint region [86]) where vkin deviates strongly from vs;kin.
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Figure 7.1: Radial density p(r) = 4�r2�(r) for Kr and Cd.

7.3 Structure of local potentials

We now proceed to investigate the relation between certain characteristics of the various local

potentials de�ned above, and therefore of vs and veff , and the atomic shell structure. The latter

is described in a compact form with the radial Euler-Lagrange equation

(�
1

2

d2

dr2
+ veff (r))

q
p(r) = �

q
p(r) (7.28)

where p(r) = 4�r2�(r) is the radial density. Owing to (7.28), the atomic problem is e�ectively

reduced to the one-dimensional problem of a single particle in the state p
1
2 (r) bound to the potential

veff (r) with the energy �. veff � vext represents the repulsive barrier of the electron potential,

which prevents localization of the electron density in the inner region and produces the true atomic

density distribution p(r). Figure 1 displays the functions p(r) for Kr and Cd with the characteristic

peaks in the shell regions.

In Figures 2,3 the components of our partitioning of the potentials veff and vs are presented for

Kr and Cd. All local potentials are extracted from the optimized potential model (OPM) [33, 91].

The solution of the OPM is equivalent to that obtained by the minimization of (7.3) with respect

to � with the restriction on the functions  to be Slater determinants. As a result, veff in the

Euler-Lagrange equation for p
1
2 is approximated as

veff (r) � vext(r) + vOPM;cond(r) + vOPM;kin(r) + v
resp
OPM;kin(r) + v

resp
OPM;scr(r) ; (7.29)

where all local potentials are constructed as de�ned above with  OPM being the optimal wavefunc-

tion of the OPM. The one-determinantal approach is well justi�ed for atoms, so that in this case
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Figure 7.2: veff � vext and its components vcond, vkin and v
resp
kin . All potentials are derived from

the optimized potential model, OPM [33]. a) Kr and b) Cd and c) Be
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Figure 7.3: Demonstration of the step character of the screening-response potential vrespscr . a) Kr

and b) Cd

(7.29) should be close to the exact expression (7.10). One can see from the Figures that partitioning

(7.29) represents veff � vext as a sum of the monotonous potential of Coulomb repulsion vOPM;cond

and three additional potentials. It is remarkable, and also pleasing in view of the desirability of

accurate modelling, that the potential vcond is so smooth. The other potentials have distinct shell

structure and have a very similar form for both represented atoms. Speci�cally, vOPM;kin has the

peaks in the intershell regions that we anticipated, while v
resp
OPM;kin is a step function, with the steps

representing the energetical characteristics of the individual shells (see below). It is a quite intrigu-

ing observation that the potential v
resp
OPM;scr, which is particularly important for vs, also exhibits

very clear step function behaviour (see �g. 3).

The shell structure of the potentials �nds its interpretation in the formulas for the local potentials

presented in this paper. Considering �rst vOPM;kin, it follows from eq. (7.15) that this potential is

a measure of the change of the conditional probability amplitude as a function of position of the

reference electron. The structure of the kinetic potential can readily be determined from physical

considerations using the interpretation of the conditional probability amplitude. If the reference

electron at r is positioned well within one atomic shell then as a consequence of the Pauli principle

the probability will be large that the other electrons will have positions within the other atomic

shells. If the position of the reference electron crosses an atomic shell boundary and moves into

another atomic shell then the electrons in this new shell have to switch to another shell and the

conditional probability amplitude will have to describe a large probability for a di�erent distribu-

tion of the electrons over the atomic shells. So the changes in �s as a function of the position r

of the reference electron will be the largest at the atomic shell boundaries and we therefore expect

vs;kin to have local maxima at the atomic shell boundaries which is indeed what we �nd. This

explanation �ts in with what is known about the behaviour of the exchange hole [87, 118, 119].

The exchange hole can be described by the Fermi amplitude or orbital, the square of which gives
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Figure 7.4: The local exchange potential of the OPM as the sum of the screening or Slater (Fermi

hole) potential vscr and its response vrespscr . a) Kr and b) Cd
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in a closed shell system the hole density [87]:

f(r1; r2) =
NX
i=1

�i(r1)

�
1
2 (r1)

�i(r2) gs([�]; r1; r2) = 1�
1

2

jf(r1; r2)j2

�(r2)
(7.30)

vs;kin([�]; r1) =
1

2

Z
jr1�s(s1; ~x2; :::; ~xN jr1)j2ds1d~x2:::d~xN =

1

2

Z
jr1f(r1; r2)j2dr2 (7.31)

As was described in [87], for various positions r within an atomic shell, or generally within a

localized orbital, f(r1; r2), as a function of r2, is localized within the shell (localized orbital) region

and insensitive to the reference electron position r1, but changing the reference position r1 through

the small intershell interval produces a sharp change of f(r1; r2), its "jump" from one localization

region to another. This may already be seen from the fact that orbitals �i(r2) will get a large

weight in the expansion of f(r1; r2), when the reference position r1 is such that the coe�cients

j�i(r1)j=
p
�(r1) are large, i.e. when r1 is in the region where �i has a large amplitude (see [119]).

Since the form of vOPM;kin is determined by the rate r1f(r1; r2) of the change of the Fermi orbital

f(r1; r2) with changing r1, the characteristic peaks of vOPM;kin in the intershell regions (See Figure

2) re
ect the maximal mobility of f(r1; r2) in these regions [86].

We now turn to the behaviour of vs;kin near the atomic nucleus. Some properties in this region can

be deduced from equation 7.15. The electron density has the following behaviour near the atomic

nucleus [120]:

�(r) = �(~0)(1� 2Zr +O(r2)) (r # 0) (7.32)

where Z is the nuclear charge. The behaviour of the Kohn-Sham orbitals in the nuclear region can

be deduced from the fact that close to the nucleus the only important potentials in the radial Kohn-

Sham equations are the nuclear potential �Z=r and the centrifugal potential l(l + 1)=2r2 where l

is the orbital angular momentum quantum number of the orbital. Inserting a series expansion of

the orbitals �i in the Kohn-Sham equation then yields:

�i(r) = clr
l +O(rl+1) (r # 0) (7.33)

and in particlar for s-orbitals:

�i(r) = �i(~0)(1� Zr +O(r2)) (r # 0) (7.34)

By inserting the above expansions for the density of equation 7.32 and for the orbitals of equa-

tions 7.33 and 7.34 into equation 7.15 for vs;kin it follows that the only terms which give a �nite

contribution to vs;kin(~0) are the terms containing orbitals with angular momentum quantum num-

ber l = 1,i.e. terms containing p-orbitals. So we can conclude that vs;kin is in general not zero at the

atomic nucleus except for the case that no p-orbitals are occupied in the Kohn-Sham wavefunction

in which case vs;kin(~0) = 0. This has been illustrated in �gure 2 where we �nd that vs;kin(0) is

zero for the case of the beryllium atom (no p-orbitals occupied) whereas it is nonzero for the case

of cadmium and krypton. For comparison we have drawn the plot for the beryllium atom on the

same scale as the one given in reference [107].

We further note that the proof given in reference [86] that the kinetic potential vkin of the exact

ground state wave function is zero at the atomic nucleus is incorrect. The error is in the step from

equation (A1) to (A2) in ref.[86]. The correct treatment of this step is given by Bingel [120].

For atoms vOPM;kin (cf. eq. 7.15) represents the dominant part of vkin, so that going beyond the

OPM, one can expect analogous intershell peaks of vkin due to the specially large mobility of the
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conditional amplitude � in these regions. It should however be remembered that in systems with

strong nondynamical correlation, such as dissociating molecules, vkin will show additional struc-

ture, not present in vs;kin, notably in the bond region [86].

Turning now to the kinetic response potential v
resp
OPM;kin (See Figure 2), we note that its stepped

form follows from its expression (7.16). Writing this in the form

v
resp
OPM;kin(r) =

NX
i=1

(�� �i)
j�i(r)j2

�(r)
(7.35)

it is clear that for r within shell i, j�i(r)j2 (or the sum over j�i(r)j2 with the same �i) dominates

over all other contributions, i.e. is approximately equal to �(r), so eq.(7.35) is expected to describe

a step function with step height in shell i equal to �� �i, which is the energy needed to excite an

electron to the "Fermi" level �.

The sum vOPM;kin + v
resp
OPM;kin, the Pauli potential vP , may be interpreted as a contribution to

the barrier veff due to the e�ect of the Fermi-Dirac statistics on the kinetic functional and its

functional derivative [106]. vrespscr also brings a repulsive contribution to the barrier veff , but being

of the order of a few a.u. for r < 1, this contribution is small as compared to those from v
resp
kin ,

vkin, though not negligible. There is a clear correlation between the maxima in veff due to the

peaks and steps of vkin and v
resp
kin and the minima in the radial density, cf. [117]. As is immediately

evident from equations (7.15) and (7.16), for all distances vP is a non-negative function [115]. One

can see from Figure 2 that vcond is long-ranged (vcond has an asymptotic (N � 1)=r behaviour),

whereas both the kinetic potential and the kinetic response potential are short-ranged. At short

radial distances vP (r) brings the dominant contribution to veff .

We now focus on the Kohn-Sham potential and its constituents (�gures 3 and 4). In the OPM we

are dealing with the situation that the Kohn-Sham potential does not have a kinetic contribution

(cf. discussion following eq.(7.21)). If we subtract out from vOPM the Hartree potential, the

exchange potential of the OPM is obtained

vOPM;x = vOPM � vext � vOPM;H = vOPM;scr + v
resp
OPM;scr (7.36)

The two contributions are displayed in �gure 4. It is interesting to observe that the screening

potential is quite smooth. In this case vscr is purely due to the Fermi hole, there is of course no

Coulomb hole in  OPM . vscr is then equal to the Slater potential [101], the average Hartree-Fock

exchange potential (using the OPM orbitals). The small intershell peaks [33] that are present in

vx are evidently built in by the superposition of the stepped form of vrespscr on the smooth vscr. This

observation may be expected to considerably facilitate accurate modelling of vx. The stepped form

of vrespscr (�gure 3) does not follow immediately from the expressions given in this paper. A detailed

analysis of the response of the screening factor, �gs(r1; r2)=��(r3), is called for but will clearly be

more involved than the treatment of the other potentials and is outside the scope of the present

paper.

Since we have restricted ourselves sofar to the OPM one-determinantal wavefunction, no informa-

tion has been obtained on the e�ect of dynamical (Coulomb) correlation. For some light atoms such

as Be and Ne extensive con�guration interaction calculations [82, 83] have yielded highly accurate

electron densities, from which corresponding Kohn-Sham potentials have been generated [79, 80, 32].

The di�erence vs � vext � vH is the exchange-correlation potential vxc = �Exc=��. The exchange
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Figure 7.5: The correlation potential as the di�erence between the exchange-correlation potential

and the local exchange potential of the OPM. (a) Be and (b) Ne
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part may be de�ned as vOPM;x, but an alternative and perhaps more consistent de�nition of the

exchange part of vs would be in terms of the exchange hole of the Kohn-Sham determinant  s,

vx([�]; r) =
�Es;x

��(r)
= vs;scr([�]; r) + vresps;scr([�]; r) (7.37)

so that the correlation part of vs would be

vcorr([�]; r) = vs([�]; r) � vext(r)� vH([�]; r) � vx([�]; r)

= vscr([�]; r) + vrespscr ([�]; r) + vkin([�]; r) + v
resp
kin ([�]; r)

� (vs;scr([�]; r) + vresps;scr([�]; r) + vs;kin([�]; r) + v
resp
s;kin([�]; r)) (7.38)

This may also be written as a sum of the kinetic part of vxc plus the correlation part wc, de�ned

as:

wc([�]; r) = wxc([�]; r) � vx([�]; r) (7.39)

Thus we have:

vcorr([�]; r) = wc([�]; r) + txc([�]; r) (7.40)

Probably vx is very close to vOPM;x. Figure 5 shows the correlation part of vs as vs � vext � vH �
vOPM;x for Be and Ne. Although we used a slightly di�erent de�nition of the correlation part of

vs than Aryasetiawan and Stott [79], who took vx([�HF ]; r) = vs([�
HF ]; r) � vext(r)� vH([�HF ]; r)

where �HF is the Hartree-Fock density, for the exchange part of vxc rather than vOPM;x, our curves

of vcorr are very similar to those of ref. [79]. It is notable that vcorr is quite small relative to

vx. This may be due to a cancellation of the contributions from di�erent terms in vcorr (7.38).

For instance, to the extent that the OPM determinantal wavefunction may be identi�ed with the

Hartree-Fock determinantal wavefunction, the correlation contribution to the kinetic energy will

be
R
�(vkin � vOPM;kin)d~r. This is known to be positive and equal to the absolute value of the

total correlation energy on account of the virial theorem, so the di�erence vkin� vOPM;kin must be

predominantly positive. On the other hand, (1=2)
R
�(vscr � vOPM;scr)d~r is the contribution to the

correlation energy due to the electron-electron interaction. For a system like Ne this is negative and

close to twice the (negative) correlation energy [119], so vscr will be predominantly more negative

than vOPM;scr. This is an expected e�ect of the Coulomb hole that a�ects vscr but not vOPM;scr. At

the border region between the K and L shells, where the exchange hole is not so strongly localized

around the reference position as when the latter is within a shell, the e�ect of the Coulomb hole

is probably particularly noticable. This may explain the negative minimum in vcorr at the K/L

shell boundary. It should be kept in mind that there are several contributions to vcorr, not only

the negative Coulomb hole contribution vscr � vs;scr. Ref. [86] demonstrates that in the outer part

of the (1s)2 shell of He the positive contributions of the response potentials (vN�1) and the kinetic

potential outweigh the negative Coulomb hole contribution vcond� vHF � vscr� vs;scr. Only at the

inner part of the shell the Coulomb hole is so strongly negative that it causes vcorr to turn negative.

This pattern is repeated in the K and L shells of Be and Ne, although in Be the total vcorr never

becomes positive. This may be related to the well-known strong near-degeneracy correlation and

therefore more signi�cant Coulomb hole contribution in Be.

The present paper analyzes the relationship between electron correlation and local one-electron

potentials featuring in DFT, and establishes the connection with the atomic shell structure. The

results of this analysis are also useful for the accurate and e�cient approximation of vs and veff in

DFT [121, 32]. In this respect, the stepped shell structure found for vrespscr is of special interest in
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our opinion. Further elucidation of the origin of this special structure will be undertaken, but it is

clear that, now that it has been recognized, this simple step behaviour considerably facilitates the

accurate modelling of the exchange-correlation Kohn-Sham potential. The corresponding work is

in progress.

Acknowledgements: This investigation was supported in part by the Netherlands Foundation

for Scienti�c Research (NWO).



Chapter 8

Step structure in the atomic

Kohn-Sham potential

In this work we analyze the exchange-correlation potential vxc within the Kohn-Sham approach

to density functional theory for the case of atomic systems. The exchange-correlation potential is

written as the sum of two potentials. One of these potentials vxc;scr is the long-range Coulombic

potential of the coupling constant integrated exchange-correlation hole which represents the screen-

ing of the two-particle interactions due to exchange-correlation e�ects. The other potential vrespxc;scr

contains the functional derivative with respect to the electron density of the coupling constant inte-

grated pair-correlation function representing the sensitivity of this exchange-correlation screening

to density variations. An explicit expression of the exchange-part of this functional derivative is

derived using an approximation for the Greens function of the Kohn-Sham system and is shown to

display a distinct atomic shell structure. The corresponding potential vrespx;scr has a clear step struc-

ture and is constant within the atomic shells and changes rapidly at the atomic shell boundaries.

Numerical examples are presented for the Be and Kr atoms using the Optimized Potential Model

(OPM).

8.1 Introduction

The Kohn-Sham approach to density functional theory (DFT) [5] is an exact scheme to obtain

the ground state properties of electronic many-particle systems by solving the problem of a sys-

tem of noninteracting particles moving in the �eld of an e�ective Kohn-Sham potential vs([�]; r)

which is a functional of the electron density �. An important constituent of this potential is

the exchange-correlation potential vxc([�]; r) which is de�ned as the functional derivative of the

exchange-correlation functional Exc[�]. With the appearance of so-called generalized gradient ap-

proximations (GGA's) [44, 45, 43, 49] increasingly accurate approximations for this exchange-

correlation functional have been applied with considerable succes in the calculations of properties

of electronic systems ranging from atoms and molecules [71, 70, 122] to solids and surfaces [47].

However the corresponding exchange-correlation potential still has some de�ciencies [49, 32].

In this paper we will perform an analysis of the exchange-correlation potential and in particular the

exchange potential of the Kohn-Sham system. These potentials have two important characteristics.

First of all the exchange potential vx and the exchange-correlation potential vxc have an asymptotic

Coulombic �1=r behaviour in �nite systems such as atoms and molecules [31, 49, 32, 35]. Secondly,

they display the atomic shell structure in atoms which is characterized by peaks at the atomic shell

129
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boundaries [49, 35, 32]. In this paper we show that vx and vxc can be written as the sum of two

potentials. One of these potentials is monotonous and has a long range Coulombic behaviour. The

other is short range and displays a clear step structure being constant within atomic shells and

changing rapidly at the atomic shell boundaries [108]. The step structure of the latter potential

can be derived using an approximation of the Greens function of the Kohn-Sham system as we will

demonstrate in the remainder of this paper.

The required features of vxc and vx, i.e. the the Coulombic asymptotics and the atomic shell

structure are not well-presented by most of the approximate exchange and exchange-correlation

potentials. The required asymptotic Coulombic �1=r behaviour in �nite systems such as atoms

and molecules is not reproduced with the current local density (LDA) and generalized gradient

approximations. As a result of this a too low absolute value for the highest occupied Kohn-Sham

orbital, which should be equal to the ionisation energy of the system [31], is obtained. Furthermore

also the required atomic shell structure is not correctly reproduced with the LDA and GGA ap-

proximations [121]. The GGA potentials even have a wrong Coulombic behaviour near the atomic

nucleus [92, 32].

An other approach leading to better exchange-correlation potentials is the so-called weighted den-

sity approximation (WDA) [123, 124, 125] which is based on approximate pair-correlation functions.

In this approach the exchange-correlation potential is split up as the sum of two potentials, one

containing the coupling constant integrated pair-correlation function which we will call the screen-

ing potential vxc;scr and one containing the functional derivative of this function with respect to

the electron density, which we will call the screening response potential vrespxc;scr. The exchange part

of this last potential is the main subject of this paper. Due to the fact that the approximate

pair-correlation function is required to satisfy the sum rule and must integrate to one electron

the corresponding exchange-correlation potential has a Coulombic asymptotic behaviour. However

as all current approximate pair-correlation functions are not symmetric under interchange of the

electron coordinates the Coulombic behaviour is in general not �1=r as required but �c=r with c

some constant.

Most of the approximate exchange and exchange-correlation potentials do not exhibit the atomic

shell structure. Only a few attempts have been made to incorporate atomic shell structure in

a WDA scheme [126, 127] employing the idea that electron interactions within one shell can be

treated within a local density type of approximation but not the interaction between electrons in

di�erent atomic shells. This physical picture is re
ected in the step potential, exchange and corre-

lation e�ects do not change over regions which lie well within an atomic shell but they do change

considerably when we move from one atomic shell to another.

A very good approximation to the exchange part vx of vxc has recently been proposed by Krieger

et al. [35]. This approximation displays the atomic shell structure, has the correct asymptotics

and also satis�es the requirement of integer preference. This approximation was derived using an

approximation for the Green's function of the Kohn-Sham system [34, 35]. In this paper we will use

a similar approximation to derive an explicit expression of the functional derivative with respect to

the electron density pair-correlation function of the Kohn-Sham system. Using this approximation

one can derive an expression for the screening response part vrespx;scr of the exchange potential. This

response part is shown to display a clear atomic step structure, being constant within the atomic

shells and changing rapidly at the atomic shell boundaries.

The paper is divided as follows. In section II we will give a short account of the potentials we

want to analyze. In section III we will derive the expression for the functional derivative of the

Kohn-Sham pair-correlation function using an approximation for the Green's function of the Kohn-

Sham system. In section IV we derive how the step structure in vrespx;scr arises from this functional
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derivative. In section V we will present some numerical results for some atoms and in section VI

we present our conclusions and discuss implications for future approximations.

8.2 The exchange-correlation potential: separation into a long

range and a short range part

Within the constrained search approach to spinpolarized density functional theory the energy func-

tional is de�ned as [5, 128, 67]

Ev[f��g] =

Z
�(r)v(r)dr + FL[f��g] (8.1)

where the total electron density � =
P
� �� is the sum of the spin densities and the universal

functional FL is de�ned as:

FL[f��g] = inf
D̂!f��g

trfD̂(T̂ + Ŵ )g (8.2)

In this functional the in�mum of the expectation value of the kinetic energy operator T̂ and the in-

terparticle interaction operator Ŵ is searched over all N -particle density matrices D̂ which integrate

to the prescribed spin densities f��g. The functional FL is usually split up as:

FL[f��g] = TL[f��g] +
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 +Exc[f��g] (8.3)

where TL is de�ned as:

TL[f��g] = inf
D̂!f��g

trfD̂T̂g (8.4)

As all functionals except the exchange-correlation functional Exc now are de�ned equation 8.3

actually de�nes Exc. Minimalization of the energy functional Ev leads to the well-known Kohn-

Sham equations:

(�
1

2
r2 + vs�([f��g]; r))�i�(r) = �i��i�(r) (8.5)

where the spin density is given by:

��(r) =

N�X
i

fi�j�i�(r)j2 (8.6)

and the Kohn-Sham potential vs� is split up as:

vs�([f��g]; r) = v(r) +

Z
�(r1)

jr� r1j
+ vxc�([f��g]; r) (8.7)

where the exchange-correlation potential vxc� is de�ned as:

vxc�([f��g]; r) =
�Exc[f��g]
���(r)

(8.8)

The exchange-correlation potential can be further analyzed in terms of the coupling constant inte-

grated pair-correlation function �g�1�2 [127, 129] de�ned as:

�g�1�2([f��g]; r1; r2) =

Z 1

0
g��1�2([f��g]; r1; r2)d� (8.9)
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where g��1�2 is de�ned as:

g��1�2([f��g]; r1; r2) =
���1�2([f��g]; r1; r2)
��1(r1)��2(r2)

(8.10)

with:

���1�2([f��g]; r1; r2) =
X

�3;:::;�N

Z
D�
f��g

(r1�1; r2�2; : : : ; rN�N )dr3 : : : drN (8.11)

Here D�
f��g

is the diagonal part of the density matrix which minimizes the functional FL for the

prescribed spin densities f��g and in which the interparticle operator Ŵ is multiplied by the

constant �. The case � = 1 corresponds to the ground state density matrix of the fully interacting

system and the case � = 0 corresponds to the density matrix of the Kohn-Sham system. A useful

relation relating the paircorrelation function at coupling strength � to the pair correlation function

of the fully interacting system is proven by Levy [27]:

g��1�2([f��g]; r1; r2) = g�1�2([f��;1=�g]; �r1; �r2) (8.12)

where:

��;1=�(r) = ��3��(��1r) (8.13)

The exchange-correlation energy in terms of �g is given by:

Exc[f��g] =
1

2

X
�1�2

Z
��1(r1)��2(r2)

jr1 � r2j
(�g�1�2([f��g]; r1; r2)� 1)dr1dr2 (8.14)

By functional di�erentiation it follows that vxc� can be split up into two terms:

vxc�([f��g]; r1) = vxc;scr�([f��g]; r) + vrespxc;scr�([f��g]; r) (8.15)

where the screening potential is de�ned as:

vxc;scr�1([f��g]; r1) =
X
�2

Z
��2(r2)

jr1 � r2j
(�g�1�2([f��g]; r1; r2)� 1)dr2 (8.16)

and the screening response potential as:

vrespxc;scr�1([f��g]; r1) =
1

2

X
�2�3

Z
��2(r2)��3(r3)

jr2 � r3j
��g�2�3([f��g]; r2; r3)

���1(r1)
dr2dr3 (8.17)

The screening potential is equal to the potential of the coupling constant integrated exchange-

correlation hole and represents the screening of the interparticle Coulomb potential between elec-

trons at r1 and r2 with spin �1 and �2 by exchange-correlation e�ects with screening factor equal

to �g�1�2([f��g]; r1; r2). Due to the fact that the exchange-correlation hole integrates to one electron

the screening potential has a long-range Coulombic behaviour:

vxc;scr([f��g]; r) � �
1

r
(r !1) (8.18)

Physically this means that if we move one electron away from a �nite system such as an atom it

just experiences the potential of the ion it leaves behind.
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We will carry out an analysis of the exchange part of vxc;scr and vrespxc;scr�. We split up �g into an

exchange and a correlation part:

�g�1�2([f��g]; r1; r2) = gs�1([f��g]; r1; r2)��1�2 + �gc�1�2([f��g]; r1; r2) (8.19)

where gs� is the pair correlation of the Kohn-Sham system:

gs�([f��g]; r1; r2) = 1�
j
s�(r1; r2)j2

��(r1)��(r2)
(8.20)

where


s�(r1; r2) =

N�X
i

fi��i�(r1)�
�
i�(r2) (8.21)

the one-particle density matrix for the Kohn-Sham system. The pair correlation function gs is

una�ected by the coupling strength integration as it satis�es the following scaling property:

gs�([f��g]; r1; r2) = gs�([f��;1=�g];�r1; �r2) (8.22)

This is also apparent from the fact that the coupling constant integration keeps the density constant

and therefore does not in
uence the Kohn-Sham noninteracting system. The exchange-correlation

potential vxc = vx+vc can now be written as an exchange and a correlation part with corresponding

screening and screening response potentials:

vx�([f��g]; r) = vx;scr�([f��g]; r) + vrespx;scr�([f��g]; r) (8.23)

and

vc�([f��g]; r) = vc;scr�([f��g]; r) + vrespc;scr�([f��g]; r) (8.24)

where the potentials vx;scr and vc;scr and their responses are de�ned as in equations 8.16 and 8.17

with �g replaced by gs and �gc. The potential vx;scr has a Coulombic asymptotic behaviour due to

the fact that the exchange hole integrates to one electron. There is no Coulombic term in vc;scr as

coupling constant integrated Coulomb hole integrates to zero electrons.

In �gure 1 we plot some of the described potentials for the case of the beryllium atom. The

exact exchange-correlation potential vxc is calculated from an accurate CI (Con�guration Interac-

tion) density using the procedure described in reference [32]. The potentials vx,vx;scr and vrespx;scr

are calculated within the optimized potential model (OPM) [33, 35, 36] and are probably very

close to their exact values which can be obtained from the solution for vx of the OPM integral

equation [33, 35, 36] by insertion of the exact Kohn-Sham orbitals instead of the OPM orbitals.

We further plotted vxc� vOPMx;scr which can be regarded as an approximation to vrespxc;scr + vc;scr. Note

the very clear step structure in vresp;OPMx;scr . This potential is almost constant within the 1s-shell

and drops rapidly to zero at the atomic shell boundary between the 1s and the 2s shell at a radial

distance of about 1 bohr. As can be seen from the graph of vxc � vOPMx;scr this step structure is

somewhat smoothed by correlation e�ects but as these e�ects are less important than the exchange

e�ects the step structure is still clearly visible.

The atomic structure of the potential vrespx;scr is the main subject of this paper. This requires an anal-

ysis of the functional derivative �gs�0(r1; r2)=���(r3) of the Kohn-Sham pair-correlation function.

Such an analysis will be carried out in the next section.
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Figure 8.1: The exchange-correlation potential and the OPM exchange potential with corresponding

screening and screening response parts for the beryllium atom

8.3 Functional derivative of the Kohn-Sham pair-correlation func-

tion

In order to understand the structure of the vrespx;scr� potential we must calculate the functional

derivative of the Kohn-Sham pair-correlation function. This function describes the sensitivity of

the exchange screening between two electrons at r1 and r2 to density changes at point r3. One

property of this function is readily derived. As gs�(r1; r1) = 0 for any electron density it immediately

follows that:

�gs�0(r1; r1)

���(r3)
= 0 (8.25)

This puts a constraint on approximate functional derivatives of gs�. In general from the de�nition

of gs� it follows that:

�gs�0(r1; r2)

���(r3)
= �(
�

s�
0 (r1; r2)

�
s�0 (r1; r2)

���(r3)
+ c:c:)

1

��0 (r1)��0(r2)

�(
�(r1 � r3)

��(r1)
+
�(r2 � r3)

��(r2)
)(gs�(r1; r2)� 1)���0 (8.26)

From constraint 8.25 it follows that the functional derivatives of 
s� must contain deltafunctions

in order to cancel the deltafunctions in the second part of the above equation for r1 equal to r2.
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We now must calculate:

�
s�0 (r1; r2)

���(r3)
=

N�0X
i

fi�0(
��i�0 (r1)

���(r3)
��i�0(r2) + �i�0(r1)

���i�0 (r2)

���(r3)
) (8.27)

We therefore have to calculate the functional derivative of the Kohn-Sham orbitals with respect to

the density. This can be done using:

��i�0 (r1)

���(r3)
=
X
�
00

Z
��i�0(r1)

�vs�00 (r4)

�vs�00 (r4)

���(r3)
dr4 (8.28)

where vs� is the Kohn-Sham potential. The derivative of �i� with respect to the Kohn-Sham

potential is known in terms of the Kohn-Sham orbitals and one-electron energies:

��i�0 (r1)

�vs�(r4)
= �Gi�(r1; r4)�i�(r4)���0 (8.29)

where Gi� is the following Greens function:

Gi�(r1; r4) =
X
j 6=i

�j�(r1)�
�
j�(r4)

�j� � �i�
(8.30)

The other functional derivative is equal to the inverse density response function which we only need

to know for equal spins:

�vs�(r4)

���(r3)
= ��1s� (r4; r3) (8.31)

So:

�(r1 � r2) =

Z
�s�(r1; r4)�

�1
s� (r4; r2)dr4 (8.32)

where �s� is the density response function:

�s�(r2; r4) =
���(r2)

�vs�(r4)
= �

N�X
i

fi��
�
i�(r2)Gi�(r2; r4)�i�(r4) + c:c: (8.33)

However as a density variation ���(r) determines the potential variation �vs�(r) only up to constant

the derivative �vs�=��� and hence ��1s� is only de�ned up to constant. This arbitrariness can be lifted

for instance by specifying ��1s� as an integral operator acting in the space of functions orthogonal

to the constant function. The constant function is an eigenfunction of the integral operator �s�
with zero eigenvalue. This follows from the relation:

��s�(r1) =

Z
�s�(r1; r2)�vs�(r2)dr2 (8.34)

and from the fact that a constant potential variation �vs�(r) = C does not produce a density

variation. Thus we have:Z
�s�(r1; r2)dr2 = 0 (8.35)

This also immediately follows from equation 8.33 using the fact that Gi� projects on the space

orthogonal to �i�. From the above relation 8.35 it clearly follows that equation 8.32 has no unique

solution for ��1s� as adding a constant to ��1s� gives another solution for equation 8.32. However
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choosing a speci�c constant (which amounts to choosing a gauge for the potential) cannot in
uence

the calculations. Keeping this in mind, we may write:

��i�0 (r1)

���(r3)
= ����0

Z
Gi�(r1; r4)�i�(r4)�

�1
s� (r4; r3)dr4 (8.36)

and it follows that:

�
s�(r1; r2)

���(r3)
=

N�X
i

�fi���i�(r2)

Z
Gi�(r1; r4)�i�(r4)�

�1
s� (r4; r3)dr4 + (1 $ 2)� (8.37)

As one can readily verify the left hand sides of the above equations indeed do not change when

adding a constant to ��1s� . To �nd an explicit expression for the above functional derivatives we

must �nd an expression for the inverse density response function ��1s� . In order to do this we make

the following approximation to the Greens function (see Sharp and Horton [34], Krieger et al. [35]

):

Gi�(r1; r2) =
1

�~�i�
(�(r1 � r2)� �i�(r1)�

�
i�(r2)) (8.38)

where �~�i� is some mean energy di�erence. Just as the exact Greens function of equation 8.30

the above approximate Greens function projects orbital �i� to zero which garantees condition 8.35.

This approximate Greens function yields the following expression for the density response function

�s�:

�s�(r1; r2) = a�(r1)�(r1 � r2)� b�(r1; r2) (8.39)

where

a�(r1) =

N�X
i

�
2fi�

�~�i�
j�i�(r1)j2 (8.40)

and

b�(r1; r2) =

N�X
i

�
2fi�

�~�i�
j�i�(r1)j2j�i�(r2)j2 (8.41)

The inverse of this function is derived in the appendix using an approximation which �xes the

arbitrary constant (i.e. the gauge of potential vs� ) so that vs� ! 0 in in�nity. It is given by:

��1s� (r2; r3) =
�(r2 � r3)

a�(r2)
+

N��1X
ik

��ik
j�i�(r2)j2j�k�(r3)j2

a�(r2)a�(r3)
(8.42)

where the ��ik are given by:

��ik = �
2fi�

�~�i�
(�I � �N�)�1ik (8.43)

for i; k = 1; : : : ; N� � 1 and matrix �N� is given by:

N�
ik = �

2fk�

�~�k�

Z j�i�(r2)j2j�k�(r2)j2

a�(r2)
dr2 (8.44)
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for i; k = 1; : : : ; N� � 1. With the above equation for the inverse density response function and the

approximate equation for the Greens function we �nd using equation 8.36 that:

��i�0 (r1)

���(r3)
= �

���0

�~�i�

Z
(�(r1 � r4)� �i�(r1)�

�
i�(r4))�i�(r4)�

�1
s� (r4; r3)dr4

= �
���0

�~�i�
�i�(r1)

�
��1s� (r1; r3)�

Z
j�i�(r4)j2��1s� (r4; r3)dr4

�
(8.45)

The last integral can be worked out as:

Z
j�i�(r4)j2��1s� (r4; r3)dr4 =

j�i�(r3)j2

a�(r3)
+

N��1X
jk

��jk

Z j�i�(r4)j2j�j�(r4)j2

a�(r4)
dr4

j�k(r3)j2

a�(r3)

=

N��1X
k

��ik
j�k�(r3)j2

a�(r3)
(8.46)

where

��ik = (�I � �N�)�1ik (8.47)

We now de�ne:

Ki�(r1; r3) = �
1

�~�i�
(
�(r1 � r3)

a�(r3)
�

N�X
k

��ik
j�k�(r3)j2

a�(r3)
+

N�X
jk

��jk
j�j�(r1)j2j�k�(r3)j2

a�(r1)a�(r3)
) (8.48)

where we for notational convenience de�ne ��ik and ��ik to be zero for i or k equal to N�. This is a

real function ( K�
i� = Ki� ). We then have:

��i�0 (r1)

���(r3)
= �i�(r1)Ki�(r1; r3)���0 (8.49)

and similarly:

���i�0 (r1)

���(r3)
= ��i�(r1)Ki�(r1; r3)���0 (8.50)

This formula can be used to calculate the functional derivative of all explicitly orbital dependent

functionals. Using the above expressions we �nd:

�
s�0(r1; r2)

���(r3)
= ���0

N�X
i

fi��i�(r1)(Ki�(r1; r3) +Ki�(r2; r3))�
�
i�(r2) (8.51)

We thus have:

�j
s�0(r1; r2)j2

���(r3)
= 2���0

N�X
ij

fi�fj��
�
j�(r1)�i�(r1)(Ki�(r1; r3) +Ki�(r2; r3))�

�
i�(r2)�j�(r2)(8.52)

Due to the ���0 term we have:

�gs�0(r1; r2)

���(r3)
=
�gs�(r1; r2)

���(r3)
���0 (8.53)
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where

�gs�(r1; r2)

���(r3)
= �2

N�X
ij

fi�fj�
�j�(r1)�

�
i�(r1)(Ki�(r1; r3) +Ki�(r2; r3))�i�(r2)�

�
j�(r2)

��(r1)��(r2)

�(
�(r1 � r3)

��(r1)
+
�(r2 � r3)

��(r2)
)(gs�(r1; r2)� 1) (8.54)

If we insert the expression 8.48 for the function Ki� in the above equations we obtain:

�gs�(r1; r2)

���(r3)
= S�(r1; r2; r3) +D�(r1; r2; r3) (8.55)

where S� is a part we will call, for reasons to be explained in the next section, the steplike part

and D� the deltafunction part given by:

S�(r1; r2; r3) =

N�X
ij

�fi�fj�
2

�~�i�

�j�(r1)�
�
i�(r1)

��(r1)

�i�(r2)�
�
j�(r2)

��(r2)

N�X
k

2��ik
j�k�(r3)j2

a�(r3)

+

N�X
ij

fi�fj�
2

�~�i�

�j�(r1)�
�
i�(r1)

��(r1)

�i�(r2)�
�
j�(r2)

��(r2)

N�X
kl

��kl

"
j�k�(r1)j2

a�(r1)
+
j�k�(r2)j2

a�(r2)

#
j�l�(r3)j2

a�(r3)
(8.56)

and:

D�(r1; r2; r3) = �(r1�r3)
�
h�(r1; r3)�

gs�(r1; r2)� 1

��(r1)

�
+�(r2�r3)

�
h�(r2; r3)�

gs�(r1; r2)� 1

��(r2)

�
(8.57)

where h� is de�ned as:

h�(r1; r2) =
2

a�(r1)

N�X
ij

fi�fj�

�~�i�

�j�(r1)�
�
i�(r1)

��(r1)

�i�(r2)�
�
j�(r2)

��(r2)
(8.58)

As we made an approximation for the Greens function in the derivation of �gs�0(r1; r2)=���(r3) one

might ask whether this function satis�es constraint 8.25. One can easily verify that S�(r1; r1; r3) is

not equal to zero unless one uses the additional approximation of Krieger et al. [35] that �~�i� = �~��
independent of i. In this approximation the expressions for the functions h� and S� simplify to:

h�(r1; r2) = �
1

��(r1)

j
s�(r1; r2)j2

��(r1)��(r2)
=
gs�(r1; r2)� 1

��(r1)
(8.59)

and

S�(r1; r2; r3) =

s�(r1; r2)

��(r1)��(r2)

N�X
i

��i�(r1)�i�(r2)

N�X
k

2��ik
j�k�(r3)j2

��(r3)

�
j
s�(r1; r2)j2

��(r1)��(r2)

N�X
kl

��kl

"
j�k�(r1)j2

��(r1)
+
j�k�(r2)j2

��(r2)

#
j�l�(r3)j2

��(r3)
(8.60)

where:

��ik = (�I � �M�)�1 (8.61)
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for i; k = 1; : : : ; N� � 1 and zero otherwise. Matrix �M� is de�ned as:

M�
ik = fk�

Z j�i�(r)j2j�k�(r)j2

��(r)
dr (8.62)

for i; k = 1; : : : ; N��1. The deltafunction part in this approximation D� unlike S� does not satisfy

D�(r1; r1; r3) = 0, however it satis�es this constraint in an integral sense:Z
D�(r1; r1; r3)dr1 = 0 (8.63)

Some properties of the function S� are readily derived from equation 8.60. Suppose that electrons

at r1 and r2 are well-separated in di�erent atomic shells with small overlap. In that case the

one-particle density matrix 
s�(r1; r2) will be small and consequently the function S� will also be

small. If on the other hand the two electrons are close together within the same atomic shell then,

because S� is exactly zero for r1 = r2, the function S� will also be very small. We can therefore

expect that the largest contribution to S�(r1; r2; r3) for a �xed position r3 is obtained if one of the

electrons is well within one atomic shell and the other electron is at an atomic shell boundary. The

behaviour of S� as a function of r3 is determined by factors of the form j�k�(r3)j2=��(r3) which is

approximately constant if r3 is within atomic shell k. The contribution of this factor to the total

function S� is determined by the constants ��ik describing the coupling of the density perturbation

in shell k with an electron in shell i. These constants are the largest if i = k. Plots of the function

S� will be presented in section V for the case of the beryllium atom.

8.4 The step structure in the exchange potential

We now will derive an expression for the potential vrespx;scr� using the expression for the functional

dervative of gs derived in the previous section. We will for generality not yet make the additional

approximation �~�i� = �~��. We have:

vrespx;scr�(r3) =
1

2

Z
��(r1)��(r2)

jr1 � r2j
�gs�(r1; r2)

���(r3)
dr1dr2 (8.64)

Inserting the expression for the functional derivative of gs we �nd:

vrespx;scr�(r3) =
1

2

Z
��(r1)��(r2)

jr1 � r2j
S�(r1; r2; r3)dr1dr2+

1

2

Z
��(r1)��(r2)

jr1 � r2j
D�(r1; r2; r3)dr1dr2(8.65)

The part containing S� yields:

1

2

Z
��(r1)��(r2)

jr1 � r2j
S�(r1; r2; r3)dr1dr2 =

N�X
l

wl�j�l�(r3)j2

a�(r3)
(8.66)

where

wl� =

N�X
ij

Z
fi�fj�

�~�i�

�j�(r1)�
�
i�(r1)�i�(r2)�

�
j�(r2)

jr1 � r2j

"
�2��il +

N�X
k

��kl

 
j�k�(r1)j2

a�(r1)
+
j�k�(r2)j2

a�(r2)

!#
dr1dr2(8.67)

So the S� term leads to a steplike function given by equation 8.66. Within shell l this function is

almost constant and equal to the value wl given by equation 8.67. If we now denote:

vi�(r1) =
1

fi��
�
i�(r1)

�Ex

��i�(r1)
= �

1

��i�(r1)

N�X
k

Z
fk�

��i�(r2)�k�(r2)

jr1 � r2j
dr2�

�
k�(r1) (8.68)



140 STEP STRUCTURE IN THE ATOMIC KOHN-SHAM POTENTIAL

which is equal to the orbital dependent potential within the Hartree-Fock approximation (except

for the fact that we do not use Hartree-Fock orbitals) and further de�ne

W�(r1) =

N�X
i

�
2fi�

�~�i�

vi�(r1)j�i�(r1)j2

a�(r1)
=

PN�
i

1
�~�i�

vi�(r1)�i�(r1)PN�
i

1
�~�i�

�i�(r1)
(8.69)

which is similar to the Slater potential [101] except for the energies �~�i� and where

�i�(r1) = fi�j�i(r1)j2 (8.70)

then we can write:

wl� =

N�X
i

2fi�

�~�i�
��il�vi� +

N�X
i

��il
�Wi� =

N��1X
i

�
2fi�

�~�i�
(�I � �N�)�1il ( �Wi� � �vi�) (8.71)

where

�vi� =

Z
vi�(r1)j�i�(r1)j2dr1 (8.72)

and

�Wi� =

Z
W�(r1)j�i�(r1)j2dr1 (8.73)

Now the deltafunction part of vrespx;scr� gives:

1

2

Z
��(r1)��(r2)

jr1 � r2j
D�(r1; r2; r3)dr1dr2 = W�(r3)� vx;scr�(r3) (8.74)

This is the di�erence of two long range potentials both having a Coulombic �1=r behaviour and it

therefore decays faster than Coulombic. In the approximation �~�i� = �~�� this di�erence is exactly

zero. So we �nd:

vrespx;scr�(r1) =

N��1X
i

wi�j�i�(r1)j2

a�(r1)
+W�(r1)� vx;scr�(r1) (8.75)

This gives for the exchange potential:

vx�(r1) = vx;scr(r1) + vrespx;scr�(r1) = W�(r1) +

N��1X
i

wi�j�i�(r1)j2

a�(r1)
(8.76)

So we �nd from this equation:

�vx�i � �Wi� =

N��1X
l

wl�

Z j�i�(r1)j2j�l�(r1)j2

a�(r1)
dr1 = �

1

2

�~�i�

fi�

N�X
l

wl�N
�
li (8.77)

On the other hand it follows from equation 8.71 that

N��1X
l

N�
lkwl� =

2fk�

�~�k�
( �Wk� � �vk�) + wk� (8.78)

So we obtain:

�vx�i � �Wi� = �( �Wi� � �vi�)�
1

2

�~�i�

fi�
wi� (8.79)
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and we have:

wi� = �
2fi�

�~�i�
(�vx�i � �vi�) (8.80)

So our �nal exchange potential is:

vx�(r1) = W�(r1) +

PN��1
i

1
�~�i�

(�vx�i � �vi�)�i�(r1)PN�
i

1
�~�i�

�i�(r1)
(8.81)

The �rst term in this equation is the term derived by Sharp and Horton [34]. The second term

was derived by Krieger et al. [35] in the additional approximation �~�i� = �~��. This additional

approximation then leads to the exchange potential of Krieger, Li and Iafrate [35]:

vKLIx� (r1) =

N�X
i

vi�(r1)�i�(r1)

��(r1)
+

N��1X
i

(�vx�i � �vi�)�i�(r1)

��(r1)
(8.82)

If we multiply equation 8.81 by
PN�
i (�~�i�)�1�i�(r1) and integrate over r1 one can easily show that

our approximate vx� satis�es:

�vx�m = �vm� (8.83)

where m = N� corresponds to the highest occupied Kohn-Sham orbital �m�. This equation is

exactly valid within the so-called optimized potential model (OPM) [33, 36] exchange potential and

also for the approximate exchange potential vKLIx� [35] which follows directly from our derivation

by putting �~�i� = �~��.

8.5 Results

In this section we present some numerical results obtained from the optimized potential model

(OPM) [33, 35, 36]. The OPM-orbitals and exchange potential vOPMx� ([f��g]; r) = vx�([f�OPM� g]; r)
are obtained by putting the correlation functional equal to zero and minimizing the exchange-only

Kohn-Sham energy functional. This leads to an integral equation for the exchange potential which

is equal to the functional derivative of the exact exchange functional evaluated at the OPM electron

density �OPM� .

In �gure 2 we plot the function gOPMs� (r1; r2) � 1 for the case of the beryllium atom. As in the

Be atom only s-shells are occupied this function only depends on the radial distance r1 = jr1j and

r2 = jr2j of electrons 1 and 2 from the atomic nucleus and not on the angle between vectors r1 and

r2. This is a convenient feature for analysis. As Be is a closed shell atom gs� is equal for up and

down spin gs" = gs#. From �gure 2 we can see that gs�(r1; r2)� 1 is close to �1 if r1 are r2 within

the same atomic shell. This is an e�ect of the Pauli-principle, the probability that two electrons

of the same spin are close together is small. If the two electrons are in di�erent atomic shells (

the boundary between the 1s-shell and 2s-shell is at a radial distance of about one bohr ) then

gs�(r1; r2)� 1 is close to zero.

In �gure 3 we plot the S� part of equation 8.60 of the functional derivative �gs�(r1; r2)=���(r3)

as a function of r2 and r3 = jr3j for the Be atom where r1 = 0:1 bohr which is well within the

1s-shell. As we can see from this �gure S� is small when the other electron at radial distance r2 is

either situated in the 1s-shell or in the 2s-shell. This function only becomes large when electron 2

crosses the boundary between the 1s- and the 2s-shell at a radial distance from the atomic nucleus

of about 1 bohr. However this function is then only large when r3 is also located within the 1s-shell
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Figure 8.2: The screening factor gs�(r1; r2)� 1 as a function of the radial distance r1 and r2 to the

atomic nucleus of electron 1 and 2 for the beryllium atom

Figure 8.3: The functional derivative �gs�(r1; r2)=���(r3) as a function of the radial distance r2
and r3 to the atomic nucleus. Electron 1 is located at a distance r1 = 0:1 bohr from the atomic

nucleus
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Figure 8.4: The exchange potential with corresponding screening and screening response parts as

calculated within the optimized potential model (OPM) and within the Krieger-Li-Iafrate (KLI)

approximation for the beryllium atom

Figure 8.5: The exchange potential with corresponding screening and screening response parts as

calculated within the optimized potential model (OPM) and within the Krieger-Li-Iafrate (KLI)

approximation for the krypton atom
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and within this shell S� is almost constant as a function of r3 clearly displaying the step structure.

We now turn to the exchange potential. In �gure 4 we plot vOPMx;scr� and vresp;OPMx;scr� and their

sum and the corresponding ones vKLIx;scr� and vresp;KLIx;scr� from selfconsistent solution of equation 8.82

for the beryllium atom. The terms vKLIx;scr� and vresp;KLIx;scr� are de�ned as the �rst and the second

term of equation 8.82. In �gure 5 we present the same quantities for the krypton atom. As we

can see from these �gures the vOPMx;scr� and vKLIx;scr� are so close that they can not be distinguised on

the scale presented. Also the step potentials vresp;OPMx;scr� and vresp;KLIx;scr� are very close, the largest

di�erence being constant within the 1s-shell. The most striking di�erence between the OPM and

KLI exchange potential is the smoothing of the intershell peak at the atomic shell boundaries in the

KLI exchange potential. This di�erence is not the most important di�erence from an energetical

point of view, as for the energy the atomic core region is the most important. This is most easily

seen from the Levy-Perdew relation [22]:

Ex[f��g] =
X
�

Z
vx�(r)(3��(r) + r � r��(r))dr (8.84)

which relates the exchange potential to the exchange energy. This relation is not exactly satis�ed

by the KLI exchange potential as an approximation is made to the functional derivative of Ex but

the error is within 1% [35]. For approximate exchange potentials based on separate approximations

for the vx;scr� and the vrespx;scr� part it is therefore important to obtain accurate values for the steps

in vrespx;scr� in the atomic core region.

8.6 Conclusions

In this paper we analyzed the structure of the atomic Kohn-Sham potential. The exchange-

correlation potential was written as the sum of two terms, one term containing the coupling con-

stant integrated pair-correlation function which represents the long-range potential of the exchange-

correlation hole, and one term, containing the functional derivative of the coupling constant inte-

grated pair-correlation function, which is short ranged and displays a distinct atomic shell structure.

An explicit expression for the exchange part of this functional derivative was derived using an ap-

proximation for the Greens function of the Kohn-Sham system. Properties of this function are

analyzed and plots are presented for some atomic systems. It is shown that �gs�(r1; r2)=���(r3) is

small when electrons at r1 and r2 are close together or when they are in the middle of the same

or di�erent atomic shells. This function is the largest when one of the electrons at r1 or r2 crosses

an atomic shell boundary and as a function of r3 it is proportional to �i�(r3)=��(r3) which is the

electron density of atomic shell i in which point r3 is located divided by the total electron density.

As a function of r3 we therefore see a steplike behaviour, �gs�=���(r3) is constant within the atomic

shells and changes rapidly at the shell boundaries. This behaviour is induced in the short range

part of the exchange potential. The other part of the exchange potential is monotonous, has a

Coulombic long range behaviour and does not show any distinct atomic shell structure [108]. The

natural splitting of the exchange and exchange-correlation potential in these two parts has impor-

tant implications for obtaining accurate approximations for the Kohn-Sham potential. Di�erent

strategies can be developed to approximate the long and the short range part separately. This

can improve one-electron energies, the ionisation energy and density dependent quantities such as

dipole moments. A full discussion of the this is deferred to a subsequent paper [130].
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8.7 Appendix:The inverse density response function

We will derive the expression for the inverse density response function ��1s� . We �rst split up ��1s�
as:

��1s� (r2; r3) =
�(r2 � r3)

a�(r2)
+ c�(r2; r3) (8.85)

where c� is a function to be determined. For this function we �nd using equation 8.39 the following

equation:

�(r1 � r3) =

Z
�s�(r1; r2)�

�1
s� (r2; r3)dr2 =

�(r1 � r3)�
b�(r1; r3)

a�(r3)
+ a�(r1)c�(r1; r3)�

Z
b�(r1; r2)c�(r2; r3)dr2 (8.86)

So we �nd:

c�(r1; r3) =
b�(r1; r3)

a�(r1)a�(r3)
+

1

a�(r1)

Z
b�(r1; r2)c�(r2; r3)dr2 (8.87)

If we further de�ne:

d�(r1; r3) = a�(r1)a�(r3)c�(r1; r3) (8.88)

we have

d�(r1; r3) = b�(r1; r3) +

Z
b�(r1; r2)d�(r2; r3)

a�(r2)
dr2 (8.89)

If we insert the expression 8.41 for b� we �nd:

d�(r1; r3) =

N�X
i

�
2fi�

�~�i�
j�i�(r1)j2j�i�(r3)j2 +

N�X
i

�
2fi�

�~�i�
j�i�(r1)j2�i�(r3) (8.90)

where

�i�(r3) =

Z j�i�(r2)j2d�(r2; r3)

a�(r2)
dr2 (8.91)

If we insert into the above formula the expression 8.90 for the function d� we obtain a system of

N� equations for the functions �i�:

�i�(r3) =

N�X
k

N�
ik(j�k�(r3)j2 + �k�(r3)) (8.92)

where

N�
ik = �

2fk�

�~�k�

Z j�i�(r2)j2j�k�(r2)j2

a�(r2)
dr2 (8.93)

A general solution to the equations 8.92 can now be found. As the functions j�i� j2 are only �nite

in number the most general expression for the �i� is a linear combination of N� of these functions:

�i�(r3) =

N�X
k

��ikj�k�(r3)j2 (8.94)



146 STEP STRUCTURE IN THE ATOMIC KOHN-SHAM POTENTIAL

This immediately gives an equation for the matrix ��ik:

��ik = N�
ik +

N�X
l

N�
il�

�
lk (8.95)

or if we denote the matrices by ��� and �N� :

��� = �N�(�I � �N�)�1 = (�I � �N�)�1 �N� = (�I � �N�)�1 � �I (8.96)

The above equations assume that the inverse of �I � �N� exists. This is necessary to �nd a unique

solution for the coe�cients ��ik. However as discussed the inverse ��1s� is only de�ned up to a

constant and, as discussed below (�I � �N�)�1 does not exist, we cannot specify ��1s� uniquely unless

we make a special choice for this arbitrary constant. We return to this point after we have obtained

our �nal expression for ��1s� . So we �nd:

d�(r1; r3) =

N�X
ik

��ikj�i�(r1)j2j�k�(r3)j2 (8.97)

where the ��ik are given by:

��ik = �
2fi�

�~�i�
(�ik + ��ik) (8.98)

where ��ik is one of the solutions of equation 8.95. We then have our �nal expression for the inverse

density response function which is however still not unique:

��1s� (r2; r3) =
�(r2 � r3)

a�(r2)
+

N�X
ik

��ik
j�i�(r2)j2j�k�(r3)j2

a�(r2)a�(r3)
(8.99)

Now we adress the question of the invertability of �I � �N�. From equation 8.93 it follows that:

N�X
k

N�
ik = 1 (8.100)

so:

N�X
k

(�I � �N�)ik = 0 (8.101)

From this equation it follows that the columns of matrix �I � �N� are linearly dependent and so

this matrix has no inverse. Consequently the approximate density response function �s� has no

unique inverse. As discussed this is due to the fact that inverse is only determined up to an

arbitrary constant. From the equation of the inverse density response function 8.99 one can see

that ��1s� (r1; r2) goes to a constant if r1 or r2 goes to in�nity. This constant is determined by the

orbital density of the highest occupied Kohn-Sham orbital j�N� j2 as it has the slowest exponential

decay of all orbital densities. We can therefore �x this constant by requiring that:

lim
jr1j!1

��1s� (r1; r2) = 0 (8.102)

This property can be satis�ed by restricting the sum over the orbital densities in the equation 8.41

for the function b� to the �rst N� � 1 orbitals. In this approximation �s� has an inverse and the
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derivation of this appendix can be carried out in a similar way. One �nds for ��1s� expression 8.99

in which N� is replaced with N� � 1 with matrix ��ik given by:

��ik = �
2fi�

�~�i�
(�I � �N�)�1ik (8.103)

which is a matrix of dimension N� � 1. Note that the approximation used here is equivalent to

the approximation used by Krieger for the second part of the exchange potential in equation 8.82

where the summation is restricted to N� � 1 orbitals. This then leads to the ful�lment of the exact

constraint 8.83 by the approximate exchange potential.
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Chapter 9

A self-consistent approximation to the

Kohn-Sham exchange potential

A scheme of approximation of the Kohn-Sham exchange potential vx has been proposed, making use

of a partitioning of vx into the long-range Slater vS and the short-range response vresp components.

The model vmodresp has been derived from the dimensional arguments, which possesses the proper

short-range behaviour and the characteristic atomic-shell stepped structure. When combined with

the accurate vS , vmodresp provides an excellent approximation to vOPMx . With the GGA approximation

to vS , vmodresp provides an e�cient DFT approach which, for the �rst time, �ts closely the form of the

accurate exchange potential and yields reasonably accurate exchange and total energies as well as

the energies of the highest occupied orbital.

9.1 Introduction

E�cient approximation of the Kohn-Sham exchange potential vx remains one of the important

problems of the density functional theory (DFT) [35, 49, 131, 32, 121]. vx is de�ned in the DFT

as a functional derivative of the exchange energy Ex[�] with respect to the density �(r)

vx(r) =
�Ex[�]

��(r)
(9.1)

In the one-electron Kohn-Sham equations (Hartree atomic units will be used throughout the paper)�
�

1

2
r2 + vext(r) + vH(r) + vx(r) + vc(r)

�
�i(r) = �i�i(r) (9.2)

vx represents the local e�ect of exchange, the dominant part of the electron correlation, while the

external vext and the Hartree vH potentials represent the electrostatic interaction and vc is the

e�ective potential of the electron Coulomb correlation.

Figure 1 illustrates the typical behaviour of vx with the exchange potential of the optimized potential

model (OPM) [33, 91, 37] for Mg. vx is �nite at the nucleus position

vx(r) = const (r = 0) (9.3)

it has the Coulombic asymptotics [33, 35, 57, 31]

vx(r) ! �
1

jrj
(jrj ! 1) (9.4)

149
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Figure 9.1: The OPM exchange potential and its components for Mg

and it possesses the shell structure, i.e. a non-monotonous dependence on r with the small peaks in

the regions between the atomic shells [35, 33, 50, 93]. Taken together, these features of vx present

considerable di�culties for its e�cient approximation.

Recent progress of the DFT is due to the generalized gradient approximation (GGA) [50, 95, 44,

43, 47, 96] that gives a remarkable improvement to the exchange-correlation energies of the local

density approximation (LDA) [11, 97, 98, 99]. It was shown [49, 32, 121, 92, 94], however, that

the standard GGA exchange potentials do not possess the proper asymptotic behaviour and shell

structure. The corresponding gradient corrections add little to the LDA exchange potential.

For the analysis [108] and approximation [35, 121] of vx it appears very useful to separate the

Slater potential vS [101]

vS(~r1) =

Z
�(~r2)[gx([�];~r1; ~r2)� 1]

j~r1 � ~r2j
d~r2 (9.5)

as an individual part of vx. In equation 9.5 gx is the exchange pair-correlation function, which can

be expressed in terms of the occupied Kohn-Sham orbitals �i(r)

gx([�]; r1; r2) = 1�
1

2

NX
i=1

NX
j=1

�i(r1)�
�
i (r2)�

�
j(r1)�j(r2)

�(r1)�(r2)
(9.6)
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The separation of vS follows naturally from the expression of Ex in terms of vS

Ex =
1

2

Z
�(r)vS(r)dr (9.7)

Di�erentiation of equation 9.7 with a proper account of 9.5 represents vx as a sum of vS and the

additional potential vresp, an integral of the linear "response" of g,
�g(r1;r2)
��(r3)

[6]

vx(r) = vS(r) + vresp(r) (9.8)

The potentials vS and vresp have rather distinct, characteristic behaviour [121, 108] and Figure

1 clearly illustrates this with the vOPMS and vOPMresp components of the OPM exchange potential

vOPMx [33, 91, 37]. vS is an attractive potential, which accumulates the Coulombic asymptotics

(eqn. 9.4) of the total potential vx

vS(r) ! �
1

jrj
(jrj ! 1) (9.9)

It is rather smooth and does not display the pronounced shell structure.

Contrary to this, vresp is repulsive and short-range. Remarkably enough, it exhibits very clear step

function behaviour [108]. As it has been shown in [132], the steps of vresp originate from the corre-

sponding stepped structure of the "response"
�g(r1;r2)
��(r3)

as a function of r3. One can see from Figure

1 that the abovementioned small intershell peaks of vx are evidently built in by the superposition

of the stepped form of vresp on the smooth vS .

This specialized behaviour makes desirable the modelling of vx with the direct individual approx-

imation of vS and vresp. In this paper a model vmodresp is derived from the dimensional arguments,

which represents vresp as the statistical average of the orbital energy contributions. vmodresp possesses

the properties and closely reproduces the behaviour of the accurate potential. When combined with

the accurate functional vS , vmodresp provides an excellent approximation to vOPMx . A more practical

approximation is obtained with vmodresp and the GGA [44] approximation to vS . Contrary to the

standard GGA schemes, the latter combination provides both the proper form and eigenvalues of

the one-electron potential and the reasonable estimate of atomic Ex and the total energies Etot.

9.2 A model potential vmod
resp

As a starting point for our model we use an approximate equation of Krieger, Li and Iafrate

(KLI) [35] for the OPM exchange potential vOPMx . OPM neglects the electron Coulomb correlation

and its Kohn-Sham equations have the form [33, 35]�
�

1

2
r2 + vext(r) + vH(r) + vx(r)

�
�i(r) = �i�i(r) (9.10)

The ground-state OPM wavefunction is the Slater determinant of the eigenfunctions �i of 9.10,

so that the components vOPMS and vOPMresp of vOPMx have the form 9.5 and 9.8 with gx built from

these functions. In [35] the very accurate approximation to vOPMx was de�ned with the following

equation

vKLIx (r) = vS(r) +

NX
i=1

wi
j�i(r)j2

�(r)
(9.11)
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In equation 9.11 vS is the exact functional 9.5,9.6 and the second term is the statistical average of

the orbital contributions wi, the latter being the di�erence between the expectation values of the

potential 9.11 and the Hartree-Fock exchange operator vxi for the orbital �i

wi =

Z
j�i(r)j2[vOPMx (r)� vxi(r)]dr (9.12)

vxi(~r1) = �
1

�i(~r1)

NX
j=1

��j(~r1)

Z
��i (~r2)�j(~r2)

j~r1 � ~r2j
d~r2 (9.13)

Note, that for the highest occupied orbital �N the expectation values of vOPMx and vxi are equal [35],

thus providing the zero value of the corresponging parameter wN

wN = 0 (9.14)

The second term of equation 9.11 o�ers a promising form for the model vmodresp. Because of the

integral kernel 9.13, straightforward evaluation of 9.12 requires laborious calculation of the two-

electron integrals with the orbitals �i. However, with the suitable approximation for wi one can

develop an e�cient model

vmodresp(r) =

NX
i=1

wi
j�i(r)j2

�(r)
(9.15)

wi can be calculated, for example, as the orbital expectation values of some local potential vw

wi =

Z
j�i(r)j2vw(r)dr (9.16)

chosen as the best local approximation of the di�erence [vx(r)�vxi(r)]. In this paper an alternative

approach is presented. We propose to use the model 9.15 with the orbital contributions wi being

approximated by a function of the orbital energies of eq.2. The form of this function is chosen to

provide the gauge invariance, the proper scaling and the short-range behaviour of vmodresp.

According to the gauge invariance requirement, addition of a constant to the eigenvalues �i should

not alter wi values. To satisfy this requirement, we choose wi to be a function of the di�erence

(�� �i)

wi = f(�� �i) (9.17)

where � is the Fermi level of a given system, which is equal to the one-electron energy of the highest

occupied orbital, � = �N .

The exchange potential 9.1 and its components vS and vresp have the following scaling property

vx([��]; r) = �vx([�];�r) (9.18)

where

��(r) = �3�(�r) (9.19)

while �i has the scaling property

�i[��] = �2�i[�(r)] (9.20)

To provide 9.18, the function f from eq.24 should scale as follows

f(�2(�� �i)) = �f(�� �i) (9.21)
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and so we �nd the square root of (�� �i) to be the proper scaling function f

wi = f(�� �i) = K[�]
p
�� �i (9.22)

By the de�nition, 9.22 satis�es the condition 9.14. Owing to this, the highest occupied orbital �N
does not contribute to the numerator of 9.15, thus providing the short-range behaviour of vmodresp

vmodresp(r) = K[�]

NX
i=1

p
�� �i

j�i(r)j2

�(r)
(9.23)

As a result, our model potential 9.23 possesses the gauge invariance, the proper scaling and the

short-range behaviour.

K[�] in equation 9.23 is a numerical coe�cient, which can be determined from the homogeneous

electron gas model. For the gas of a density � the exact vresp of eq.9 has the form

vresp =
kF

2�
(9.24)

where kF is the Fermi wavevector

kF = (3�2�)
1
3 (9.25)

Putting vmodresp of eq.30 to be equal to 9.24, one can calculate Kg. For the homogeneous electron gas

the Kohn-Sham orbitals and eigenvalues of eq.2 are given by

�~k(r) =
1p
V
ei
~kr (9.26)

where V is a volume of the system and

�~k =
k2

2
+ vx[�] + vc[�] (9.27)

The Fermi level is given by

� =
k2F
2

+ vx[�] + vc[�] (9.28)

Inserting the above expression in equation 9.23, we obtain

vmodresp =
Kgp
2�V

X
j~kj<kF

q
k2F � k2 (9.29)

A replacement of the sum in equation 9.29 by an integral yields

vmodresp(r) =
Kgp

2(2�)3�

Z kF

0

q
k2F � k24�k2dk =

=
Kgk

4
F

2
p

2(2�)2�

Z 1

0

p
1� x2x2dx =

3�Kg

16
p

2
kF (9.30)

From equations 9.24 and 9.30 the K value is de�ned by

Kg =
8
p

2

3�2
� 0:382 (9.31)

which is valid for the homogeneous electron gas of an arbitrary density.
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9.3 A self-consistent scheme with vmod
resp

We propose to use the model 9.23 within the self-consistent scheme, in which the Kohn-Sahm

equations 9.10 are solved with the following approximate exchange potential

vmodx (r) = vS(r) + vmodresp(K; r) (9.32)

where vS is the Slater potential 9.5 or its suitable approximation. The resulting Kohn-Sham orbitals

are used to calculate the total energy, with the exchange energy being calculated from equation 9.7

with the self-consistent potential vS . The electron-gas value Kg of equation 9.31 can be chosen as

the universal parameter of vmodresp for all systems. Another option is to determine K self-consistently

from the requirement, that the Levy-Perdew relation [22]

Ex =

Z
[3�(r) + rr�(r)]vmodx (r)dr (9.33)

should yield the same value of Ex as eq. 7 with the potential vS

Ex =

Z
[3�(r) + rr�(r)][vS(r) +Ksc[�]R(r)]dr =

1

2

Z
�(r)vS(r)dr (9.34)

R(r) =

NX
i=1

p
�� �i

j�i(r)j2

�(r)
(9.35)

From the requirement 9.34 it follows the expression for K[�]

Ksc[�] = �
I1

I2
(9.36)

I1 =

Z
[
5

2
�(r) + rr�(r)]vSdr (9.37)

I2 =

Z
[3�(r) + rr�(r)]R(r)]dr (9.38)

In order to develop an e�cient DFT scheme with 9.32, an appropriate approximation to vS of eq.9.5

is needed. One can use, for example, the weighted-density approximation (WDA) [125, 133, 123,

126] for the pair-correlation function gx, which guarantees the correct asymptotics 9.9 of vS. In

this paper we use a more practical model of vS , which is obtained from the GGA of Becke [44, 121].

In [44] the exchange energy density �x(�; r)

Ex =

Z
�x(�; r)dr (9.39)

of the second order of gradient expansion

�approxx (�; r) = ��
4
3 (r)[

3

2
(

3

8�
)
1
3 + a0�] (9.40)

� = 2
2
3 (
r�(r)

�
4
3 (r)

)2 (9.41)

is modi�ed with the correction function f of the argument �
1
2 sinh�1 �

1
2

�GGAx (�; r) = ��
4
3 (r)[

3

2
(

3

8�

1
3

+ a0f(�
1
2 sinh�1 �

1
2 )�] (9.42)
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ATOM Be Ne Mg Ar Ca Zn Kr Sr Cd Xe

v
mod(S)
x 0.305 0.342 0.384 0.365 0.389 0.381 0.381 0.397 0.388 0.386

v
mod(GGA)
x 0.803 0.518 0.536 0.463 0.478 0.440 0.440 0.453 0.432 0.428

Table 9.1: Values of the parameter Ksc obtained within the self-consistent scheme for potentials

v
mod(S)
x and v

mod(GGA)
x

f(�
1
2 sinh�1 �

1
2 ) =

1

1 + 6a0�
1
2 sinh�1 �

1
2

(9.43)

Using equations 9.7 and 9.39, one can derive from relation 9.42 the corresponding approximation

for vS

vGGAS (r) =
2�GGAx (�; r)

�(r)
= ��

4
3 (r)[3(

3

8�
)
1
3 + 2a0f(�

1
2 sinh�1 �

1
2 )�] (9.44)

This potential has the proper scaling 9.18, the correct asymptotics 9.9 and for the �tted value

a0 = 0:0042 it yields rather accurate estimate of Ex via the integral 9.7. The results of the self-

consistent calculations within the proposed scheme will be discussed in the next sections.

9.4 A comparison of the self-consistent potentials

In order to test the proposed self-consistent scheme, the comparative exchange-only atomic calcu-

lations have been performed for the closed-shell atoms Be, Ne, Mg, Ar, Ca, Zn, Kr, Sr, Cd, Xe.

The exchange potentials vx compared can be subdivided into two groups, depending on whether

the accurate functional vS 9.5 or its GGA approximation vGGAS 9.44 is used as the Slater potential

in 9.32. The �rst group includes the single vS (i.e. in this case vresp is neglected in 9.32), v
mod(S)
x ,

which is a sum of vS and vmodresp calculated in both variants with Ksc and Kg, and vOPMx . The second

group includes the single vGGAS , v
mod(GGA)
x , which is a sum of vGGAS and vmodresp calculated with either

Ksc or Kg, and the total exchange potential vGGAx of the standard GGA approximation [92, 44].

The results are also compared with those obtained with the KLI potential 9.11.

To investigate a quality of the GGA approximation 9.44 to vS , in Figure 2 ~vGGAS calculated self-

consistently as a part of vGGAx and vGGAS obtained with the neglect of vresp are compared with

vOPMS calculated as a part of vOPMx and vS obtained with the neglect of vresp for Ne and Mg. It is

interesting to note, that the neglect of vOPMresp does not in
uence on the Slater part of the exchange

potential, so that vOPMS and vS are hardly distinguished from each other on the scale presented.

Contrary to this, the neglect of vGGAresp makes vGGAS visibly more attractive than the corresponding

part ~vGGAS of vGGAx .

One can also see from Figure 2 the appreciable local deviations of vGGAS from vS . For both Ne and

Mg the former is more attractive than the latter within the regions of 1s� and 2s� shells and less

attractive in the intershell region. At longer distances (not shown here) all the potentials presented

have the same Coulombic asymptotics 9.9.

The local deviations of vGGAS from vS clearly manifest themselves in Table 1 where the atomic Ksc

values for v
mod(S)
x and v

mod(GGA)
x are presented. For all atoms (with the exception of the lightest Be

and Ne) Ksc values obtained with the accurate functional 9.5 are rather close to the electron-gas

constant Kg = 0:382. However, substitution of vS for vGGAS leads to a great overestimation of the
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Figure 9.2: Slater potentials calculated self-consistently as the parts of the OPM and GGA exchange

potentials and also obtained with the neglect of vresp. a) Ne and b) Mg



A COMPARISON OF THE SELF-CONSISTENT POTENTIALS 157

ATOM �EOPMtot v
resp
KLI v

resp
mod(Ksc) v

resp
mod(Kg) neglect of vresp

Be 14.572 0 0 0 11

Ne 128.545 0 1 0 44

Mg 199.612 1 2 2 79

Ar 526.812 2 3 4 109

Ca 676.752 2 4 4 146

Zn 1777.834 4 6 6 258

Kr 2752.043 4 5 5 288

Sr 3131.533 4 7 7 324

Cd 5465.114 6 6 6 419

Xe 7232.121 7 12 11 450

Table 9.2: Comparison of overestimates (in mHartrees) of the OPM total energies EOPMtot [40, 36]

(the latter are given in Ha calculated self-consistently with the exact functional vS and various

approximations to vresp

integral I1 of 9.37. As a result, Ksc value for Be calculated with vGGAS is 2.6 times as large as that

calculated with vS . The overestimation decreases rapidly with the increasing atomic number. Still,

even for Xe Ksc for vGGAS is about 1.1 times as large as that for vS.

The analysis of the contributions to I1 shows, that the major part of the abovementioned overesti-

mation comes from the region close to the nucleus where vGGAS exhibits the largest deviations from

vS (See Figure 2). The success of the GGA approximation is due to the fact, that the exchange en-

ergy integrals 9.7 with vGGAS are very close to those with vS, the typical error is only about 0.1show

that not a high local quality of GGA approximation, but an incredibly precise cancellation of local

errors for the integral 9.7 provides this success. For the integrals of the type 9.37 associated with

the Levy-Perdew relation this balance is destroyed, which leads to the overestimated Ksc values

(See Table 1).

To analyse a local quality of the proposed model 9.23, v
mod(S)
resp with the parameter Ksc and

v
mod(GGA)
resp with Kg are compared for Ne and Mg in Figure 3 with vOPMresp , vKLIresp with the param-

eters wi from 9.12 and also with the corresponding potential vGGAresp , the latter has been obtained

from the total exchange potential vGGAx of the GGA [92, 44] by the subtraction of its Slater part

vGGAS (eq.9.44). In this case GGA gives considerably worse approximation than in the case of the

Slater potentials discussed above. Due to the inclusion of the uncompensated Laplacian terms,

vGGAresp has incorrect Coulombic divergence at nucleus, being proportional to �1
r [32, 92]. At large

distances it has incorrect Coulombic decay, being proportional to 1
r . Furthermore, vGGAresp does not

display the shell structure at intermediate distances, thus exhibiting large local deviations from

vOPMresp .

Contrary to this, the simple model 9.23 provides a good �t to vOPMresp and to a more complicated

approximation vKLIresp . Both potentials v
mod(S)
resp and v

mod(GGA)
resp have the proper short-range behaviour

and they reproduce well a height and a width of the individual shell steps of vOPMresp , the largest

di�erences being constants within 1s-shell.

In Figure 4 various self-consistent approximate exchange potentials are compared with vOPMx . The

Slater potential vS is everywhere more attractive than vOPMx and the former can be considered as

a satisfactory approximation to the latter only at larger distances where both potentials have the

same Coulombic asymptotics. At r < 1 a.u. the neglect of the repulsive potential vresp leads to the
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Figure 9.3: Comparison of vOPMresp with various approximate response potentials. a) Ne and b) Mg
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substantial overestimation of the exchange e�ect.

The GGA [44] o�ers a more balanced approximation to vx, though the abovementioned defects

of its components vGGAS and vGGAresp clearly manifest themselves in the total potential vGGAx . In

particular, it has incorrect long-range asymptotics � 1
r2

and it is not attractive enough in the outer

region. However, due to the divergence of its component vGGAresp at the nucleus and the overattrac-

tive character of vGGAS in the region close to the nucleus, vGGAx strongly overestimates the exchange

e�ect in this region. At intermediate distances vGGAx smooths away the clear shell structure of

vOPMx .

The self-consistent scheme of Section produces potentials with a higher local quality of approxi-

mation to vOPMx . One can see from Figure 4 that v
mod(S)
x with the components vS and vmodresp is

an excellent approximation to vOPMx . v
mod(S)
x is very close to vOPMx at any distance and in the

major intervals they are even hardly distinguished from each other. The main di�erence is that

the approximation 9.23 smooths away the small peaks of vOPMx . However, this di�erence does not

seem the very important one, since these peaks appears to be a minor detail of the stepped shell

structure of vOPMx (See Figures 1,4).

v
mod(GGA)
x with the components vGGAS and vmodresp shows a worse local quality of approximation,

mainly due to the defects of vGGAS discussed above. Nevertheless, the replacement of vGGAresp for vmodresp

improves the short- and long-range asymptotics of the approximate potential and makes more clear

its shell structure. As a result, v
mod(GGA)
x is �nite at the nucleus and has the proper Coulombic

asymptotics at longer distances (See Figure 4).

9.5 Calculations with the accurate Slater potential

Tables 2,3 present the total Etot and exchange Ex atomic energies calculated self-consistently with

vS and various potentials vresp, namely, with vOPMresp , vKLIresp , vmodresp, the latter has been calculated

in both variants with Ksc and Kg, and also with the neglect of vresp. In all these approaches

the energies are calculated with the same functional 9.5-9.7, so that the corresponding energy dif-

ferences are caused exclusively by the di�erences in orbitals and densities generated with various

exchange potentials. It is of no surprise, that the OPM Etot values [40, 36, 94] are always the

least ones presented in Table 2. The OPM potential is de�ned within the variational method and

so it provides the true minimum of Etot calculated within the one-determinantal approach with

the exchange functional 9.5-9.7. The inclusion of the proper vresp is of importance for a quality

of calculated Etot. The neglect of vresp leads to the considerable errors, the error of Etot obtained

with the single vS increases with the increasing atomic number and reaches 0.45 a.u. for Xe.

One can see from the Table, that the model 9.23 provides an excellent approximation to vOPMresp as

regards the total energy. It is not too sensitive to variations of the parameter K and calculations

with either Ksc or Kg yield the same energies as a more complicated KLI approximation. Etot
values obtained with vS and vmodresp are only by a few milliHartrees higher than those of the OPM.

The corresponding error increases (though non-monotonously) with the increasing atomic number,

but even for Xe it is about 0.01 a.u. It means that the addition of 9.23 considerably improves a

quality of the Kohn-Sham orbitals and density, which becomes very close to those of the rigorous

OPM.

Because of the overattractive character of vS, calculations with the neglect of vresp yield too nega-

tive Ex (See Table 3). Addition of the approximate repulsive potentials vresp overcompensates this

error and makes the self-consistent Ex values more positive than EOPMx [37] (the only exception is
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Figure 9.4: Comparison of vOPMx with various approximate exchange potentials. a) Ne and b) Mg



CALCULATIONS WITH THE ACCURATE SLATER POTENTIAL 161

ATOM �EOPMx v
resp
KLI v

resp
mod(Ksc) v

resp
mod(Kg) neglect of vresp

Be 2.666 -1 2 14 -49

Ne 12.107 9 5 30 -200

Mg 15.992 10 11 9 -305

Ar 30.182 8 41 63 -436

Ca 35.209 5 40 30 -525

Zn 69.647 78 55 60 -1030

Kr 93.875 65 88 90 -1101

Sr 101.974 58 59 14 -1177

Cd 148.963 123 150 123 -1536

Xe 179.173 119 218 199 -1591

Table 9.3: Comparison of di�erences (in mHartrees) of the OPM exchange energies EOPMx [37]

(the latter are given in Hartrees) an self-consistently with the exact functional vS and various

approximations to vresp

ATOM ��OPMN v
resp
KLI v

resp
mod(Ksc) v

resp
mod (Kg) neglect of vresp

Be 309 0 1 6 -17

Ne 851 2 21 30 -61

Mg 253 1 5 5 -31

Ar 591 2 18 21 -47

Ca 196 1 10 10 -29

Zn 293 1 -14 -14 -64

Kr 523 1 20 20 -44

Sr 179 1 12 10 -30

Cd 265 0 2 1 -65

Xe 456 1 23 22 -40

Table 9.4: Comparison of di�erences of the OPM energies of the highest occupied orbital �OPMN (in

mHartrees) [40, 36] and those, calculated self-consistently with the exact functional vS and various

approximations to vresp
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Ex for Be obtained with vKLIresp ) and much more close to the latter. A comparison of Tables 2 and

3 reveals another type of compensation. In all cases the errors of Ex are compensated with those

of the opposite sign in other parts of the total energy, so that Etot errors are much smaller than

those of Ex. In most cases the Ex errors of the model 9.23 are somewhat larger (though of the

same magnitude) than those of KLI.

The most important one-electron energetical characteristic of the Kohn-Sham theory is the energy

�N of the highest occupied orbital �N . For the exact Kohn-Sham potential �N is equal to minus

the ionisation energy Ip of the system [134, 31], and in the exchange-only case �N has the same

meaning through the Koopmans's theorem [135, 35]. Table 4 represents �N values obtained with

vS and various vresp. It follows from the Table, that in the case of the orbital energies �N the

qualitative trends are the same as in the case of the exchange energies discussed above. In spite of

its correct asymptotics 9.9, the single vS always has too negative �N values.

Addition of vresp compensates this error. By the construction, both vKLIresp and vmodresp decay exponen-

tially in the region of �N location, because �N does not contribute into the numerators of 9.23 and

the second term of 9.11, while contributing into the density � in the denominators. The resulting

exponential tails of vmodresp and vKLIresp produce the compensating repulsive contribution to �N . Ad-

dition of vmodresp even has an overcompensating e�ect, because the approximation 9.23 always (with

the only exception of Zn) overestimates a value of the parameter wN�1 for �N�1, the next to the

highest occupied orbital. As a result, vmodresp becomes more positive than vKLIresp in the outer valence

region (See Figure 3) and yields more positive �N values than those of KLI (the only exception is

�N of Zn), the latter are virtually the same as the OPM �N . However, the corresponding errors

are not large and in both variants with Ksc and Kg vary within 0.01 - 0.03 a.u.

The present results show, that the self-consistent scheme with vS and vmodresp can be used as a very

good approach to the OPM. The variants with Ksc and Kg yield results of the same quality, so

one can use a more simple variant with the universal electron-gas parameter Kg for all systems.

Because of the exact functional vS , the scheme requires calculation of the two-electron integrals

with the orbitals �i and the required computational time per iteration is approximately the same as

in the case of KLI. However, the replacement of vKLIresp for vmodresp greatly accelerates the convergence

of the self-consistent procedure. The ratio of iterations before the convergence in KLI and in the

present scheme varies within 6-12 for the noble-gas atoms from Ar to Xe and within 12-18 for the

alkaline-earth atoms from Mg to sr. As a result, the proposed scheme takes about an order of

magnitude of the computational time as small as KLI.

Still, to develop a practical DFT scheme, one should approximate not only vresp, but also vS . The

results of calculations with the GGA approximation to vS will be presented in the next section.

9.6 Calculations with the GGA approximation to vS

Tables 5,6 represent Etot and Ex values obtained with the GGA approximation 9.44 to vS with and

without the response potentials vGGAresp and vmodresp. All these energies are calculated with the same

standard GGA energy functional, for which the variationally derived vGGAresp yields the minimal Etot.

However, because of the approximate nature of this functional, EGGAtot are not bound to EOPMtot

from below and in the most cases the former are too negative (See Table 5). On the other hand,

similarly to Table 2, calculations with the neglect of vresp yield too positive Etot values. In the

latter case the corresponding error increases monotonously with the increasing atomic number, the

only exception is Zn.
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ATOM �EOPMtot v
resp
GGA v

resp
mod(Ksc) v

resp
mod(Kg) neglect of vresp

Be 14.572 6 34 12 21

Ne 128.545 -45 -30 -29 35

Mg 199.612 -21 3 -5 78

Ar 526.812 11 33 26 141

Ca 676.752 -2 27 15 149

Zn 1777.834 -287 -272 -268 33

Kr 2752.043 -60 -39 -41 269

Sr 3131.533 -48 -19 -23 298

Cd 5465.114 -79 57 60 364

Xe 7232.121 2 35 25 463

Table 9.5: Comparison of di�erences (in mHartrees) between the OPM total energies EOPMtot [40, 36]

and those, calculated self- vGGAS and various approximations to vresp

ATOM �EOPMx v
resp
GGA v

resp
mod (Ksc) v

resp
mod(Kg) neglect of vresp

Be 2.666 14 44 -10 -73

Ne 12.107 20 -36 -122 -359

Mg 15.992 20 25 -92 -406

Ar 30.182 59 93 -13 -520

Ca 35.209 27 97 -39 -606

Zn 69.646 -76 -138 -303 -1375

Kr 93.876 76 95 -83 -1277

Sr 101.974 61 91 -128 -1332

Cd 148.963 126 189 -27 -1688

Xe 179.174 167 314 100 -1714

Table 9.6: Comparison of di�erences (in mHartrees) between the OPM total energies EOPMx [37]

and those, calculated self-consistent vGGAS and various approximations to vresp
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ATOM ��OPMN v
resp
GGA v

resp
mod(Ksc) v

resp
mod(Kg) neglect of vresp

Be 309 128 29 8 -15

Ne 851 396 128 98 9

Mg 253 104 19 6 -30

Ar 591 249 57 43 -23

Ca 196 80 15 6 -34

Zn 293 102 -19 -25 -74

Kr 523 218 42 33 -31

Sr 179 72 12 5 -38

Cd 265 95 -6 -13 -82

Xe 456 187 35 28 -34

Table 9.7: Comparison of di�erences of the OPM energies of the highest occupied orbital �OPMN (in

mHartrees) [40, 36] and those, calculated self-consistently with vGGAS and various approximations

to vresp

Addition of vmodresp considerably reduces the error, the only exceptions are Zn in both variants with

Ksc and Kg and Be in the variant with Ksc. Etot for Be obtained with Kg is much closer to EOPMtot

than that obtained with Ksc, because of the overestimation of Ksc in the GGA discussed above. In

general, however, both variants yield the very similar Etot values, which are of the same accuracy

as those of the standard GGA. The absolute error, induced mainly by the GGA approximation to

vS , vary largely for di�erent atoms, the typical value is of a few centiHartrees and the maximal

(and the exceptionally large) one is 0.3 a.u. for Zn.

In the complete analogy with the case of vS , calculations with the single vGGAS yield too negative

Ex values (See Table 6). Addition of the approximate vresp considerably compensates the corre-

sponding error. In the case of vGGAresp and vmodresp with Ksc this leads even to overcompensation and

for the most atoms Ex are too positive, while in the case of vmodresp with Kg the compensation is not

enough, thus producing too negative Ex (the only exception in the latter case is Xe). In general,

all the schemes with the approximate vresp yield Ex values of a comparable accuracy.

The self-consistent scheme with vGGAS and vmodresp shows a de�nite advantage over the standard

GGA in calculation of �N (See Table 7). As it was indicated in [36, 32] and one can see this from

the Table, the GGA greatly underestimates the absolute magnitude of �N . Due to the incorrect

asymptotics of its response part (See Figure 3), j�N j values of vGGAx are about twice as small as

compared with the OPM values and are very close to the LDA ones. On the other hand, the single

vGGAS overestimates j�N j (the only exception is Ne), though the corresponding errors are consider-

ably smaller.

Addition of vmodresp with Ksc to vS overcompensates this e�ect and produces comparable errors of the

opposite sign. The �N values of the potential (vGGAS + vmodresp) obtained with Kg are in most cases

the best approximate ones and the closest to �OPMN .

It follows from the above analysis that the self-consistent scheme with vGGAS and vmodresp provides

the same accuracy for the total and exchange energies as the standard GGA scheme [44] and con-

siderably improves the form and the eigenvalue �N of the one-electron potential. Bearing in mind

high quality of the presented results, we propose vmodx with the components vGGAS and vmodresp as an

e�cient approximation to vx. The variant with Kg provides a better �t to the accurate vresp and

it is also simpler than that with Ksc, so the electron-gas value Kg can be recommended as the

universal parameter for the many-electron calculations.
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9.7 Conclusions

In this paper a scheme of approximation of the Kohn-Sham exchange potential vx has been pro-

posed, making use of a partitioning of vx into the Slater and response potentials. The model vmodresp

has been derived from the dimensional arguments, which possesses the proper short-range behaviour

and the characteristic atomic-shell stepped structure. When combined with the accurate vS , vmodresp

provides an excellent approximation to vOPMx . With the GGA approximation to vS , vmodresp provides

an e�cient DFT approach which, for the �rst time, �ts closely the form of the accurate exchange

potential and yields reasonably accurate exchange and total energies as well as the energies of the

highest occupied orbital.

Still, we have to mention appreciable errors, which are introduced with the GGA approximation to

vS . For example, the typical error of the calculated total energies is increased from milliHartrees to

santiHartrees with the replacement of vS for vGGAS . So, in order to provide a better practical DFT

scheme, one should improve, �rst of all, a quality of vS approximation. In particular, the present

GGA approximation shows considerable deviations from the accurate vS in the region close to the

nucleus. A promising way of vmodS re�nement is to construct it not as a function of � and r�, but

as some function of the orbital densities j�ij2 and their gradients.

To test a quality of the developed vmodx approximation, the exchange-only atomic calculations

have been performed in this work. Our main goal, however,is to apply this approximation for

the exchange-correlation molecular calculations. For this purpose one can use vmodx either as an

independent exchange part of the approximate exchange-correlation Kohn-Sham potential vapprxc or

as the basic functional form for approximation of the total vxc. Within the former approach vmodx

is inserted in the Kohn-Sham equations 9.2 together with some approximation for the Coulomb

correlation potential vc, the latter is to be constructed independently. Then, the exchange energy

is calculated via 9.7 with the self-consistent density and vmodS , while the correlation energy is cal-

culated with the independent functional, which corresponds to vc.

An alternative approach is based on the fact, that vx is the dominant part of vxc and the exchange

energy density �x is the dominant part of �xc. To approximate the total vxc and �xc, one can use the

same models vmodS and vmodresp with other parameters chosen to �t the available accurate exchange-

correlation Kohn-Sham potentials [32, 74, 78, 79, 80]. The work along both abovementioned lines

is in progress.
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Chapter 10

An analysis of nonlocal density

functionals in chemical bonding

In this work we carry out an analysis of the gradient corrected density functionals in molecules that

are used in the Kohn-Sham density functional approach. We concentrate on the special features of

the exchange and correlation energy densities and exchange and correlation potentials in the bond

region. By comparing to the exact Kohn-Sham potential it is shown that the gradient corrected

potentials build in the required peak in the bond midplane, but not completely correctly. The

gradient corrected potentials also exhibit wrong asymptotic behaviour. Contributions from di�erent

regions of space (notably bond and outer regions) to nonlocal bonding energy contributions are

investigated by integrating the exchange and correlation energy densities in various spatial regions.

This provides an explanation why the gradient corrections reduce the LDA overbinding of molecules.

It explains the success of the presently used nonlocal corrections, although it is possible that there

is a cancellation of errors, too much repulsion being derived from the bond region and too little

from the outer region.

10.1 Introduction

In the last few years considerable progress has been achieved within density functional theory [5]

in the calculation of molecular [70, 71, 122] and solid state [47, 136, 137] properties by the use of

nonlocal density functionals. The use of these nonlocal corrections gives an overall improvement of

the results obtained by the local density approximation (LDA). This is especially true for energy

quantities such as bonding energies in molecules. The successes are not restricted to simple covalent

molecules (cf. the G1 and G2 sets [70, 122]) but also occur for more complicated cases where the

conventional ab-initio Hartree-Fock method fails notoriously such as in multiply bonded molecules

and particularly in the �eld of transition metal chemistry [71]. Although numerical calculations

clearly show that the nonlocal corrections do work, not much understanding has been gained in

why and how they work. There are several questions left unanswered. Why do the nonlocal correc-

tions always reduce the bonding energies of molecules? What do molecular Kohn-Sham potentials

look like and do the nonlocal corrections give a good representation of these potentials? How can

the correlation e�ects (left-right correlation) in dissociating molecules be incorporated in gradient

corrected density functionals and their potentials? Why does the Becke correction for exchange,

that has been devised to yield good (Hartree-Fock) exchange energies in atoms, change LDA bond

energies not towards Hartree-Fock but (close) to exact bond energies? An understanding of such

167
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questions might lead to the construction of still more improved density functionals which is not

only of theoretical but also of practical importance.

In the literature little attention has been paid to the question why the nonlocal corrections

improve the energies. It has been argued [70, 138] that the improved bond energies due to the Becke

functional [44] are due to the improvement of the asymptotic behaviour of the exchange energy

density. However in a clear paper by Engel et al. [49] it was shown for the case of atoms that

the correct behaviour of the Becke exchange energy density is only reached at very large distances

where it has almost no e�ect on the energy. Moreover these authors constructed a functional which

did not satisfy the correct asymptotic property but which yielded even better atomic exchange

energies. Whether the correct asymptotic behaviour of the Becke functional is responsible for the

improved bond energies is therefore an open problem which we will investigate more closely in this

paper.

The paper is divided in the following way. In section 10.2 we discuss the properties of the exact

molecular Kohn-Sham potential based on calculations of the hydrogen molecule. We then discuss

how the left-right correlation shows up in the potential. In section 10.3 we discuss the properties

of the potentials of two widely used nonlocal functionals namely those of Becke [44, 139] and of

Perdew [45]. It is shown that these potentials are characterised by a peak in the bond midpoint

region. In section 10.4 we analyse the exchange and correlation energy densities of the Becke and

the Perdew functionals and give an explanation for the fact that the nonlocal corrections reduce

the bonding energy in molecules. In section 10.5 we then give a numerical analysis of the bonding

contributions of the nonlocal functionals. This is done by integrating the exchange and correlation

energy densities of Becke and Perdew over speci�c spatial regions of some diatomic molecule. We

�nally present a summary and conclusions in section 10.6.

10.2 Left-right correlation and the exact Kohn-Sham potential

In order to improve on existing density functionals it is very helpful to know how molecular Kohn-

Sham potentials look like. Especially the knowledge on the correlation potential is very limited.

There is however one molecular system for which the correlation potential can be accurately calcu-

lated and in which correlation is very important. This sytem is the dissociating hydrogen molecule.

For a general molecular system with N electrons the Kohn-Sham equations are given by:

(�
1

2
r2 + vKS([�]; r)) i(r) = � i(r) (10.1)

where the electron density � is given by the sum of orbital densities:

�(r) =

NX
i

j i(r)j2 (10.2)

The Kohn-Sham potential vKS is usually split up in the following way:

vKS([�]; r) = vnuc(r) +

Z
�(r0)

jr� r0j
dr0 + vxc([�]; r) (10.3)

The �rst term in this equation is the Coulomb attraction of the atomic nuclei and the second term

is the repulsion of the electronic cloud. The last term, the one we are interested in, is the exchange-

correlation potential which is the functional derivative of the exchange-correlation functional. For a
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spin restricted two-electron system such as the hydrogen molecule in its ground state the occupied

orbitals can explicitly be expressed in the electron density as  i =
p
�=2 . Substituting this in the

Kohn-Sham equations then yields an explicit expression of the Kohn-Sham potential expressed in

the exact ground state density:

vKS(r) = �
1

8

(r�)2

�2
+

1

4

r2�

�
+ � (10.4)

For a two-electron system � is the highest occupied Kohn-Sham orbital and therefore equal to

the ionisation energy of the system. The above equation gives us the possibility to calculate the

Kohn-Sham potential from a correlated electron density which can for instance be obtained from

an accurate con�guration interaction (CI) calculation. This has been done by Smith et al. [140]

for the helium atom. A di�erent approach to obtain the Kohn-Sham potential has been used

by Buijse et al. [86] who carried out a thorough investigation of this potential for the hydrogen

molecule at various distances. For comparison in the next section we stress some points of their

results. The basic quantity in the analysis of Buijse et al. is the conditional probability amplitude

�(r2; : : : ; rN jr1). de�ned by:

�(r2; : : : ; rN jr1) =
	(r1; : : : ; rN )p

�(r1)=N
(10.5)

where 	 is the ground state wavefunction of the system. The amplitude gives a description of the

(N � 1)-electron system when one of the electrons is known to be at position r1. The amplitude

squared gives the probability that the other electrons are at positions r2; : : : ; rN if one electron

(the reference electron) is known to be at position r1. All the correlation e�ects of the system are

contained in this quantity. These correlation e�ects especially show up in the case of the hydrogen

molecule when we move the position of the reference electron along the bond axis from one atom

to the other atom. Due to the Coulomb correlation of the electrons we have that if one electron is

known to be at a given atom then the probability amplitude is large that the other electron will

be at the other atom. This changes rapidly when the reference electron crosses the bond midpoint

region because in that case the other electron has to switch quickly from one atom to the other

atom. A quantity which measures this change in conditional amplitude (the so-called left-right

correlation e�ect) as we move our reference electron is the so-called kinetic potential de�ned by:

vkin(r1) =
1

2

Z
jr1�j2dr2 : : : drN (10.6)

This potential is clearly positive de�nite. The origin of the name of this potential stems from the

fact that it contributes to the kinetic energy of the system which is given by:

T =
1

8

Z
(r�)2

�
dr+

Z
�(r)vkin(r)dr (10.7)

This follows directly from the de�nition of the kinetic energy and formula 10.5. Note that the �rst

term in the above formula is the von Weisz�acker kinetic energy TW [�] which for a two-electron

system is equal to the Kohn-Sham kinetic energy Ts[�]. The term with vkin therefore contributes

to the Kohn-Sham exchange-correlation energy of the system. As has been shown in reference [86]

vkin is also an important constituent term of the Kohn-Sham potential. By numerical calculation

the following properties of the kinetic potential were observed [86].

First of all this potential is peaked on the bond midpoint. As a result of this the total exchange-

correlation potential is also peaked in this region. This peak in vkin is not surprising from its de�-

nition. The changes in the conditional amplitude as we move our reference electron is the largest
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in the bond midpoint region as explained before. Secondly the peak in the kinetic potential gets

higher when we dissociate the molecule. This is also what one expects since the left-right correla-

tion e�ects grow stronger as we dissociate. This can also be seen from the well-known Hartree-Fock

error for a dissociating system. The Hartree-Fock one-determinant wavefunction upon dissociation

no longer gives a right description of the division of the electrons over the atomic fragments by

putting too much weight on ionic terms [17].

Knowing the behaviour of the Kohn-Sham potential in the bonding region of molecules one might

wonder whether these peculiar properties are well represented by the presently used nonlocal gradi-

ent corrections. We will show in the next section that both the Becke and Perdew potentials exhibit

peaks in this region in cases of strong left-right correlation. The Becke potential exhibits a positive

peak in this region although the Becke functional is purely derived as an exchange correction and

not a correlation correction. The Perdew potential however, which is derived as a correlation cor-

rection, exhibits a negative peak although not large enough to cancel against the peak in the Becke

potential. The peaks in both potentials are also shown to grow upon dissociation of the molecule.

10.3 Analysis of Beckes and Perdews molecular potentials

In this section we will analyse the properties of both Beckes exchange potential and Perdews

correlation potential. We will start with Beckes exchange potential. The Becke gradient correc-

tion to the exchange energy which belongs to the family of Generalised Gradient Approximations

(GGA) [43, 49] is de�ned as:

EGGAx [�] =
X
�

Z
�
4
3
� f(x�)dr (10.8)

in which � is a spin index and x� = jr��j=�
4
3
� . The function f is in the case of the Becke functional

de�ned as:

f(x) = ��
x2

1 + 6�x sinh�1 x
(10.9)

The constant � is given by � = 0:0042. This function is chosen so as to satisfy some scaling,

asymptotic and weak inhomogeneity properties [32]. The potential corresponding to EGGAx is given

by (for convenience we leave the spin index out, it simply can be added to the �nal result):

vGGAx (r) =
�Ex

��(r)
=

4

3
�
1
3 (f(x)� x

df

dx
+ x2

d2f

dx2
)+

X
i;j

@i�@i@j�@j�

jr�j3
(
df

dx
� x

d2f

dx2
)�

r2�

jr�j
df

dx
(10.10)

We will now analyse this potential in the vicinity of the bond midpoint region. In that case the

gradients are small and our parameter x is therefore also small. We therefore have:

f(x) � ��x2 +O(x4) (x # 0) (10.11)

hence:

df

dx
� �2�x+O(x3) (x # 0) (10.12)
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and

d2f

dx2
� �2� +O(x2) (x # 0) (10.13)

Inserting this in the potential formula 10.10 yields:

vGGAx (r) = 2�
r2�

�
4
3

+O(jr�j2) (10.14)

This yields in the bond midpoint rM , where r� = 0, for the Becke potential:

vBx (rM ) = 0:0106
r2�

�
4
3

(10.15)

for the spin unpolarised case (�� = �
2
). In this derivation we only used the property f(x) �

x2 (x # 0). This requirement originates from the gradient expansion for slowly varying densities

of the exchange energy, for which the gradient correction in the so-called Gradient Expansion

Approximation (GEA) is given by:

EGEAx [�] = ��
Z

(r�)2

�
4
3

dr = ��
Z
�
4
3x2dr (10.16)

This is the gradient correction used by Herman et al. in the X��-method [76]. The corresponding

potential is given by:

vGEAx (r) = 2�
r2�

�
4
3

�
4

3
�

(r�)2

�
7
3

(10.17)

which is in accordance with equation 10.14. We will analyse the r2�=�
4
3 term a bit further. In

order to do this we consider the case of a homonuclear diatomic molecule. In the dissociation limit

the molecular density can be well approximated by the sum of atomic densities � = �A + �B of

atom A and B. If we use the asymptotic relation �A;B � Ne��rA;B (r ! 1) where rA;B is the

distance to atom A;B we obtain

r2� = �2��
2�

rA
�A �

2�

rB
�B � �2� (rA;B !1) (10.18)

and for the height of the peak in the potential in the bond midpoint at large internuclear distance

RAB of the atoms:

vGGAx (rM ) �
K

�
1
3

!1 (RAB !1) (10.19)

where K is a positive constant. We thus conclude that the peak increases at large distances and

even has the unphysical behaviour of becoming in�nite in the limit of in�nite separation of the

atoms. However at these distances the density decreases faster (� � e��r) than the peak increases

so the e�ect of this erroneous behaviour of the GGA exchange potential in the bond midpoint

region on the molecular density may still be very small at large bond distances.

At shorter bond distances we cannot make any de�nite conclusions on the behaviour of the Becke

(and Perdew) potential from the above analysis. For instance from formula 10.14 we can deduce

that the sign of the peak depends on the sign of the Laplacian. In the weak bonding limit this sign

is positive, however at smaller distances this sign depends strongly on the type of bond considered
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which has extensively been studied in reference [102].

We will next discuss the bond midpoint properties of Perdews correlation potential. The Perdew

correlation energy functional is de�ned by [45] :

EGGAc [�] =

Z
1

d(�)
C(�)�

4
3x2e��(�;jr�j)dr (10.20)

where � =
����

�
0

�
is the spin polarisation and:

d(�) = 2
1
3 ((

1 + �

2
)
5
3 + (

1� �

2
)
5
3 )

1
2 (10.21)

The function C(�) has been obtained from the gradient expansion for slowly varying densities of

the correlation energy of the electron gas [42] and is usually expressed in the Wigner-Seitz radius

rs = ( 3
4�� )

1
3 as:

C(�) = 0:001667 +
0:002568 + �rs + �r2s

1 + 
rs + �r2s + 104�r3s
(10.22)

The constants �; �; 
; � are given by 0:023266; 7:389 � 10�6; 8:723; 0:472. We �nally have:

�(�; jr�j) = 1:745 ~f
C(1)

C(�)

jr�j
�
7
6

(10.23)

where ~f = 0:11. The form of this function is obtained from the wavevector analysis of Langreth and

Mehl [50]. For slowly varying densities the Perdew functional reduces to the gradient expansion

result for the correlation energy (we consider the spin unpolarised case for which d(�) = 1 ):

EGEAc [�] =

Z
C(�)�

4
3x2dr (10.24)

Both this functional and the Perdew functional have the same values for their functional derivatives

in the bond midpoint region where r� = 0. We have:

vGGAc (rM ) = �2C(�)
r2�

�
4
3

(10.25)

In the dissociation limit where the bond midpoint densities are small we have C(�) � C(0) =

0:001667 and thus:

vGGAc (rM ) = �0:0033
r2�

�
4
3

(10.26)

This has the same form as Beckes potential in the bond midpoint region, however with a di�erent

sign. We therefore �nd a negative peak in the Perdew potential which increases in absolute value

when the molecule dissociates. However, the total nonlocal potential which is the sum of Beckes

and Perdews potentials still has a positive peak in the bond region since the negative peak in

Perdews potential is not large enough to cancel the positive peak in Beckes potential. We have for

the total nonlocal exchange-correlation potential:

vNLxc (rM ) = vBeckex (rM ) + vPerdewc (rM ) = 0:0073
r2�

�
4
3

(10.27)
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So in the bond region in the dissociation limit we have a repulsive Becke potential and an attractive

Perdew potential.

We can now ask the question how this behaviour of the Becke-Perdew potential compares with

the exact potential. Let us compare equation 10.27 in the case of a two-electron system with the

exact Kohn-Sham potential of equation 10.4 in the bond midpoint region. In the bond midpoint

we have:

vKS(rM ) =
1

4

r2�

�
+ � (10.28)

In contrast to the potential in equation 10.27 the bond midpoint value of the exact Kohn-Sham

potential does not go to in�nity if (RAB !1) but to the positive constant �� (see also [86]) which

can easily be derived from formula 10.18 using � = 2
p
�2�. This shows that the Becke-Perdew

potential cannot give a good description of the bond midpoint behaviour of the exact potential at

very large bond distances. However for intermediate bond distances it can give an improvement

of the LDA potential but this improvement is only of qualitative nature as the height of the peak

in the Kohn-Sham potential in the LDA+Becke-Perdew approximation has a di�erent functional

dependence on the density than the exact Kohn-Sham potential. In section 10.5 we will present

some numerical examples of the molecular Becke and Perdew potentials. However we will �rst

address the question of bond energies and analyse the exchange and correlation energy densities in

the bonding region.

10.4 Gradient corrected energy densities

The positive peak in the potential already indicates that adding the Becke-Perdew nonlocal cor-

rections to the local density calculations may in weak bonding cases reduce the bonding energy of

molecules, i.e. give a positive contribution to �E de�ned as the molecular energy minus the atomic

energies. We will try to identify the origin of the positive contribution due to the nonlocal correc-

tions by considering the di�erence between the molecular energy density and the sum of atomic

energy densities.

The exchange and correlation energy densities can be de�ned as:

�x(r) =
1

2
�(r)Vx(r) (10.29)

and

�c(r) =
1

2
�(r)Vc(r) (10.30)

where Vx and Vc are the potentials due to the coupling constant integrated Fermi and Coulomb holes

[24] which should not be confused with the potentials vx and vc which are the functional derivatives

of the exchange and correlation functionals. There are however other de�nitions possible of Vx and

Vc. One could for instance de�ne Vx to be the potential due to the Fermi hole of the optimised

potential model (OPM) [33, 36] and de�ne Vc as the di�erence between this potential and the

potential due to the coupling constant integrated exchange-correlation hole. In either de�nition

the potential Vx goes asymptotically like �1
r due to the fact that the Fermi hole integrates to one

electron. The exchange potential potential vx has a similar asymptotic decay. The contribution of

the nonlocal corrections to �x and �c we will in the following denote by ex and ec.
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The contribution to the bonding energy �E of a molecule of the nonlocal corrections to the exchange

and correlation functionals can be written as:

�ENLx =

Z
�ex(r)dr (10.31)

and

�ENLc =

Z
�ec(r)dr (10.32)

where

�ex(r) = eMx (r)�
X
A

eAx (r) (10.33)

and

�ec(r) = eMc (r)�
X
A

eAc (r) (10.34)

in which eMx and eMc denote the gradient corrections to the molecular exchange and correlation

energy densities.The functions eAx and eAc denote the gradient corrections to the atomic exchange

and correlation energy densities where the atoms are situated at their molecular positions. In

equations 10.33 and 10.34 the sum is taken over all atoms in the molecule. We will analyse the

energy density di�erence functions �ex and �ec for the Becke and Perdew functional. In the bond

midpoint we have that the gradient of the molecular density is zero, r�M = 0, and in that case

the Becke and Perdew energy density functions are given by:

�ex(rM ) =
X
A

��A
4
3

xA
2

1 + 6�xA sinh�1 xA
> 0 (10.35)

and

�ec(rM ) = �
X
A

C(�A)

d(�A)
�A

4
3xA

2
e��(�

A;j�Aj) < 0 (10.36)

We will show in the next section for the example of N2 that �ex does have a positive peak in the

bond midpoint region and �ec has a negative peak in the same region. Suppose that the main

contributions to the functions �ex and �ec are found in the bond midpoint region of the molecule.

In that case we would have:

�ENLx =

Z
�ex(r)dr > 0 (10.37)

and

�ENLc =

Z
�ec(r)dr < 0 (10.38)

So we can infer that in the bond midpoint region the Becke functional gives a positive correction

to the bond energy and the Perdew functional gives a negative contribution. The main reason

for the improvement of the bonding energy of molecules by the nonlocal corrections is then the

replacement of a region of nonzero gradients in the sum of atomic exchange-correlation densities

by a region of zero gradients in the exchange-correlation energy density of the molecule.
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There is also another region from where we may expect a positive contribution from gradient

corrections to the LDA bond energy, namely the outer region where the density decays exponentially

to zero. It is well known that the LDA exchange-correlation energy density also decays exponentially

to zero, whereas it should behave asymptotically like ��=2r. From any gradient correction that

builds in the correct asymptotic behaviour, as does the Becke correction, one may expect a positive

contribution to the bond energy from the asymptotic region. In that region, where

ex(r) � �
�

2r
(r !1) (10.39)

we have for �ex that:

�ex(r) � �
�M

2r
+
X
A

�A

2r
= �

��

2r
(r !1) (10.40)

in which �� = �M �
P
A �

A is the deformation density of the molecule. If the deformation density

�� is negative in the outer regions of the molecule then:

�ex(r) = �
��

2r
> 0 (r !1) (10.41)

This then contributes positively to �Ex. As may be inferred from elementary considerations re-

garding the relation between the exponential decay of molecular and atomic densities and the �rst

ionisation energies, �� is usually negative in the outer region of the molecule, but it is also quite

small in that region. On the other hand the region is very large, so it is di�cult to make a quanti-

tative estimate of this e�ect. If the e�ect is signi�cant we expect the Becke functional to provide

a positive contribution from the outer region, but maybe not large enough since it attains the

asymptotic behaviour at too large distances [49, 32].

To analyse the properties of the functions �ex and �ec and determine from which region in the

molecule the bonding energy correction originates (bond midpoint region or outer asymptotic re-

gion) we numerically integrated the functions �ex and �ec in di�erent spatial regions. The procedure

and results will be discussed in the next section.

10.5 Numerical procedure and results

In this section we will carry out a numerical investigation of the energy density di�erence functions

�ex and �ec. In order to do this we performed several self-consistent density functional calculations

on some dissociating diatomic molecules using the Becke and Perdew nonlocal corrections. The

bonding contribution analysis is carried out using integration schemes in two di�erent types of

grid. The �rst scheme uses an integration in prolate spheroidal coordinates in which we integrated

ellipsoidal regions around the molecular bond midpoint and in which the atomic positions coincide

with the foci of the ellipsoid. If the atoms A and B are situated on the z-axis at positions z = �a
then we can de�ne the coordinates u; v; � by:

x = a sinh (u) sin (v) cos (�)

y = a sinh (u) sin (v) sin (�) (10.42)

z = a cosh (u) cos (v)
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As the functions �ex and �ec are invariant for rotations around the z-axis the �-integration just

yields a factor 2�. We de�ne further a variable p = cos (�). The Jacobian in this coordinate system

is given by:

J(u; p) = a3 sinh (u)(cosh2 (u)� p2) (10.43)

We then want to calculate the following functions:

�Ik(R) = 2�

Z U

0
du

Z 1

�1
dpJ(u; p)�ek(u; p) (10.44)

where k stands for exchange k = x and correlation k = c and in which R = a sinh (U) is the

minor axis of the ellipsoid. These functions which represent the bonding energy contribution of the

exchange and correlation energies within an ellipsoid around the bonding axis are calculated using

Gauss-Legendre integration in the variables u and p.

The second integration scheme uses a cylindrical coordinate system de�ned by:

x = r cos (�)

y = r sin (�) (10.45)

z = z

If the atoms are again situated at positions z = �a on the z-axis then r represents the distance

to the line through the bonding axis which is the z-axis and � describes the rotation angle around

this axis. For this coordinate system we want to calculate the following functions:

�Ik(Z) =

Z Z

�Z
dz

Z 1

0
dr�ek(r; z)J(r; z) (10.46)

The subindex k again stands for exchange and correlation k = x; c and the Jacobian J is given by

J(r; z) = 2�r. The functions �Ik are again obtained using Gauss-Legendre integration. Using these

two integration schemes it is possible to locate the regions in the exchange- and correlation energy

density di�erences �ex and �ec which have the largest contributions to the bonding energy. Using

the elliptic integration we can compare the contribution of the region outside some ellipsoid to the

contribution of the inside and thus determine the importance of the outer asymptotic region. Using

the integration in cylindrical coordinates we can determine the importance of the bond midpoint

region.

In the following we carry out an analysis of the Becke and Perdew functionals in the nitrogen

molecule N2. The nitrogen molecule is a typical case of a molecule where the Becke correction

gives a lowering of the bonding energy and where the Perdew correction gives a smaller increase

in the bonding energy. Most molecules (for instance all �rst and second row diatomic molecules)

exhibit this behaviour. A notable exception is the hydrogen molecule H2 for which both the Becke

and Perdew corrections have a di�erent sign. For the nitrogen molecule an LDA calculation at the

experimental bond distance of 2.07 bohr yields a bonding energy of 11.5 eV which is to be compared

to the experimental bonding energy of 9.9 eV. A self-consistent calculation at the same bond dis-

tance using the Becke correction gives a bonding energy of 10.0 eV and a Becke-Perdew calculation

yields 10.2 eV. We therefore have �ENLx = 1:5eV and �ENLc = �0:2 eV at equilibrium distance.

In these calculations we used a triple-zeta Slater Type Orbital (STO) basis set plus polarisation

and as atomic reference we used spin unrestricted nitrogen atoms in which we occupied (according

to Hunds rule) the 2p-shell with three electrons with the same spin. The atomic exchange energy

density is then given by a sum of di�erent contributions from �- and �-spin electrons. Our results
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Figure 10.1: Becke and Perdew potential around the bond midpoint region for the dissociating

nitrogen molecule at bondlengths of 3.0,5.0,7.0 and 9.0 bohr
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are in substantial agreement with the completely numerical results of Becke [141].

In �gures 10.1a and 10.1b we display the Becke and Perdew potential of the nitrogen molecule

along the bond axis around the bond midpoint region for several bond distances. In �gures 10.1c

and 10.1d we display the same potentials along an axis perpendicular to the bond axis through the

bond midpoint. As we can see from these �gures the Becke peak is larger than the Perdew peak at

each distance and the peaks are increasing in absolute value as we dissociate the molecule. We can

also see that the width of the peak in the direction perpendicular to the bond axis is much larger

than the width of the peak along the bond axis. The total potential (Becke+Perdew) therefore

builds a repulsive wall between the atoms.

In �gures 10.2a an 10.2b we display the exchange and correlation energy density di�erence func-

tions �ex and �ec for the Becke and Perdew functional along the bond axis for the equilibrium

distance of 2.07 bohr and the larger distance of 3.0 bohr. In �gures 10.2c and 10.2d we display the

same functions along an axis through the bond midpoint perpendicular to the bond axis. As we

can see from �gures 10.2a and 10.2c the function �ex is positive in the bond midpoint region as was

expected from equation 10.35. This positive region arises because the gradient of the molecular

density is zero at the bond midpoint. As the gradient of the sum of atomic densities is also zero

in the bond midpoint this positive region in �ex is not the result of density changes due to bond

formation but merely a result of the topological properties of the molecular density. In general �ex
is positive whenever the gradient of the molecular density vanishes. Due to the A1-symmetry of

the molecular density this often happens in points which belong to the invariant manifold of the

molecular symmetry group. In �gures 10.2a and 10.2b we can also see peaks in �ex around the

nuclei. As the gradient of the sum of atomic densities in the region of one atom is close to the

gradient of the density of the atom itself in this region these peaks can only be explained by density

changes in the atomic region due to bond formation. This point is illustrated in �gure 10.3a which

displays the deformation density due to bond formation along the bond axis. We can see from this

�gure that the gradients of the deformation density are the largest around the nuclei. We have

therefore identi�ed two possible contributions to the Becke correction to the bonding energy. There

is a contribution from the region around the nuclei which arises from density changes induced by

bond formation and there is a contribution from the bond midpoint region which arises from the

shape of the molecular density. The relative importance of these regions will be discussed below.

Having discussed the properties of �ex it is clear that the shape of �ec as displayed in �gures 10.2b

and 10.2d can be explained in a similar way. The negative peak at the bond midpoint is due to

the zero gradient in the bond midpoint (see equation 10.36) and the peaks closer to the nuclei are

caused by density changes in the atomic regions.

After having discussed the local properties of �ex and �ec in di�erent regions of space we will

now investigate how much the various regions contribute to the bonding energy at equilibrium

bondlength using the integration schemes described in the beginning of this section. In �gure 10.4a

we display the functions �Ix and �Ic of equation 10.44 as a function of the length R of the minor

axis of the ellisoid which has the atoms positioned at the foci. As we can see from this �gure half

of the nonlocal correction to the bonding energy due to exchange is obtained for R = 1 bohr. The

major axis then has a length of 1.44 bohr which therefore extends 0.40 bohr beyond the atoms.

More than about 80% of the bonding energy contribution is obtained at R = 1:5 bohr with major

axis of length 1.82 bohr which extends 0.79 bohr beyond the atoms. The ellipsoid is then just

enclosing the valence region of the atoms. We therefore conclude that it is mainly from the inner

region of the molecule and not from the asymptotic region that the Becke correction originates,

the precise ratio of the contributions depending of course on the admittedly somewhat arbitrary
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Figure 10.2: The exchange and correlation energy density di�erences of Becke and Perdew around

the bond midpoint region
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Figure 10.3: The deformation density of the nitrogen molecule at the equilibrium bondlength of

2.07 bohr

de�nition of these regions.

Let us �rst consider the asymptotic region somewhat more closely. The relatively small contribution

from the asymptotic region, where the expression of equation 10.41 for �ex holds, may be related

to �gure 10.3b which displays the deformation density along an axis through the bond midpoint

perpendicular to the bond axis. From this �gure we see that when the deformation density �� is

negative (which is the case in the outer asymptotic region) it is very small and therefore leads to

a small asymptotic �ex. However, the asymptotic contribution is not negligible and we may even

wonder whether the division of the exchange energy over the inner and outer region of the molecule

given by the Becke functional re
ects the true situation as there are clear indications that the Becke

functional underestimates the importance of the outer region. It has been demonstrated by Engel

et al. [49] for the case of atoms that the exchange energy density of Becke reaches its Coulombic

behaviour much further from the atomic nucleus (beyond 10 bohr) than the exact exchange energy

density which reaches this behaviour just past the outermost orbital. Also the Becke exchange

potential has a much too small contribution in the asymptotic region [49, 32] which is re
ected

in the fact that the LDA one-electron energies are not improved by the Becke potential[32]. The

consequences of the too fast decay of the Becke exchange potential for the asymptotic contribution

to the exchange energy can be inferred from the following de�nition of exchange energy density.

We de�ne the Levy-Perdew exchange energy density eLangrethPerdew:wavevectorx [22] in terms of the

exchange potential vx and the density � by:

eLPx (r) = vx(r)(3�(r) + r � r�(r)) (10.47)

This exchange energy density integrates to the exchange energy, which follows from a scaling

property of the exchange functional [22].

Ex[�] =

Z
eLPx (r)dr (10.48)

As the LDA+Becke exchange potential is much smaller in the outer region of the molecule than

the exact exchange potential it gives a too low contribution from this region. As a corollary, the
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Figure 10.4: Contributions of the Becke and Perdew functional to the bonding energy in the elliptic

(a) and cylindrical (b) coordinate system as a function of the minor elliptic axis (a) and the Z-

coordinate (b) at the equilibrium bondlength of 2.07 bohr

roughly 20% of the total positive nonlocal contribution to the bond energy that comes from the

outer region (in spite of the small �� in that region) is certainly too low.

Let us next consider the inner region of the molecule. In this region there are two contributions

to the exchange energy, there is a contribution from the bond midpoint region and a contribution

from the atoms. To determine the relative importance of the atomic regions and the bond midpoint

region we integrated �ex using the cylindrical coordinate system. In �gure 10.4b the functions �Ix
and �Ic of equation 10.46 are plotted as a function of Z. The integration regions are thus slabs of

thickness 2Z perpendicular to the bond axis centered around the bond midpoint. For Z = 1:035

bohr the slab is just touching the nuclei. We can see from �gure 10.4b that at Z = 0:5 bohr

which is about halfway the distance from the bond midpoint to the nucleus about half of the Becke

correction to the exchange energy is obtained. If we denote the region Z > 0:5 bohr (somewhat

arbitrarily) as atomic region then we can conclude that about half of the Becke correction is due

to a replacement of high atomic gradients by a region of low molecular gradients (equation 10.35)

around the bond midplane and half is due to changes in the density on the atoms as a result of bond

formation. Note that the peaks in �ex around the atoms in �gure 10.2 are only seemingly more

important than the bond midpoint peak in �ex as they are only restricted to a small area around

the nucleus whereas the bond midpoint peak also has a considerable extension in the direction

perpendicular to the bond axis as demonstrated in �gure 10.2c.

About the same conclusions as for Beckes exchange correction can be drawn for Perdews correlation

correction. As can be seen from �gure 10.2b the function �ec has a somewhat larger extension than

�ex into the outer region of the molecule. However from �gures 10.4a and 10.4b we still can conclude
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that the bond midpoint region (Z < 0:5 bohr) contributes about half of the nonlocal correlation

correction to the bonding energy.

We may wonder, as we did for the asymptotic region, whether the nonlocal corrections from the

inner region are given correctly by the Becke-Perdew functional. The analysis of section 10.3

indicates that the Becke-Perdew potentials are overestimated in the bond midpoint region and

therefore probably also the positive contribution to the bond energy. This �ts in with the suggestion

above that the contribution from the asymptotic region may be underestimated, since the total

Becke-Perdew correction yields quite accurate bond energies. The conclusion that the contribution

from the inner region is overestimated is supported by the fact that for solid state bulk systems

(which of course exhibit no asymptotic region) the Becke correction often overshoots and leads

instead of the overestimation by LDA to an underestimation of the cohesive energy [136, 137].

10.6 Conclusions

In this work we analysed the working of some gradient corrected density functionals in the case

of chemical bonding. From an analysis of the exact Kohn-Sham potential based on the work of

Buijse et al. [86] it follows that the exact exchange-correlation potential is peaked in the bond

midpoint region. This fact can be related to left-right correlation in the dissociating molecule.

It is shown that the Becke-Perdew potential also exhibits a peak in the bond midpoint region

but with a wrong functional dependence on the density which makes this peak go to in�nity at

in�nite separation of the atoms instead of going to a constant. Then we showed that one important

reason that gradient corrected density functionals reduce the bonding energy in overbinded LDA-

molecules is that these functionals replace a region of high gradients in the sum of atomic exchange-

correlation energy densities by a region of low gradients in the molecular exchange-correlation

energy density around the bond midpoint. This region of zero gradients arises purely due to

the topological properties of the molecular density and is not related to density changes upon

bond formation. We further argued that probably the relative importance of the bond midpoint

contribution as compared to the asymptotic contribution to the total nonlocal correction is not

represented completely correctly by the Becke-Perdew exchange-correlation energy densities. It

appears that the positive contribution from the bond region is overemphasised particularly in weak-

bonding (near dissociation) situations, in keeping with the overestimation of the bond midpoint

peak in the potential in weak bonding situations. On the other hand the contribution from the

asymptotic region is probably underestimated, in keeping with the too fast decay to zero of the

Becke-Perdew potentials [32].

In order to improve upon existing density functionals and to obtain further insight in the relation

between electron correlation and Kohn-Sham potentials we feel one should closely investigate the

relation between the structure of the exchange-correlation potential (shell- and bond midpoint

peaks, asymptotic Coulombic behaviour) and conditional amplitudes. The kinetic potential in

atoms for instance measures the in-out correlation e�ect and induces some structure in the atomic

correlation potential, just as it re
ects the left-right correlation in the peak at the bond midpoint.

It will obviously be very helpful to have exact molecular Kohn-Sham potentials available not just for

the two-electron H2 system but also for general many-electron molecules. This may be feasible with

the procedure proposed in ref. [32]. From there one might endeavour to construct very accurate

exchange-correlation potentials from the density and its derivatives. Work along this line is in

progress.



Chapter 11

Exchange and correlation: a density

functional analysis of the hydrogen

molecule

In this work we analyze the exact quantities Ts; Ex and Ec from density functional theory (DFT)

for the dissociating hydrogen molecule.These quantities obtained from con�guration interaction

calculations are compared with the approximate quantities within the local density approximation

(LDA) and within LDA with nonlocal corrections (LDA+NL). We also make a comparison of

the densities obtained within LDA and within the Hartree-Fock (HF) approximation. We further

analyze the atomic fragments in the dissociation limit within the LDA and Local Spin Density

(LSD) approximation. We conclude that LDA+NL gives a very good approximation to the exact

exchange and correlation energies at equilibrium distance, but a not so good approximation for

these quantities at large bond distances due to a incomplete cancelation of the Hartree potential

by the exchange-correlation potential in the atomic fragments in the limit of in�nite separation.

This error can be corrected by using the LSD and LSD+NL approach. We also demonstrate

that the present correlation functionals do not give a proper account of the correlation energy in

the dissociation limit, an error which is partly compensated by an overestimation of the exchange

energy providing a good total exchange-correlation energy. We will however show that conventional

de�nition of correlation energy within DFT is not a useful one in describing the physics of molecular

dissociation but one should rather consider the total exchange-correlation energy to describe the

physical situation. We analyze how several types of density changes due to bond formation a�ect the

various LDA and LDA+NL exchange and correlation energies, explaining the sign of the corrections

to the bond energy.

11.1 Introduction

Density functional theory [5] has become a very successful method in the calculation of electronic

properties of systems ranging from atoms to molecules [70, 122] and solids [47]. Especially in the

last few years after the the introduction of the so-called Generalized Gradient Approximations

(GGA) [44, 45, 43, 46, 50] or nonlocal (NL) corrections density functional theory has gained wide

popularity within the �eld of quantum chemistry through its ability to yield very good bond energies

which can compete with those obtained from other correlated quantum chemical methods. It has

for instance been widely applied to the �eld of transition metal chemistry [71] where many systems

183
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can not be studied by more conventional methods for practical reasons. Observing this large �eld

of application within chemistry it would be very desirable to investigate whether the physics of

for instance bond breaking is correctly described by the presently used density functionals. Such

an investigation would not only contribute to a better understanding of the physics behind the

phenomena in question but might also lead to the development of more accurate density functionals.

For this reason we calculated the some of the quantities which are used in DFT exactly for the case

of dissociating hydrogen molecule and compare them with the approximate ones obtained from

LDA and LDA+NL. The hydrogen molecule is one of the �rst molecules used as a test for the LSD

method [142, 143]. Its Kohn-Sham potential has been constructed and thorougly analyzed [86].

An analysis of the exact exchange-correlation energies has however not been presented. Bond

breaking is a specially interesting testcase for the presently used functionals as here correlation

e�ects (especially left-right correlation e�ects) are large.

We further want to analyze how the various exchange and correlation functionals (LDA and GGA)

contribute to the bond energy. In order to understand this we also studied the atomic fragments in

the in�nite separation limit. A question we like to answer in this paper is why the Becke-Perdew

nonlocal exchange-correlation correction as a rule gives a positive (repulsive) contribution for the

bond energy (as in all homonuclear �rst and second row diatomic molecules) with the exception

of the hydrogen molecule which is the subject of this paper. In order to answer this question we

analyze how the exchange and correlation contributions to the bond energy are changed by certain

density variations resulting from bond formation.

The paper is divided as follows. In section 11.2 we give a short account of the exact quantities we

want to calculate. In section 11.3 we discuss some properties and give some numerical results for

the atomic fragments in the dissociation limit in order to understand the role of the atomic error in

bond breaking. In section 11.4 we discuss the exact results for the DFT quantities as a function of

the bond distance obtained from accurate calculations. In section 11.5 we analyze the bond energy

contribution of several exchange and correlation functionals and analyze how they are in
uenced

by density variations. In section 11.6 we �nally present our conclusions.

11.2 Exchange and correlation in density functional theory

In this section we de�ne some of the quantities we will calculate in section 11.4. The energy

functional Ev within density functional theory is usually de�ned by the constrained search approach

of Levy and Lieb [67, 68]:

Ev[�] =

Z
�(r)v(r) + FL[�] (11.1)

where the functional FL is de�ned as:

FL[�] = min
D̂!�

TrfD̂(T̂ + Ŵ )g (11.2)

which minimizes the trace value of the kinetic energy T and the interparticle interaction W with the

set of N -particle density matrices D̂ yielding density �. The above formulation is important for the

consideration of degenerate ground states where D̂ can be a linear combination of density matrices

corresponding to pure states within the ground state multiplet. This is of importance for instance

when a molecule dissociates into open shell atoms with degenerate ground states. Moreover Ev is

also invariant under unitary transformations within the multiplet of degenerate wavefunctions. We

will return to this point again in section 11.3 when we discuss the in�nite separation limit of the
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dissociating hydrogen molecule. The functional FL is universal in the sense that it can in principle

be calculated for each density � independent of the external potential v. From its de�nition it is also

clear that FL is invariant under rotations and translations of the density �, providing important

constraints for approximate exchange and correlation functionals [32]. Within the Kohn-Sham

approach to density functional theory the functional FL is usually split up as follows:

FL[�] = TL[�] +

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 +Exc[�] (11.3)

in which TL is the Kohn-Sham kinetic energy which is the kinetic energy of a noninteracting particle

system with the same density � as the interacting system ,de�ned by constrained search as:

TL[�] = min
D̂!�

TrfD̂T̂g (11.4)

If the ground state Kohn-Sham wavefunction can be represented by a pure state density matrix

corresponding to a single Kohn-Sham determinant we will denote TL by Ts. We will do this for

instance for the hydrogen molecule. As we now have de�ned all functionals except Exc equation 11.3

actually de�nes Exc. The Euler-Lagrange equations obtained by minimizing Ev with respect to the

density can be written in the form of the well-known Kohn-Sham equations. For future reference

we give the spinpolarized equations with spin index �:

(�
1

2
r2 + vs;�(r))�i;�(r) = �i;��i;�(r) (11.5)

where

�(r) =
X
�

��(r) =
X
�

NX
i=1

fi�j�i;�(r)j2 (11.6)

where fi� are the orbital occupation numbers (in general fractional for degerate ground states) and

the vs;� is the Kohn-Sham potential:

vs;�(r) = v(r) +

Z
�(r1)

jr� r1j
dr1 + vxc;�([�]; r) (11.7)

where the exchange-correlation potential vxc is the functional derivative of the exchange-correlation

functional Exc with respect to the density ��. We further de�ne the exchange functional as:

Ex[�"; �#] =
X
�

�
1

2

Z j
s;�(r1; r2)j2

jr1 � r2j
dr1dr2 (11.8)

where 
s;� is the Kohn-Sham density matrix:


s;�(r1; r2) =

N�X
i

fi��
�
i;�(r1)�i;�(r2) (11.9)

This is for a �xed density ensemble, i.e. for �xed occupation numbers fi� , a density functional [67,

68] as the Kohn-Sham orbitals and therefore also the Kohn-Sham one-particle density matrix are

uniquely determined by the ensemble density ( an explicit construction procedure has been given

in [32] ). The Kohn-Sham one-particle density matrices corresponding to di�erent ground state

ensemble densities are di�erent and therefore they lead in general to di�erent exchange energies.
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The exchange potential vx;�(r) = �Ex=���(r) for spherical atoms has the following long range

asymptotic behaviour [49, 35]:

vx;�(r) � �
fm;�

r
(r !1) (11.10)

where fm;� is the occupation of the highest occupied Kohn-Sham orbital. From this formula it

is clear that it depends on the occupation fm;� of the highest occupied Kohn-Sham orbital to

which amount the self-energy is being cancelled. For nondegenerate ground states one always has

fm;� = 1 and for this case the self-energy is always being cancelled. This has important implications

for dissociating molecules which dissociate into open shell fragments that have degenerate ground

states as will be discussed in the next section.

For closed shell systems we can simplify the above exchange functional as:

Ex[�] = �
1

4

Z j
s(r1; r2)j2

jr1 � r2j
dr1dr2 (11.11)

where 
s =
P
� 
s;�. Finally the correlation energy functional is de�ned as:

Ec[�] = Exc[�]�Ex[�] (11.12)

Note that the de�nition of exchange-correlation energy in other quantum chemical methods ,which

we will denote by Wxc, di�ers from the above de�nition in density functional theory, the relation

being:

Wxc[�] = Exc[�]� Txc[�] (11.13)

where Txc is given by:

Txc[�] = T [�]� Ts[�] (11.14)

and where T is the kinetic energy functional which for nondegenerate ground states is de�ned as

the expectation value of the kinetic energy operator with the wavefunction which minimises FL
within constrained search, which is just the ground state kinetic energy if we insert the ground

state density. Note that T [�] is only de�ned for nondegenerate ground state densities as otherwise

� could be generated by two di�erent degenerate ground state wavefunctions, corresponding to

the same total energy but having di�erent expectation values with the kinetic energy operator [5].

For a density corresponding to a nondegerate ground state Wxc is just the expectation value of

the ground state wavefunction with the interparticle interaction operator Ŵ minus the Coulomb

repulsion energy. It is readily shown using equations 11.2 and 11.4 that Txc[�] � 0 so:

Exc[�] �Wxc[�] (11.15)

We have now de�ned all the quantities we need for our analysis of the dissociating hydrogen

molecule. In one of the following sections we will compare the above de�ned functionals Ts; Ex and

Ec calculated from accurate Con�guration Interaction calculations with those of the Local Density

Approximation (LDA) and with the Generalized Gradient Approximation (GGA) for several bond

distances.
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11.3 The in�nite separation limit

For the case of a hydrogen molecule the Kohn-Sham equations (in the spin restricted case) reduce

to the following di�erential equation involving only the electron density:

(�
1

2
r2 + vs([�]; r))

q
�(r) = �

q
�(r) (11.16)

The Kohn-Sham kinetic energy is for a two-electron system given by:

Ts[�] =
1

8

Z
(r�)2

�
dr (11.17)

The exchange functional in this case is then given by:

Ex[�] = �
1

4

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 (11.18)

and the corresponding exchange potential :

vx([�]; r) =
�Ex

��(r)
= �

1

2

Z
�(r1)

jr� r1j
dr1 (11.19)

which is just minus onehalf times the Hartree potential. So the Kohn-Sham potential becomes:

vs([�]; r) = v(r) +
1

2

Z
�(r1)

jr� r1j
dr1 + vc([�]; r) (11.20)

If we neglect the correlation potential vc then we just obtain the Hartree-Fock equations or the

optimized potential model [33, 35] equations for this two-electron system. This is of course a bad

approximation for cases where correlation e�ects are large such as in the dissociation limit where

left-right correlation e�ects are large. In this limit the Kohn-Sham potential can be approximated

by the sum of atomic Kohn-Sham potentials and the Kohn-Sham potential becomes:

vs([�]; r) � vs([�A]; r � RA) + vs([�B ]; r � RB) (11.21)

where the atomic nuclei are on positions RA and RB . The last step in this approximation is only

valid in the regions of the atoms and not in the bond midpoint region. In this region the Kohn-Sham

potential vs is small in the dissociation limit and approximating this by the sum of atomic densities

might be a bad approximation. This is re
ected by the fact that a peak structure is develops in the

Kohn-Sham potential [86, 90] indicating strong left-right correlation e�ects. In the region of each

atom we have :

vs([�]; r � RA) = vA(r) +
1

2

Z
�A(r1)

jr� r1j
dr1 + vc([�]; r � RA) (11.22)

where vA is the potential of the atomic nucleus. For the hydrogen molecule the atoms are just

the hydrogen atoms which are one electron systems for which the Kohn-Sham potential should of

course just be the nuclear potential vA .It follows that the correlation potential vc should be equal

to minus onehalf the Hartree potential and thus be equal to the exchange potential in this limit.

The Hartree-Fock approximation is obtained by neglecting this correlation potential and therefore

the potential is too repulsive making the electron too weakly bound and the density too di�use.

This is a well-known error of the Hartree-Fock approximation which is usually solved by doing a

spin unrestricted Hartree-Fock calculation. Let us now turn this Hartree-Fock problem for a more

general homonuclear diatomic molecule. Suppose we consider dissociating closed shell diatomic
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molecule and suppose that in the dissociation limit (where we can neglect the overlap of the atomic

orbitals) we have M� bonding molecular orbitals �i� = (�Ai� + �Bi�)=
p

2 and their corresponding

antibonding combinations �i� = (�Ai� � �Bi�)=
p

2 ,where �
A;B
i� are the atomic orbitals of atoms A

and B, and N� �M� molecular orbitals without corresponding antibonding combinations. Then

the one-particle density matrix 
� of the molecule in the region of atom A becomes:


A� (r1; r2) =

M�X
i=1

�Ai�(r1)�
A�
i� (r2) +

N�X
i=M�+1

1

2
�Ai�(r1)�

A�
i� (r2) (11.23)

and the corresponding atomic exchange energy becomes:

EAx =
X
�

�
1

2

Z j
A� (r1; r2)j2

jr1 � r2j
dr1dr2 (11.24)

The atom A in this limit has N� � M� degenerate orbitals with occupation number 1
2

in the

outermost atomic shell. The corresponding one-particle density matrix can not be represented by

a single determinant but it can be written as:


A� (r1; r2) =

NAX
i

wi

A
i�(r1; r2) (11.25)

where 
Ai is the one-particle density matrix correponding to the i-th degenerate con�guration in

the NA-fold degenerate ground state multiplet and
PNA
i wi = 1. The Hartree-Fock solution for the

atom A in the in�nite separation limit can be obtained by minimizing the energy:

EFHF =
X
�

�
1

2

Z
r2

2

A
� (r1; r2)j1=2dr1dr2 +

Z
�(r1)vA(r1)dr1+

1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 �

X
�

1

2

Z j
A� (r1; r2)j2

jr1 � r2j
dr1dr2 (11.26)

where 
A� is given by 11.23. This procedure we will call fractional Hartree-Fock (FHF). We will

present numerical results for this procedure for the case of the hydrogen atom in section 11.4. Ap-

plication of this FHF method leads to an incomplete cancellation of the self-energy for open shell

atoms, which is the cause of the Hartree-Fock error for dissociating molecules.

Before we go further into this point we �rst discuss the behaviour of the Local Density Approxi-

mation in this limit. Within LDA the exchange energy is given by:

Ex[�"; �#] =
X
�

�cx
Z
��(r)

4
3 dr (11.27)

where the constant cx is given by 3
4
( 6� )

1
3 . For the spin-restricted case we obtain:

Ex[
1

2
�;

1

2
�] = �

cx

2
1
3

Z
�(r)

4
3dr (11.28)

The LDA correlation potential is much smaller than the exchange potential so we will neglect this

potential for the moment and make a comparison with the Hartree-Fock approximation. Doing

a restricted LDA calculation for an open shell atom is similar to doing an FHF calculation, one
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Figure 11.1: Minus the Hartree potential and the exchange-correlation potential for the hydrogen

atom from LDA and LSD calculations as a function of the distance from the atomic nucleus

Figure 11.2: Minus half of the Hartree potential and the exchange-correlation energy density for

the hydrogen atom from LDA and LSD calculations as a function of the distance from the atomic

nucleus
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H-atom LDA LDA (�e) LSD LSD (�e) KS FHF

� -0.2335 -0.2690 -0.5000 -0.2295

Ts; T
HF 0.4250 0.5000 0.4666 0.5000 0.5000 0.3578

ENe -0.9210 -1.0000 -0.9656 -1.0000 -1.0000 -0.8437

EC 0.2828 0.3125 0.2984 0.3125 0.3125 0.2565

Etot -0.4457 -0.4416 -0.4787 -0.4776 -0.5000 -0.3577

Etot+NL -0.4650 -0.4629 -0.4999 -0.4996

Ex -0.1931 -0.2127 -0.2564 -0.2680 -0.1563 -0.1283

Ex+NL -0.2357 -0.2588 -0.2968 -0.3097

Ec -0.0394 -0.0414 -0.0217 -0.0221 -0.1563

Ec+NL -0.0161 -0.0166 -0.0025 -0.0024

Exc -0.2325 -0.2541 -0.2781 -0.2901 -0.3125

Exc+NL -0.2518 -0.2754 -0.2993 -0.3121

Table 11.1: Energies of the atomic fragment in the in�nite separation limit

just fractionally occupies each of the degenerate LDA Kohn-Sham orbitals in the outermost atomic

shell. The exchange-only LDA Kohn-Sham potential for atom A is then given by:

vs([�A]; r) = vA(r) +

Z
�A(r1)

jr� r1j
dr1 �

4

3

cx

2
1
3

�A(r)
1
3 (11.29)

Also this exchange-potential gives an incomplete cancelation of the Hartree potential, however

the cancelation is better than in the FHF case. More important, as has been pointed out by

Gunnarsson et al. [144] and shown in �gure 11.1, is the fact that the di�erence between the LDA

exchange correlation potential and the Hartree potential is an almost constant function. A constant

shift (of about 0.2 a.u. ) in the potential a�ects the eigenvalue but not the density. Note that

this constancy is approximately independent of the nuclear charge as both the Hartree and the

exchange potential (which is the main part of the exchange-correlation potential) have a similar

scaling property with respect to the nuclear charge.

If we look at the energy expressions in LDA we see a much better cancelation of the exchange-

correlation energy and the electron repulsion than for the corresponding potentials. This has been

displayed for in �gure 11.2 where we plot the LDA ( and LSD to be discussed later on ) exchange-

correlation density �xc and minus half of the Hartree potential �vH . The most important di�erence

between a LDA and an Hartree-Fock calculation is therefore the di�erence in energy expressions

for the exchange energy leading to a better cancelation of the self-energy of the atoms in the

in�nite separation limit. The importance of this di�erence in energy expressions is apparent from

table 11.1 in which we display the several energy terms of the hydrogen atomic fragments in the

in�nite separation limit for the self-consistent LDA ,LSD, FHF approximations and for the exact

Kohn-Sham values. To show the dependency on the quality of the density we also included the

LDA and LSD results calculated from the exact density �e. As we can see from this table both LDA

and HF make an error in the electron nuclear attraction energy and in the kinetic energy which are

almost equal but of opposite sign, which leaves a small error. Now we note the importance of the

di�erent energy expressions for the exchange energy. The LDA exchange energy is roughly equal to

the exact exchange-correlation energy, whereas the LDA correlation energy is much smaller than

the exact correlation energy, which leads to a rather good value of the exchange-correlation energy

and a cancellation of the electron repulsion energy. This then gives a good approximation of the

total atomic energy. The HF exchange energy is however only half of the electron repulsion energy
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and therefore gives a bad estimate of the total atomic energy.

The Hartree-Fock results for the dissociating hydrogen molecule can be improved (an in fact will give

the exact limit for this special case) by performing an unrestricted Hartree-Fock (UHF) calculation

in which one breaks the spin symmetry and localizes one spin up electron on one atom and a spin

down electron on the other atom. A similar procedure can be carried out in density functional

calculations using a spin density functionals. A better description than LDA for the dissociated

atom in the in�nite separation limit is obtained in the Local Spin Density (LSD) approximation.

This method has been thorougly investigated by Gunnarsson and Lundqvist [127]. In spin density

functional theory one uses di�erent potentials for the spin up and spin down electrons. As in UHF

this leads to a violation of the spin rotational symmetry. Using LSD one can for instance solve the

Kohn-Sham equations for the hydrogen atom containing only one electron with quantum number

Sz = �1. Performing a spin rotation which leads to a di�erent mixture of spin densities will give

a di�erent LSD energy. We will now investigate this problem more closely.

The exact ground state solution for the hydrogen atom A at in�nite separation ,as obtained from

singlet ground state wavefunction of H2, is given by:

 (r; s) =
q
�A(r)(c1�(s) + c2�(s)) (11.30)

with c1 = 1=
p

2 and c2 = i=
p

2. The ground state energy should not change when we perform an

unitary transformation on the vector (c1; c2) and the energy should therefore not depend on the

spinpolarisation [145, 146] of the two degenerate spin states. In general ,if we have an electron

density � which is a linear combination of densities �i =
P
� �i� corresponding to pure eigenstates

within one M -fold degenerate ground state multiplet, i.e:

�(r) =

MX
i

wi�i(r) (11.31)

with
PM
i wi = 1, then any density obtained from the above density by a unitary transformation

within the space of degenerate states should yield the same ground state energy. This is an im-

mediate consequence of the de�nition of the functional FL. This means for the example of the

hydrogen atom that the spinrestricted density which is a linear combination ( w1 = w2 = 1
2

in

equation 11.31) of the degenerate pure spin up and spin down densities ( (c1; c2) = (1; 0) and (0; 1)

in equation 11.30 ) should yield the ground state energy for the hydrogen atom. As the invariance

property for unitary transformations within the degenerate ground state multiplet is not ful�lled

for the presently used approximate density functionals they do not decribe properly the dissocia-

tion of closed shell molecules into open shell atoms with degenerate ground states. These atomic

fragments in the dissociation limit are spinrestricted atoms with fractional occupation ( as in the

FHF case, see equation 11.23 ) of the degenerate orbitals. This is also true in the exact Kohn-Sham

case for which the corresponding density then corresponds to an ensemble ( see equation 11.31 ) of

pure state multiplet densities which gives the exact ground state energy of the atom when inserted

in the energy functional Ev. The total energies of the dissociated atomic fragments in the LDA

case however are too large, but smaller than the Hartree-Fock ( FHF ) atoms in this limit. As

an unrestricted LSD calculation lowers the atomic energy this yields an improvement of the total

atomic energy although such a correction should not be needed from a theoretical points of view.

From table 11.1 we can see the LSD improvements in the density re
ected in the good estimates

for electron nuclear attraction energy and the kinetic energy, leading to a very good estimate of

the total energy especially if the nonlocal corrections are included.

After studying the in�nite separation limit we will in the next section study some exact density

functional quantities as a function of the bond distance.



192 EXCHANGE AND CORRELATION..

Figure 11.3: Electron-electron repulsion energy as a function of the bond distance

11.4 Numerical results

In order to calculate exact Kohn-Sham quantities Ts; Ex and Ec for the hydrogen molecule we

performed some accurate Con�guration Interaction (CI) calculations at several bond distances. We

compare these accurate results with Hartree-Fock and self-consistent density functional calculations

within the Local Density Approximation. The nonlocal exchange functional of Becke [44] and the

nonlocal correlation functional of Perdew [45, 147] where added on top of the LDA calculation

(using the VWN-correlation potential [85] ) in a post-scf manner. The e�ect of not including the

Becke and Perdew functionals in a selfconsistent manner is negligible [139] as the in
uence of these

potentials on the density is very small.

We �rst look at some density dependent quantities. In �gure 11.3 we plotted the Coulomb

repulsion energy of the electronic cloud given by:

EC [�] =
1

2

Z
�(r1)�(r2)

jr1 � r2j
dr1dr2 (11.32)

calculated from the HF, CI and LDA densities. We can see from this �gure that the Coulomb

repulsion energy approaches much earlier the 1=R(R !1) behaviour, which is just the repulsion

of point charges with charge one, than the HF and LDA densities. That the LDA graph is closer

to the CI graph than the HF graph is in accordance with the result of the previous section that

the HF-density density is the most di�use one. This fact is supported by �gure 11.4 which plots

the electron nuclear attraction energy:

ENe[�] =

Z
�(r)v(r)dr (11.33)
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Figure 11.4: Electron nuclear attraction energy as a function of the bond distance

where v is the Coulomb potential of the atomic nuclei. We again can see that the correct asymptotic

behaviour �2 � 2=R(R ! 1) is reached much earlier by the CI density, the worst density again

being the HF-density.

Another measure of the quality of the electron density is the kinetic energy T and the Kohn-Sham

kinetic energy Ts. In �gure 11.5 we plotted the kinetic energies TCI and THF and the Kohn-Sham

kinetic energies Ts and TLDAs , where Ts is calculated from the CI-density. We can see from this

�gure that the graphs of TCI and Ts are very close at all bond distances, the di�erence being the

exchange-correlation part Txc of the kinetic energy. The LDA kinetic energy TLDAs has a large de-

viation from Ts at large bond distances which approaches quickly the atomic error in this quantity.

The HF kinetic energy at these bond distances then deviates even more from TCI again re
ecting

the di�useness of the density and the bad representation of the atomic fragments. Note however

that at large distances the LDA and HF errors in the electron nuclear attraction energy and the

kinetic energy are approximately equal and of opposite sign, giving a good approximation for the

sum of those quantities.

In the vicinity of the equilibrium bond distance (1.401 bohr) the errors in the HF and LDA densities

are small and in that case we have a good estimate of the energy terms described above.

In �gure 11.6 we plotted the total energies for the CI, HF, LDA and LDA+NL with the nonlocal

corrections of Becke and Perdew added. We also calculated the expection value of the LDA Kohn-

Sham determinant, which is just the HF expression for the energy but with LDA orbitals inserted.

We will denote the corresponding graph by HFLDA. We see that the curves HF, HFLDA and LDA

are very close around the equilibrium distance. Also the CI and LDA+NL are very close in this

bond distance region. At large bond distances all the curves deviate from the CI curve, the worst

ones being HF and HFLDA (the HFLDA a little higher than HF because the LDA determinant
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Figure 11.5: Kinetic energy and Kohn-Sham kinetic energy as a function of the bond distance

Figure 11.6: Total energy as a function of the bond distance
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Figure 11.7: Exchange-correlation energy as a function of the bond distance

Figure 11.8: Exchange energy as a function of the bond distance
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does not minimize the HF energy expression). The fact that the LDA curve is so much closer

to the CI curve than the HFLDA curve is mainly due to a di�erent expression for the exchange

energy. The LDA exchange energy gives a better cancelation of the electron repulsion energy in the

atomic fragments than the HF and HFLDA exchange energy which cancel only half of the electron

repulsion energy. As the nonlocal corrections give an additional energy lowering the best curve at

all distances is given by the LDA+NL curve.

To analyze the several exchange and correlation functionals more closely we plotted in �gure 11.7

the exchange-correlation energies Exc;Wxc; E
LDA
xc and ELDA+NLxc as a function of the bond distance.

From this plot we can see that indeed Exc �Wxc the di�erence being the exchange-correlation part

Txc of the kinetic energy. At large bond distances Exc and Wxc approach �EC thereby canceling the

electron repulsion energy. Due to incomplete cancelation of this term within LDA and LDA+NL

exchange-correlation energies we expect the largest errors in these quanties at large separation. We

can see from �gure 11.7 that this is indeed the case. Both ELDAxc and especially ELDA+NLxc give

a very good approximation to the exact Kohn-Sham exchange-correlation energy Exc around the

equilibrium distance. At larger distances both ELDAxc and ELDA+NLxc deviate from the exact Exc
the di�erence approaching fast the atomic error in these quantities.

We will now investigate the separate behaviour of the exchange and correlation energies. In �g-

ure 11.8 we plot the exchange energies Ex; E
HF
x ; ELDAx and ELDA+NLx as a function of the bond

distance. We can see the same trends as for the total exchange-correlation energies. We have a very

good description of the exact exchange energy Ex at equilibrium distance especially by ELDA+NLx

and large errors at large distance. The ELDA+NLx exchange will of course approach two times its

value for the spinrestricted atoms in the large distance limit. However one should realize that the

de�nition of exact exchange as de�ned in equation 11.8 is not a useful one to describe the physics

of bond breaking as the corresponding exact exchange potential does not contain the complete self-

energy correction of the atomic fragments. This means that the correlation potential which has to

correct this should contain part of the self-energy which gives obviously a rather unphysical descrip-

tion of the correlation energy. As discussed this not only a feature of bond breaking but a general

problem in the calculation of open shell systems within a spin restricted formalism. Let us look

more closely at the correlation energies. In �gure 11.9 we plot the correlation energies Ec; E
LDA
c

and ELDA+NLc . We can see that ELDAc and ELDA+NLc have a very slow variation with respect to the

bond distance. The ELDAc represents the VWN parametrization of electron gas correlation energy

data giving a correlation energy which about a factor two too large in the molecule at equilibrium

distance and in the atomic fragments. Addition of the Perdew gradient correction to the correlation

energy gives very good values for the correlation energy for the molecule at equilibrium distance

and in atoms and is also almost constant as a function of the bond distance. This is not the case

for the correlation energy Ec as de�ned in equation 11.12 .The graph of Ec approaches just as Ex
the value �1

2
EC at large bond distances and becomes much larger than ELDAc and ELDA+NLc . This

is due to the fact that Ec has to cancel half of self-energy. The approximate functionals ELDAc ,

which is �tted to electron gas data, and the ELDA+NLc , which is �tted to atomic data, are of course

unable to imitate this behaviour.

In view of the inconvenient de�nition for exchange and correlation in the dissociation limit it is

better to regard the total exchange-correlation energy. The total exchange-correlation energy of an

atom is a quantity which automatically cancels the self-energy, as the exchange-correlation hole al-

ways will integrate to one electron, also for degenerate ground state wavefunctions. However Exc is

in general still di�erent for di�erent ground state ensemble densities but due to the correct inclusion

of the self-energy these di�erences are smaller than for the exchange or correlation alone. These

di�erences in Exc can of course not be avoided as di�erent degenerate ground state wavefunctions
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Figure 11.9: Correlation energy as a function of the bond distance

will in general have di�erent expectation values for any other operator than the total energy oper-

ator. From the above considerations it is clear that for the case of dissociating molecules it is much

easier to �nd appropriate approximations for Exc than for Ex and Ec as de�ned in equations 11.8

and 11.12.

We can therefore conclude that LDA+NL gives a very good description of the properties of the

molecule ( including exchange and correlation energies ) at equilibrium distance. The remaining

errors for LDA and LDA+NL are due to errors in the Coulomb repulsion and in the exchange-

correlation energy and the molecular error is quickly approaching the atomic errors in this quan-

tity. These is however not a problem in practical calculations as a spin unrestricted calculation

with one spin density on one atom gives a good description of the total atomic energy and one can

get good binding curves at all distances using spin unrestricted Kohn-Sham calculations similar

to UHF calculations. This is however unsatisfactory from a theoretical point of view as ,due to

unitary transformations among the degenerate ground states of the exact density functional Ev,

spin restricted and spin unresticted calculations on the hydrogen atom should give the same energy.

In the next section we will investigate how and why several LDA and nonlocal (GGA) in
uence

the bond energy as they do and how this is related to density changes.

11.5 An analysis of bond energy contributions

In this section we will investigate how the various exchange and correlation energy contributions

(LDA and GGA) to molecular bonding energy are a�ected by certain density changes. We therefore

construct the molecular density of the hydrogen molecule in two steps. First ��, which is the sum
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H2 LDA KS HF

�� ��
Ts; T

HF 1.107 0.863 1.116 1.140 1.125

ENe -3.602 -3.220 -3.556 -3.647 -3.631

EC 1.297 1.128 1.257 1.321 1.316

Etot -1.137 -1.091 -1.109 -1.172 -1.133

Etot+NL -1.178 -1.126 -1.150

Ex -0.559 -0.488 -0.547 -0.661 -0.658

Ex+NL -0.648 -0.566 -0.636

Ec -0.089 -0.089 -0.093 -0.039

Ec+NL -0.041 -0.046 -0.045

Exc -0.648 -0.577 -0.640 -0.700

Exc+NL -0.689 -0.612 -0.681

Table 11.2: Energies of hydrogen molecule at equilibrium distance (R=1.401 bohr)

of atomic densities, is made. For the hydrogen molecule this density is given by:

��(r) =
1

�
(e�2jrj + e�2jr�

~Rj) (11.34)

where ~0 and ~R are the positions of the atomic nuclei. The bond energy contribution of a quantity

E corresponding to the density �� we will denote by �E�, so we have:

�E� = E[��]�E[�A]�E[�B ] (11.35)

In the second step there is a change from �� to real molecular density which we will approximate

by a density contraction:

��(r; ~R) = �3��(�r; � ~R) (11.36)

which is just a scaling transformation. The bond energy contribution caused by this second density

change we will denote by �E�:

�E� = E[��]�E[��] (11.37)

A third contribution to the bond energy is caused by going from spin restricted to spin unrestricted

atoms. This energy change is not caused by a change in the spatial electron density but by a

change in the electron spin densities. This third energy change we will denote by �Es. We will

now discuss how the two described density changes and the spin density change a�ect the bond

energy contributions of the LDA and GGA exchange and correlation functionals.

LDA exchange. The bond energy contribution �Ex;� for this case is given by:

�Ex;� = �cx
Z

((�A(r) + �B(r))
4
3 � �A(r)

4
3 � �B(r)

4
3 )dr < 0 (11.38)

This follows directly from the fact that:

(x + y)
4
3 > x

4
3 + y

4
3 (11.39)
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if x; y > 0. For our model density we have �Ex;� = �1:70 eV. In order to estimate the bond energy

contribution �E� we use the scaling property of the exchange functional [22].

Ex[��(r; ~R)] = �Ex[�(r; � ~R)] (11.40)

where ~R is the relative position vector of the atomic nuclei. An expansion of equation 11.40 in

powers of �� 1 yields:

�Ex;� = (�� 1)(Ex[��] + ~R �
Z
vx([��]; r)r~R

��(r)dr) +O((�� 1)2) (11.41)

If we neglect the second term (assuming that Ex[��(r; ~R)] varies much faster with respect to � than

with respect to ~R ) and we obtain:

�Ex;� � (�� 1)Ex[��] < 0 (11.42)

The optimal � with minimizes the LDA+GGA functional is given by � = 1:140 and therefore we

obtain to a good approximation:

�Ex;� = 0:140Ex[��] (11.43)

Using the above formula we �nd �Ex;� = �1:86 eV. An actual calculation of Ex[��] gives �Ex;� =

�1:60 eV. Finally there is the correction by going from spin unrestricted to spin restricted atoms.

As can be seen from formula 11.27 this lowers the LDA exchange energy by a factor 2
1
3 . We

therefore obtain the following positive correction to the bond energy:

�Es;x = �(2
1
3 � 1)(Ex[�A] +Ex[�B ]) = 2(2

1
3 � 1)(

3

4
)4(

3

�2
)
1
3 = 3:01 eV (11.44)

In general we can say that both formation of �� and contraction of the density give a negative

contribution to the bond energy contribution of the LDA exchange energy and that the spin unre-

stricted corrections give a positive contribution.

GGA exchange. We consider in particular the Becke exchange correction. However our conclu-

sions remain valid for a broad class of nonlocal exchange corrections of the Becke form. The Becke

exchange energy correction is given by:

Ex[�"; �#] =
X
�

Z
��(r)

4
3 f(x�)dr (11.45)

where

f(x) = ��
x2

1 + 6�x sinh�1 x
(11.46)

with � = 0:0042 and

x�(r) =
jr��(r)j
��(r)

4
3

(11.47)

Spin-unrestricted we have:

Ex[�] =
1

2
1
3

Z
�(r)

4
3 f(2

1
3x)dr (11.48)
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The bond energy correction �Ex;� due to the Becke exchange is given by:

�Ex;� =
1

2
1
3

Z
(��(r)

4
3 f(2

1
3x�)� �A(r)

4
3 f(2

1
3xA)� �B(r)

4
3 f(2

1
3xB))dr (11.49)

The main contribution to the integrand of the above integral arizes in the bond midpoint region of

the molecule where the molecular gradients are small (in the bond midpoint they are exactly zero

). In that case it is easily seen that we have:

�Ex;� > 0 (11.50)

Within our model we �nd �Ex;� = 0:38 eV. If we now contract the density then we have consider-

able changes in the density at the atomic nuclei. As the Becke exchange functional scales according

to equation 11.40 we can use the same arguments as for the LDA exchange and use equation 11.42

in order to calculate �Ex;�. Both an exact calculation and the approximate formula 11.42 give

�Ex;� = �0:30 eV.

The atomic spin unrestricted correction to the Becke exchange is given by:

�Ex;s = 2

Z
�A(r)

4
3 (f(xA)�

1

2
1
3

f(2
1
3xA))dr < 0 (11.51)

We �nd �Ex;s = �0:24 eV. So we can say in general that both formation of the density �� and

the spin unrestricted corrections give a positive contribution to the bond energy. The density con-

traction leads to a negative contribution.

LDA correlation. Due to the rather complicated nature of the Vosko-Wilk-Nusair expression for the

LDA correlation energy it is di�cult to predict the change in this expression due to the described

density variations. We �nd by numerical evaluation that �Ec;� = �0:17 eV, �Ec;� = �0:11 eV

and �Ec;s = �1:05 eV.

GGA correlation. We consider the Perdew correlation correction which is given by:

Ec[�"; �#] =

Z
1

d(�)
C(�)g(�; jr�j)dr (11.52)

where

g(�; jr�j) = �
4
3x2e��(�;jr�j) (11.53)

with

x =
jr�j
�
4
3

(11.54)

where � = (�" � �#)=� is the spin polarization and:

d(�) = 2
1
3 ((

1 + �

2
)
5
3 + (

1� �

2
)
5
3 )

1
2 (11.55)

The function C(�) is a local function of the density and has been obtained from the gradient

expansion for slowly varying densities of the correlation energy of the electron gas. The function

� is given by:

�(�; jr�j) = 1:745 ~f
C(1)

C(�)

jr�j
�
7
6

(11.56)
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where ~f = 0:11. This function is obtained from the wavevector analysis of Langreth and Mehl. For

the spin unpolarized case we have (d=1) :

Ec[�] =

Z
C(�)�

4
3x2e��(�;jr�j)dr (11.57)

We then have:

�Ec;� =

Z
(C(��)g(��; jr��j)� C(�A)g(�A; jr�Aj)� C(�B)g(�B ; jr�B j)dr (11.58)

As with the Becke exchange correction the main contribution to the above integral arises from

the molecular bond midpoint region where the density gradients of the molecule are small ( the

function g is exactly zero in the bond midpoint region ) so we �nd:

�Ec;� < 0 (11.59)

Within our model we �nd �Ec;� = �0:17 eV. The Perdew correlation functional does not scale

like the exchange functional. However due to the fact that the function C is almost constant as a

function of the density and the importance of the term �
4
3x2 it is to a good approximation true (as

we checked for several values of � ) that (at least for atomic and molecular densities):

Ec[��(r; ~R)] � �Ec[�(r; � ~R)] (11.60)

which yields just as for the exchange case:

�Ec;� � (�� 1)Ec[��] > 0 (11.61)

A calculation using the above formula (using the optimal value � = 1:140 ) yields �Ec;� = 0:16

eV. An actual calculation gives �Ec;� = 0:13 eV.

We �nally consider the atomic spin corrections. For spin polarized hydrogen atom we have an spin

polarisation � = 1 and d(�) = 2
1
3 which means that the Perdew correlation energy for the spin

unpolarized hydrogen atom is a factor 2
1
3 times this energy for the spin polarized atom (assuming

that the spatial densities are the same). So we �nd:

�Ec;s = 2(2
1
3 � 1)Ec[�A] > 0 (11.62)

Within our model we �nd �Ec;s = 0:28 eV. So for the Perdew correction the formation of �� gives

a negative contribution to the bond energy and both the density contraction and spin polarization

corrections give a positive contribution to the bond energy.

As can be seen from the above analysis the actual sign of the bond energy contribution of the

several exchange and correlation energies to the bond energy depends on some opposing e�ects.

However as a rule the Becke exchange correction is positive and lowers the bond energy and the

Perdew correlation correction is negative and increases the bond energy. This is for instance true

for all �rst and second row homonuclear diatomic molecules. A notable exception being the hydro-

gen molecule which is the subject of this paper. However the hydrogen molecule is a rather special

case due the absence of core electrons so that density changes on the nuclei , which a�ect �E�
are rather important. Also the spin corrections for the atoms are rather large because the spin

polarized hydrogen atoms are an extreme case of spin polarization with � = 1. Those corrections

are smaller for atoms with a less extreme spin polarisation. This means that in applications to other

molecules the most important correction to the bond energy is the term �E� which is positive for

the Becke exchange correction and negative for the Perdew correlation correction which con�rms

the actual trend observed.
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11.6 Conclusions

In this work we analyzed the exact exchange and correlation energy Ex and Ec as well as the Kohn-

Sham kinetic energy Ts as a function of the bond distance for the case of a dissociating hydrogen

molecule. These quantities are compared with the correspnding ones from the local density approx-

imation and nonlocal corrections. The LDA+NL gives a very good account for these quantities

at equilibrium separation and gives a binding curve close to the exact one. At large separation

the LDA and LDA+NL give a not so good description of the binding curve due to errors in the

total atomic energies. These errors are caused by the fact the presently used approximate density

functionals for the case of degenerate ground states are not invariant under unitary transforma-

tions within the ground state multiplet. Correct dissociation can however be obtained through

the construction of approximate density density functionals which give a good total ground state

energy for open shell atoms within a spin restricted formalism. The construction of such density

functionals remains a future challenge. It is further shown that LDA plus nonlocal correlation is

unable to describe the left-right correlation by underestimating this correlation energy. This error

is partly corrected by a corresponding overestimation of the exchange energy.

The fact that the Becke-Perdew correction in the hydrogen molecule is negative instead of the the

usual positive correction is shown to be related to special property of the hydrogen molecule of

having no core electrons which make density contraction e�ects important. Another important fact

in this respect is the fact the spin corrections for the atomic fragments in this molecule have a large

e�ect due to the extreme polarization of the polarized atoms.



Chapter 12

Energy expressions in density

functional theory using line integrals

In this paper we will adress the question of how to obtain energies from functionals when only

the functional derivative is given. It is shown that one can obtain explicit expressions for the

exchange-correlation energy from approximate exchange-correlation potentials using line integrals

along paths within the space of densities. The path dependence of the results is discussed and

criteria for path independence are given. Derivations are given of upper and lower bounds to the

exchange-correlation energy in terms of the exchange-correlation potential at the beginning and

the end point of a certain path. We further express the kinetic part Txc of the exchange-correlation

energy in terms of a line integral and derive a constraint on approximate correlation potentials. We

show how to use the line-integral formalism to derive the requirements which exchange-correlation

potentials must ful�l in order to make the exchange-correlation functional satisfy some symmetry

property such as rotational and translational invariance and scaling properties. Finally we will

discuss how to obtain bonding energies of molecules from approximate potentials.

12.1 Introduction

Density functional theory [5] has in the last few years been succesfully applied with increasing

accuracy to systems ranging from atoms and molecules [71, 70, 122] to surfaces and solids [47]. Es-

pecially the introduction of the so-called generalized gradient expansion approximations (GGA) [44,

50, 46, 43, 45] for the exchange-correlation energy has constituted a great improvement over the lo-

cal density approximation (LDA) in the calculation of for instance molecular bond energies. In view

of the accuracy of the GGA energy expressions for the exchange-correlation functional and their

improvement of the LDA energy expressions it is surprising that the GGA exchange-correlation

potential gives little improvement over the LDA exchange-correlation potential [49, 32] and has

a small in
uence on the density. For this reason calculating the GGA corrections from an LDA

density yields almost the same results as an inclusion of the GGA potentials in a self-consistent

calculation [139]. This fact is also re
ected in the LDA+GGA eigenvalues which are very close to

the LDA eigenvalues which are much too small for �nite systems such as atoms and molecules and

also for surfaces. As the eigenvalue of the highest occupied Kohn-Sham orbital has been proven to

be equal to the ionisation energy of the system [31, 72] the LDA gives too weakly bound electrons.

This latter fact is due to the LDA exchange-correlation potential having exponential decay instead

of the correct Coulombic decay. One way to improve the one-electron energies and the density (and

203
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related quantities such as dipole moments) is to directly approximate the exchange or exchange-

correlation potential instead of the exchange or exchange-correlation functional. Over the years

several potentials (not only within density functional theory) have been proposed. Well-known is

the average Hartree-Fock exchange potential proposed by Slater [101, 148]. A so-called optimized

e�ective potential (OEP) and an approximation to this was suggested by Sharp and Horton [34]

and by Talman and Shadwick [33]. This potential received considerable attention within the con-

text of exchange-only density functional theory or the optimized e�ective potential model (OPM)

and was shown to give one-electron energies close to the Hartree-Fock ones. An approximation to

this potential was recently proposed by Krieger et al. [35] and Gritsenko et al. [121]. Also within

the weighted density approximation (WDA) method approximate exchange potentials with the

correct asymptotic behaviour have been used [149, 150, 124]. A more crude way to improve the

asymptotic behaviour of the exchange potential was given by Latter [151] within the context of

the Thomas-Fermi model which due to its simplicity has found widespread use in atomic structure

calculations. Much less work has been done regarding the full exchange-correlation potential. An

approximate exchange-correlation potential has been proposed by Harbola and Sahni [131] . This

exchange-correlation potential vxc(r) has been de�ned as the work done by bringing an electron

from in�nity to point r against the force of the electric �eld of the exchange-correlation hole. How-

ever to insure path-independence for non-spherical systems like molecules one must only consider

the irrotational part of this electric �eld [152]. A gradient approximation to vxc has recently been

proposed in reference [32] which was shown to give very good ionisation energies as calculated from

the highest occupied Kohn-Sham orbital.

In view of the fact that correct one-electron energies, the asymptotic Coulombic behaviour and

the atomic shell structure can be reasonably obtained by approximate potentials it is an inter-

esting question of theoretical and practical importance whether we can calculate good exchange

and correlation energies from these approximate potentials. This is also of importance since it

is possible to test the quality of approximate exchange-correlation potentials by comparing them

with accurate ones constructed from accurate densities. It is for instance an interesting question

how certain features in the exchange-correlation potential (such as the bond midpoint peaks in

molecules [86, 90] related to the left-right correlation e�ect ) contribute to the exchange-correlation

energy. This requires an understanding of the relation between potential and energy expression. A

further understanding of the features displayed in the Kohn-Sham potential might then also lead to

more improved expressions for the exchange-correlation energy. If we want to assign some energy

expression for instance to the model potentials considered above we immediately run into some

theoretical di�culties because none of the potentials considered, with the exception of the OPM

potential, is a functional derivative of some energy density functional. However for approximate

exchange potentials which satisfy the exchange scaling property it is still possible to assign an

exchange energy using the Levy-Perdew relation [121, 35]. However such a relation is not available

for the exchange-correlation potential due to the unknown scaling properties of the correlation

functional. In section 12.2 of this article we will show how to use line integrals to calculate the

exchange-correlation energy from an exchange-correlation potential. We also discuss some criteria

of path independence.In section 12.3 we discuss some bounds on the exchange-correlation energy

in terms of the exchange-correlation potential and we give an line integral expression of the kinetic

part Txc of the exchange-correlation energy. In section 12.4 we derive some constraints on the

correlation potential. In section 12.5 we derive some properties with respect to rotation, trans-

lation and scaling of the exchange-correlation energy from given properties with respect to these

symmetries of the exchange-correlation potential. In section 12.6 we will adress the question how

to calculate molecular bond energies from given potentials. Finally in section 12.7 we will present
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our conclusions.

12.2 Line integrals and path dependence

In this section we will discuss the problem of obtaining energies from approximate potentials. The

exchange-correlation energy for a system with Coulombic two-particle interactions is within density

functional theory usually de�ned as:

Exc[�] = F [�]� Ts[�]�
1

2

Z
dr1dr2

�(r1)�(r2)

jr1 � r2j
(12.1)

where the universal functional F is as usual de�ned by constrained search [18, 128] over all anti-

symmetric wavefunctions yielding density � :

F [�] = min
 !�

h jT̂ + Ŵ j i (12.2)

where T̂ is the kinetic energy operator and Ŵ is the interparticle interaction operator. The Kohn-

Sham kinetic energy Ts[�] is the kinetic energy of a noninteracting particle system with the same

density as the interacting system de�ned by:

Ts[�] = min
 s!�

h sjT̂ j si = h�s[�]jT̂ j�s[�]i (12.3)

where we search over all Slater-determinants yielding density � and �s[�] is the Kohn-Sham deter-

minant. The exchange energy functional is usually de�ned as [22]:

Ex[�] = h�s[�]jŴ j�s[�]i �
1

2

Z
dr1dr2

�(r1)�(r2)

jr1 � r2j
(12.4)

and the correlation functional by:

Ec[�] = Exc[�]�Ex[�] (12.5)

Suppose we have a parametrisation 
(t) of a set of electron densities starting at 
(0) = �1 and

ending in 
(1) = �2. Suppose further that we have an exchange-correlation energy functional

Exc[�]. Then we have:

Exc[�2]�Exc[�1] =

Z 1

0
dt
dExc

dt
=

=

Z 1

0
dt

Z
dr
�Exc

��(r)
[
(t)]

d
(t)

dt
=

Z 1

0
dt

Z
drvxc([
(t)]; r)

d
(t)

dt
(12.6)

in which vxc is the functional derivative of Exc :

vxc([�]; r) =
�Exc

��(r)
(12.7)

If we take for instance the straight path from zero to � de�ned by 
(t) = t� and we have Exc[0] = 0

(which must be the case for any physically acceptable exchange-correlation functional) then d

dt = �

and it follows that:

Exc[�] =

Z
dr�(r)"xc([�]; r) (12.8)
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in which "xc is de�ned as:

"xc([�]; r) �
Z 1

0
dtvxc([t�]; r) (12.9)

This thus yields an explicit expression of the exchange-correlation energy in terms of the exchange-

correlation potential. It should be remembered however that in this expression vxc is a functional

derivative. Suppose however that we only have an expression of vxc for instance in terms of the

density and its gradients. Then we can de�ne the line integral of vxc along a path 
 in the space of

densities as:Z


vxc �

Z 1

0
dt

Z
drvxc([
(t)]; r)

d
(t)

dt
(12.10)

As we can see from the above formulas the outcome of this line integral does not depend on the

chosen path (except for the endpoints of course) whenever vxc is the functional derivative of some

functional Exc. If one uses approximate potentials to obtain energy expressions this way one has

to make sure that the result does not depend on the path 
. One therefore needs some criteria to

determine whether vxc yields path independent line integrals. This is for instance the case when:

�vxc(r)

��(r0)
�
�vxc(r

0)

��(r)
= 0 (12.11)

which is a vanishing curl condition which is equivalent to:

�2Exc

��(r)��(r0)
=

�2Exc

��(r0)��(r)
(12.12)

To prove this we only have to show that a vxc satisfying the above relation is the functional derivative

of some functional Exc.Suppose we de�ne the functional Exc by integrating vxc along the straight

path 
(t) = t�:

Exc[�] �
Z
dr�(r)"xc([�]; r) (12.13)

in which "xc is de�ned as in equation 12.9. If vxc satis�es condition 12.11 then vxc is the functional

derivative of the above de�ned functional Exc and hence path independent. This is readily shown

by di�erentiation of the above equation 12.13. This yields:

�Exc

��(r)
= "xc([�]; r) +

Z
dr0�(r0)

�"xc([�]; r0)

��(r)
=

= "xc([�]; r) +

Z 1

0
dt

Z
dr0�(r0)

�vxc([t�]; r0)

��(r)
(12.14)

Now using condition 12.11 yields:

�Exc

��(r)
= "xc([�]; r) +

Z 1

0
dt

Z
dr0t�(r0)

�vxc([t�]; r)

�(t�(r0))
=

= "xc([�]; r) +

Z 1

0
dtt

dvxc([t�]; r)

dt
= "xc([�]; r)+

Z 1

0
dt
d

dt
(tvxc([t�]; r)) �

Z 1

0
dtvxc([t�]; r) = vxc([�]; r) (12.15)



12.3. EXCHANGE-CORRELATION ENERGY AND THEKINETIC PART: BOUNDS FROM POTENTIALS207

Hence vxc is the functional derivative of Exc and therefore path independent.

We will now give another criterium for path independence related to equation 12.11. In order to

do this we recall Stokes theorem in vector calculus which states for a vector�eld ~v in n-dimensional

space:

nX
i

I


vidxi =

nX
i;k

Z
O

(
@vi

@xk
�
@vk

@xi
)dxidxk (12.16)

in which 
 is a closed curve which is the boundary of surface O. A generalisation of this theorem

to function spaces would be:

I


v��(r)dr =

Z
O

(
�v(r)

��(r0)
�
�v(r0)

��(r)
)��(r)��(r0)drdr0 (12.17)

in which in the �rst integral the variations are restricted to be on the path 
 and in the second

integral on the surface O. From this equation we can see that if relation 12.11 is satis�ed then the

integral of v along any closed path is zero and hence the line integral of v is path independent.

On the other hand if the line integral is zero for any closed path then we obtain the integrability

condition 12.11.

12.3 Exchange-correlation energy and the kinetic part: bounds

from potentials

The present formalism can be used to obtain energy expressions from approximate potentials from

line integrals. In order to obtain sensible results from such a calculation one has to make sure that

any approximate vxc is either a functional derivative (for instance by requiring the integrability

condition 12.11 ) or by requiring that the approximate potential is a good approximation to the

exact potential for every density along the integration path. This favors in practical applications

some paths over other paths. For instance the path de�ned by 
(t) = t� has the disadvantage of not

conserving the particle number which can therefore be fractional which gives theoretical problems

if one wants to assign a potential to the corresponding density. Another more appealing choice of

path is the following:


(t) = t3�(tr) (12.18)

If we let the path parameter t run from 0 to 1 then we are integrating from 0 to �. The most

important feature of this path is that it is particle number conserving, thus:Z

(t)dr =

Z
�(r)dr = N (12.19)

along the path. For hydrogen-like atoms for instance we have:


(t) =
(tZ)3

�
e�tZr (12.20)

in which Z is the nuclear charge. So if we let t approach zero then the density 
(t) becomes

increasingly di�user and approaches zero in every point of space but keeping its normalization.

Our main task is now to construct for the case of many electron systems exchange-correlation
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potentials which approximate the exact exchange-correlation potential along this path. Application

of equation 12.6 for this path leads to the following expression for the exchange-correlation energy:

Exc[�] =

Z 1

0
dt

Z
drvxc([
(t)]; r)(3t2�(tr) + t3r � rtr�(tr)) =

=

Z 1

0
dt

Z
dr

1

t
vxc([
(t)];

1

t
r)(3�(r) + r � r�(r)) (12.21)

in which we performed the substitution tr! r. Before we go on to discuss the exchange-correlation

potential let us �rst discuss the simpler case of the exchange-potential alone. Suppose we have an

approximate exchange potential ~vx for instance of the form:

~vx(r) = �
1
3 (r)f(x; y) (12.22)

where

x(r) =
jr�(r)j
�
4
3 (r)

(12.23)

and

y(r) =
r2�(r)

�
5
3 (r)

(12.24)

are dimensionless functions. This approximate potential satis�es the following well-known scaling

property [23] of the exchange potential:

vx([�t]; r) = tvx([�]; tr) (12.25)

in which �t = 
(t) is just the path of equation 12.18 (in the following we will for notational

convenience use �t instead of 
(t) for this particular path). Let vx denote the exact exchange

potential being the functional derivative of the exact exchange functional. The di�erence between

the exact exchange energy Ex[�] and the approximate exchange energy ~Ex[�] using the line integral

of equation 12.21 and scaling property 12.25 is then given by:

Ex[�]� ~Ex[�] =

Z


vx �

Z



~vx =

Z
dr(vx([�]; r) � ~vx([�]; r)(3�(r) + r � r�(r)) (12.26)

For a correctly scaling approximate exchange potential the di�erence in the two line integrals thus

only depends on the di�erence between the two potentials at the endpoints of the path and can be

made arbitrarily small by better �ts of ~vx to vx at this endpoint. This can in practice be done for

instance by �tting to the so-called Optimised E�ective Potential (OPM) [35, 121].

To show that if ~vx is not a functional derivative we can make the di�erence in the line integral of

vx and ~vx arbitrarily large we consider the following path;

~
(t) = t3�(tr + (1� t)~R) (12.27)

In which ~R is an arbitrary vector in three-dimensional space. We have:

d~
(t)

dt
= 3t2�(tr+(1�t)~R)+t3r�r

tr+(1�t)~R
�(tr+(1�t)~R)�t3 ~R�r

tr+(1�t)~R
�(tr+(1�t)~R)(12.28)
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Integrating along this path (which can easily be checked to be particle number conserving ) yields

using the fact that both the exact vx and the approximate potential ~vx satisfy some translational

invariance property (see equation 12.67 of section 12.5) we �nd:Z
~

vx �

Z
~


~vx =

Z
dr(vx(r)� ~vx(r))(3�(r) + r � r�(r))� ~R �

Z
dr(vx(r)� ~vx(r))r�(r) (12.29)

We see that this expression can be made arbitrarily large by choosing an arbitrarily large ~R (which

amounts to choosing a di�erent path ) if the di�erence between vx and ~vx is not zero.

Things are more complicated if we want to calculate the total exchange-correlation energy due to

the fact that we do not know the scaling properties of the correlation potential. This means that

we cannot calculate the exchange-correlation energy directly from knowledge of vxc([�]; r) alone,

we must know vxc along some path 
(t) in density space. However some useful inequalities can be

derived from the knowledge of vxc([�]; r). Averill and Painter [30] and Levy and Perdew [22] have

derived the following useful relation:

Exc[�] =

Z
drvxc([�]; r)(3�(r) + r � r�(r))� Txc[�] (12.30)

where

Txc[�] = T [�]� Ts[�] (12.31)

is the kinetic part of the exchange-correlation energy. The kinetic energy T [�] is as usual de�ned

by:

T [�] = h [�]jT̂ j [�]i (12.32)

where T̂ is the kinetic energy operator and  [�] is the anti-symmetric wavefunction yielding density

� and minimising the universal functional F [�]. As can be inferred directly from equation 12.6 using

the scaling path 12.18 it follows from equation 12.30 that equivalently:

Txc[�] =
dExc[
(t)]

dt
jt=1 �Exc[�] =

dEc[
(t)]

dt
jt=1 �Ec[�] (12.33)

which is a useful relation that can be used to obtain the kinetic energy part of the exchange-

correlation energy from approximate exchange-correlation or correlation functionals such as used in

LDA and GGA. Relation 12.30 is also useful to obtain an upper bound to the exchange-correlation

energy from knowledge of the exchange-correlation potential. From the de�nitions for T [�] and

Ts[�] we can deduce the well-known result [5]:

Ts[�] = h�s[�]jT̂ j�s[�]i � h [�]jT̂ j [�]i = T [�] (12.34)

and thus Txc[�] � 0 and we �nd the following inequality:

Exc[�] �
Z
drvxc([�]; r)(3�(r) + r � r�(r)) (12.35)

which provides an upper bound to Exc. A similar inequality can be obtained for the correlation

functional Ec (with corresponding correlation potential vc being the functional derivative of Ec )

by substracting the Levy-Perdew relation 12.26 for the exchange from equation 12.30 with yields:

Ec[�] =

Z
drvc([�]; r)(3�(r) + r � r�(r))� Txc[�] �

Z
drvc([�]; r)(3�(r) + r � r�(r)) (12.36)
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This gives an upper bound to the correlation energy when the correlation potential is known.

To provide a lower bound to Ec in terms of potentials we use the following relation valid for systems

with Coulombic interparticle interactions proved by Levy [27]:

lim
t!0

1

t
Ec[�t] = �b[�] (12.37)

where b[�] is a positive functional satisfying the following inequality:

Txc[�]�Ec[�] � b[�] � h�s[�]jŴ j�s[�]i (12.38)

where �s[�] is the Kohn-Sham determinant. Relation 12.37 immediately leads to:

�b[�] = lim
t!0

1

t
Ec[�t] =

dEc[�t]

dt
jt=0 =

Z
drv̂c([�]; r)(3�(r) + r � r�(r)) (12.39)

where

v̂c([�]; r) = lim
�!0

1

�
vc([��];

r

�
) (12.40)

Combining relations 12.38 and 12.33 then gives:

Ec[�] �
1

2
(
dEc[�t]

dt
jt=0 +

dEc[�t]

dt
jt=1) =

Z
dr

1

2
(v̂c([�]; r) + vc([�]; r))(3�(r) + r � r�(r))(12.41)

So we have now derived an upper and a lower bound to the correlation energy functional in terms

of the correlation potential. Adding the Levy-Perdew relation for the exchange potential on both

sides of the inequalities gives corresponding bounds for the exchange-correlation energy:Z
dr

1

2
(v̂xc([�]; r) + vxc([�]; r))(3�(r) + r � r�(r)) � Exc[�]

�
Z
drvxc([�]; r)(3�(r) + r � r�(r)) (12.42)

where v̂xc = vx + v̂c (using v̂x = vx which is due to exchange scaling property of vx ). So upper and

lower bounds to the exchange-correlation energy can be given from the knowledge of the exchange-

correlation potential at the beginning (t = 0) and the end (t = 1) of the scaling path.

We �rst will now give an expression for the kinetic part of the exchange-correlation energy. From

relation 12.30 and equation 12.6 we �nd:

Txc[�] =

Z
dr(vxc([�]; r) � �vxc([�]; r))(3�(r) + r � r�(r)) (12.43)

where

�vxc([�]; r) =

Z 1

0
dt

1

t
vxc([
(t)];

r

t
) (12.44)

This gives an explicit expression for Txc in terms of the exchange-correlation potential. It can

therefore directly be calculated from approximate expressions of vxc or from the knowledge of vxc
along the scaling path. As a result of the scaling property of the exchange potential the above

equation can be further split up as follows.

�vxc([�]; r) =

Z 1

0
dt

1

t
vx([
(t)];

r

t
) +

Z 1

0
dt

1

t
vc([
(t)];

r

t
)
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= vx([�]; r) +

Z 1

0
dt

1

t
vc([
(t)];

r

t
) = vx([�]; r) + �vc([�]; r) (12.45)

where

�vc([�]; r) =

Z 1

0
dt

1

t
vc([
(t)];

r

t
) (12.46)

This leads to another expression for Txc in terms of the correlation potential:

Txc[�] =

Z
dr(vc([�]; r) � �vc([�]; r))(3�(r) + r � r�(r)) (12.47)

From Txc[�] � 0 it follows further that:Z
dr�vc([�]; r)(3�(r) + r � r�(r)) �

Z
drvc([�]; r)(3�(r) + r � r�(r)) (12.48)

which provides a further constraint on approximate correlation potentials. Further constraints are

derived in the next section.

12.4 Constraints on vc

We now will derive some constraints on the correlation potential. Levy has proven the following

useful relation [27] which is valid for systems with repulsive Coulombic interparticle interactions:

lim
t!1

Ec[�t] > �1 (12.49)

Using relation 12.49 it then follows directly from:

Exc[�t] = tEx[�] +Ec[�t] (12.50)

that

Ex[�] = lim
t!1

1

t
Exc[�t] (12.51)

Equation 12.49 immediately leads to a constraint on the correlation potential. If we use the scaling

path we �nd the following line integral:

Ec[��] =

Z �

0
dt

Z
dr

1

t
vc([�t];

r

t
)(3�(r) + r � r�(r)) (12.52)

Application of equation 12.49 then immediately gives:Z 1

0
dt

Z
dr

1

t
vc([�t];

r

t
)(3�(r) + r � r�(r)) > �1 (12.53)

which puts constraints on approximate correlation potentials. The above constraint is for exam-

ple not satis�ed by the LDA correlation potential due to the logarithmic divergence of the LDA

correlation energy as function of the scaling parameter t. We can also write equation 12.51 in line

integral form giving:

Ex[�] = lim
�!1

1

�

Z �

0
dt

Z
dr

1

t
vxc([�t];

r

t
)(3�(r) + r � r�(r)) (12.54)

Inserting vxc = vx + vc in the above equation and using the scaling property of vx we �nd the

following constraint on vc:

lim
�!1

1

�

Z �

0
dt

Z
dr

1

t
vc([�t];

r

t
)(3�(r) + r � r�(r)) = 0 (12.55)

The above constraint which is weaker than constraint 12.53 follows also directly from constraint 12.53.

The correlation potential of the local density approximation for instance satis�es the above equa-

tion 12.55 but not constraint 12.53.
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12.5 Invariance properties of potentials

The above formalism of line integrals provides an easy way to obtain conditions on the energy

functional in the case that the exchange-correlation potential has some invariance or symmetry

property. Suppose for instance that we vary the densities along our path 
 by varying our path

parameter t but that the potential vxc has some symmetry property under such changes. Using

equation 12.6 we then can deduce some properties of Exc. In the following we will apply this idea

to translation, rotation and scaling properties of Exc.

We de�ne a path 
(t) by:


(t) = �(R(t)r) (12.56)

where R(t) is a rotation in threedimensional space which rotates the vector r around a vector ~!

by an angle t. If the functional Exc is invariant under rotations we have that Exc[
(t)] = Exc[�] is

constant as a function of t and we �nd:

0 =
dExc[
(t)]

dt
jt=� =

Z
dr
�Exc

��(r)
[
(�)]

d
(t)

dt
jt=� =

=

Z
drvxc([
(�)]; r)(~! �R(�)r) � rR(�)r�(R(�)r) (12.57)

For � = 0 in particular we �nd:

0 =

Z
drvxc([�]; r)(~! � r) � r�(r) =

=

Z
drvxc([�];R(�)r)(~! �R(�)r) � rR(�)r�(R(�)r) (12.58)

The above equations 12.57 and 12.58 yield the same result for all densities � and all rotations R(�).

We thus must have:

vxc([�(R(�)r)]; r) = vxc([�(r)];R(�)r) (12.59)

So if we insert in vxc the rotated density then we obtain the same value in point r as vxc with the

original density in the rotated point R(�)r. This result and some other results in this section have

been presented elsewhere [23, 32] and are only presented here for clarity and to demonstrate the

usefulness of the density path formalism in deriving properties of the potential and functional. The

line integral of equation 12.6 o�ers the possibililty to make statements about the energy functional

when we know properties of the potential. We can now prove the following statement. If a potential

vxc satis�es the rotation symmetry property of equation 12.59 and if vxc is a functional derivative

of some functional Exc then Exc is rotationally invariant. To prove this we insert the path of

equation 12.56 in equation 12.6 which gives:

Exc[�(R(�)r)]�Exc[�(r)] =

Z �

0
dt

Z
drvxc([
(t)]; r)(~! �R(t)r) � rR(t)r�(R(t)r) =

=

Z �

0
dt

Z
drvxc([�]; r)(~! � r) � r�(r) = �~! �

Z
drvxc([�]; r)r �r�(r) (12.60)
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in which we in the second step used the rotation symmetry property of equation 12.59 and carried

out a substitution R(t)r! r. If we insert � = 2� in the above formula 12.60 then we are integrating

along a closed path and we obtain:I


vxc = 2�~! �

Z
drvxc([�]; r)r �r�(r) (12.61)

As vxc is a functional derivative the loop integral should be zero. This is also obvious from the

left hand side of equation 12.60 as the 2�-rotated density is equal to the starting density and we

obtain:

0 =

Z
drvxc([�]; r)r �r�(r) (12.62)

for any density �. If we insert this equation back into equation 12.60 then we obtain:

Exc[�(R(�)r)] = Exc[�(r)] (12.63)

which proves our statement.

We will now carry out a similar derivation for the translation properties of the potential. If we

de�ne the path 
(t) by:


(t) = �(r + t ~R) (12.64)

in which ~R is an arbitrary translation vector. Now suppose that Exc is translationally invariant

then we have that Exc[
(t)] = Exc[�] is constant as a function of t and :

0 =
dExc[
(t)]

dt
jt=1 =

Z
dr
�Exc

��(r)
[
(1)]

d
(t)

dt
jt=1 =

=

Z
drvxc([
(1)]; r)~R � r�(r+ ~R) (12.65)

Similarly:

0 =
dExc[
(t)]

dt
jt=0 =

Z
drvxc([�]; r)~R � r�(r)

=

Z
drvxc([�]; r + ~R)~R � r�(r + ~R) (12.66)

As the above equations 12.65 and 12.66 yield the same result for all densities � and translation

vectors ~R it follows that:

vxc([�(r + ~R)]; r) = vxc([�(r)]; r + ~R) (12.67)

Thus vxc with the translated density inserted yields the same value in point r as vxc with the

original density inserted in point r + ~R. This result has been derived elsewhere [32] and is only

presented here for the sake of clarity. Using the line integral of equation 12.6 we now however also

prove the opposite statement under some restrictions. If a potential satis�es relation 12.67 and

if vxc is a functional derivative of some functional Exc which is bounded from above or below (

The exact exchange-correlation functional is bounded from above as Exc � 0 ) then this functional

is translational invariant. If we use the path of equation 12.64 and insert it in equation 12.6 we

obtain:

Exc[�(r + ~R)]�Exc[�(r)] =

Z 1

0
dt

Z
drvxc([
(t)]; r)~R � r�(r+ t ~R) (12.68)
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If we use the translation symmetry property 12.67 we have:

Exc[�(r + ~R)]�Exc[�(r)] =

Z 1

0
dt

Z
drvxc([�]; r + t ~R)~R � r�(r+ t ~R) =

=

Z 1

0
dt

Z
drvxc([�]; r)~R � r�(r) = ~R �

Z
drvxc([�]; r)r�(r) (12.69)

in which we carried out a substitution r+ t ~R! r which makes the t-integration trivial. The right

hand side of this equation can be made arbitrarily large (both positive and negative) by making ~R

arbitrarily large. As Exc is bounded from above or below this righthand side of the equation must

therefore be zero which yields:Z
drvxc([�]; r)r�(r) = 0 (12.70)

and therefore one has:

Exc[�(r + ~R)] = Exc[�(r)] (12.71)

We can carry out a similar analysis for scaling properties. We then de�ne a path:


(t) = t3�(tr) (12.72)

Suppose we have an energy functional E with functional derivative v which satis�es the following

scaling relation:

E[
(t)] = tnE[�] (12.73)

with n some positive integer. If we di�erentiate the above equation in t = 1 we obtain:

nE[�] =
dE[
(t)]

dt
jt=1 =

Z
dr

�E

��(r)
[
(t)]

d
(t)

dt
jt=1 =

=

Z
drv([�]; r)(3�(r) + r � r�(r)) (12.74)

Di�erentiating the same expression in t = � gives:

n�n�1E[�] =
dE[
(t)]

dt t=�
=

Z
drv([
(�)]; r)(3�2�(�r) + �3r � r�r�(�r)) (12.75)

This yields:

E[�] =
1

n

Z
dr

1

�n
v([
(�)]; r)(3�3�(�r) + �4r � r�r�(�r)) (12.76)

On the other hand from equation 12.74 it follows:

E[�] =
1

n

Z
drv([�]; r)(3�(r) + r � r�(r)) =

=
1

n

Z
drv([�];�r)(3�3�(�r) + �4r � r�r�(�r)) (12.77)
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As the outcome of the integrals in equation 12.76 and 12.77 is equal for any density � and scaling

parameter � it follows:

v([�3�(�r)]; r) = �nv([�];�r) (12.78)

Thus result has been derived before [23] but is presented here to motivate our following statement.

If a potential v satis�es the scaling relation 12.78 and is the functional derivative of some functional

E with E[0] = 0 then this functional satis�es the scaling property 12.73.If we use the line integral

of equation 12.6 and insert the path of equation 12.72 we obtain:

E[
(�)] �E[0] =

Z �

0
dt

Z
drv([
(t)]; r)(3t2�(tr) + t3r � rtr�(tr)) (12.79)

If we now use the scaling property 12.78 we have after a substitution:

E[
(�)] �E[0] =

Z �

0
dt

Z
drtn�1v([�]; r)(3�(r) + r � r�(r)) =

=
�n

n

Z
drv([�]; r)(3�(r) + r � r�(r)) (12.80)

Hence we have:

E[
(�)] �E[0] = �n(E[
(1)] �E[0]) (12.81)

In this equation E[0] is just an integration constant. For instance if we add to the functional 12.73

an arbitrary constant then it will satisfy the above equation 12.81 and its potential will still sat-

sify 12.78. So if we set E[0] = 0 then we obtain:

E[�3�(�r)] = �nE[�(r)] (12.82)

which proves our statement.

12.6 Calculating molecular binding energies from potentials

One of the most succesful applications of density functional theory has been the calculation of

molecular binding energies. This is largely due to the development of gradient corrected function-

als. However the potentials corresponding to these functionals are not much improved [32] . An

improvement of the existing gradient corrections might be sought in the development of better

potentials as they can be compared to exact potentials obtainable from accurate densities. In this

section we will discuss how to obtain binding energies from approximate potentials.

Suppose we have a diatomic molecule consisting of atom A and atom B. The total density of the

molecule is given by �M = ��+�� where �� = �A+�B is the sum of atomic densities and �� is the

deformation density of the molecule. The binding energy contribution of the exchange-correlation

energy is then given by:

�Exc = Exc[�M ]�Exc[�A]�Exc[�B ] = (Exc[�M ]�Exc[��])+(Exc[��]�Exc[�A]�Exc[�B ])(12.83)

The �rst term between brackets we will call �E1 and the second term between brackets we will

call �E2. This division is useful in connection with the application of the transition-state method

for bond energies developed by Ziegler and Rauk [153] to �E1 and is helpful to obtain numerical
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stability for Coulombic terms analogous to �E2 in schemes that rely on numerical integration [154].

The �rst term �E1 can in practice accurately be calculated using the linear path [154, 155]:


(t) = �� + t(�M � ��) = �� + t�� (12.84)

which yields:

�E1 =

Z 1

0
dt

Z
drvxc([
(t)]; r)��(r) =

Z
dr��(r)

Z 1

0
dtvxc([
(t)]; r) (12.85)

This procedure is equivalent to the transition state method [153] as is evident when using the

Simpson rule for the t-integration:

�E1 =

Z
dr��(r)(

1

6
vxc([��]; r) +

2

3
vxc([�T ]; r) +

1

6
vxc([�M ]; r)) (12.86)

where �T = 
(1
2
) = 1

2
(�� + �M ) is the so-called transition state density. For practical applications

of the above method with approximate exchange-correlation potentials it is necessary that the

approximate potential gives a good description of the real exchange-correlation potential in the

region where the deformation density �� is the largest. The other part of the binding energy �E2

is easily obtained by numerical integration if explicit exchange-correlation energy expressions are

known. However if no energy expressions are known we have to calculate also this term from the

potential.One way to do this is is just to calculate the total energies of the atom and the molecule

using equations 12.8 and 12.9 and to calculate the di�erence. This procedure has however some

disadvantages. First of all along the path 
(t) = t� the number of particles is not conserved which

presents some di�culties from a theoretical point of view. Secondly if one makes an approximate

expression for the potential v for some N-electron system, for instance by some �tting procedure

to some known exact potential, one makes unknown errors for systems with a di�erent number of

electrons. It is therefore of some advantage to use particle number conserving paths. An other way

of calculating the energy di�erence �E2 is to choose the following path:


�(t) = �A(r) + �B(r+ t ~R) (12.87)

in which we let t run from 1 to 1. This path is particle number conserving. If we have �� = 
(1)

then:

�E2 =

Z

�

vxc =

Z
dr

Z 1

1
vxc([
�(t)]; r)~R � r�B(r+ t ~R) (12.88)

Application of the above formula puts some severe restrictions on approximate exchange-correlation

potentials. This approximate potential should give a good description of the exact vxc at all bond

distances. For instance the bond midpoint peak in vxc in dissociating molecules [86, 90] must also

be described by this approximate vxc. This might be feasible for instance in a gradient expansion

using Laplacians of the density in any approximate vxc. However care should be taken for potentials

which are not functional derivatives as in that case the value of �E2 will depend on the dissociation

path taken.

12.7 Conclusions

In this work we adressed the question how to obtain exchange-correlation energies from approxi-

mate exchange-correlation potentials. This is of some theoretical and practical importance as many

approximate exchange- and correlation potentials have been proposed. It is shown how one can
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use line integrals to express the exchange-correlation energy in terms of the exchange-correlation

potentials. It was further shown how to derive symmetry properties of the exchange-correlation en-

ergy functional from the corresponding properties of the exchange-correlation potential. We further

obtained some upper and lower bounds to the exchange-correlation energy which can be calculated

if the exchange-correlation potential is known in two limiting cases, at the beginning and the end

of the scaling path. We showed how to express the kinetic part Txc of the exchange-correlation

energy in terms of line integrals over the exchange-correlation vxc or correlation potential vc and

derived some constraints on the correlation potential. We �nally adressed the problem of calculat-

ing the exchange-correlation part of molecular binding energies from approximate potentials. The

constraints and inequalities derived in this article might prove useful to the development of more

accurate exchange-correlation potentials improving the LDA and GGA potentials. Work along this

line is in progress.
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Samenvatting

In dit proefschrift wordt de dichtheidsfunktionaaltheorie (DFT) onderzocht en worden nieuwe be-

naderingen voorgesteld voor de Kohn-Sham potentiaal.

De dichtheidsfunktionaaltheorie, die in de jaren zestig is ontwikkeld door Hohenberg en Kohn en

Kohn en Sham, geeft een methode om de grondtoestandseigenschappen van veeldeeltjessystemen

zoals atomen, molekulen en vaste sto�en te berekenen. In de dichtheidsfunktionaaltheorie zijn de

grondtoestandsverwachtingswaarden van de kwantummechanische operatoren die de fysische ob-

servabelen voorstellen dichtheidsfunktionalen, d.w.z. het zijn funkties die gede�nieerd zijn op de

oneindigdimensionale ruimte van elektronendichtheden. Een belangrijke dichtheidsfunktionaal is

de grondtoestandsenergiefunktionaal. Deze funktionaal wordt geminimaliseerd voor de grondtoe-

standselektronendichtheid van het systeem. Minimalisering van de energiefunktionaal leidt dan

tot een Euler-Lagrange-vergelijking voor de elektronendichtheid. In de Kohn-Sham aanpak van

dichtheidsfunktionaaltheorie krijgt deze variationele vergelijking de vorm van een onafhankelijk

deeltjesmodel dat bekend staat als het Kohn-Sham systeem. Het wisselwerkende systeem van elek-

tronen wordt dus vervangen door een niet-wisselwerkend systeem van Kohn-Sham elektronen die

bewegen in het veld van een e�ektieve potentiaal. Deze Kohn-Sham potentiaal is een funktionaal

van de elektronendichtheid. Tengevolge van de ingewikkelde wiskundige de�nitie van de Kohn-

Sham potentiaal zijn hiervoor geen exakte analytische uitdrukkingen in termen van de dichtheid

bekend. De onbekende term in de Kohn-Sham potentiaal is de exchange-korrelatie potentiaal,

die de funktionele afgeleide is naar de elektronendichtheid van de exchange-korrelatie funktionaal.

Voor praktische toepassingen worden er voor deze funktionaal benaderingen gebruikt. De his-

torisch gezien meest gebruikte benadering is de lokale dichtheidsbenadering. Deze benadering, die

gebaseerd is op berekeningen aan het elektronengas, blijkt een simpele en tegelijkertijd verrassend

nauwkeurige benadering. De nauwkeurigheid van de lokale dichtheidsbenadering blijkt echter in be-

langrijke mate te worden vergroot door de zogenaamde gegeneraliseerde gradi�entbenaderingen, die

naast de lokale elektronendichtheid ook afhangen van de gradi�ent van de elektronendichtheid. Om

deze laatste reden worden de gradi�entfunktionalen ook wel nietlokale funktionalen genoemd. De

gradi�entfunktionalen blijken echter niet op alle punten de lokale dichtheidsbenadering te verbeteren.

De verbetering geldt vooral voor energietermen, zoals de bindingsenergie van molekulen. De verbe-

tering voor lokale grootheden zoals de exchange-korrelatie potentiaal of de elektronendichtheid is

veel minder. Dit betekent bijvoorbeeld ook dat grootheden die direkt van de elektronendichtheid

afhangen, zoals polariseerbaarheden, weinig verbetert worden. In dit proefschrift stellen we een

aantal benaderingen voor voor de exchange- en exchange-korrelatie potentiaal die de potentialen

van de gegenariseerde gradi�entbenaderingen aanzienlijk verbeteren, terwijl energietermen met geli-

jke nauwkeurigheid uitgerekend worden.

In hoofdstuk 5 van dit proefschrift bekijken we voor een aantal atomen de gradi�entbenaderingen

van Becke en Perdew voor de exchange-korrelatie potentiaal en vergelijken deze met bijna ex-

akte exchange-korrelatie potentialen berekend uit nauwkeurige elektronendichtheden. Om dit te
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doen gebruiken we een nieuw ontwikkelde methode om de Kohn-Sham potentiaal te berekenen uit

een gegeven elektronendichtheid. Vervolgens wordt een nieuwe gradi�entbenadering voorgesteld die

in tegenstelling tot de bekende gradi�entbenaderingen het goede langeafstandsgedrag van de xc-

potentiaal weergeeft. De Kohn-Sham eigenwaarden en de ionisatie-energie (die gegeven wordt door

de energie van de hoogst bezette baan van het Kohn-Sham systeem) worden hierdoor aanzienlijk

verbeterd.

In hoofdstuk 6 worden verschillende nieuwe gradi�entbenaderingen voorgesteld voor de Kohn-Sham

exchange potentiaal. Dit zijn Pad�e-approximanten in termen van variabelen die dimensieloze

samenstellingen zijn van de dichtheid en de gradi�ent en de laplaciaan van de dichtheid. Op deze

wijze wordt automatisch aan de goede schalingseigenschappen voldaan. De vorm van de Pad�e-

approximant wordt verder zo gekozen dat het langeafstandsgedrag van de potentiaal goed wordt

beschreven. De voorgestelde Pad�e-approximanten blijken de eigenwaarden en de vorm van de po-

tentiaal te verbeteren. De exchange energi�en die worden berekend met behulp van de Levy-Perdew

relatie zijn echter minder goed. Deze energi�en worden vooral bepaald door de vorm van de potenti-

aal in het kerngbied van het atoom. Een betere �t van de potentiaal in dit gebied verslechtert echter

het langeafstandsgedrag van de potentiaal hetgeen de te beperkte vorm van de Pad�e-approximant

aantoont.

In hoofstuk 7 analyseren we verschillende delen van de Kohn-Sham potentiaal. De vraag hier-

bij is hoe de e�ekten van het Pauli-principe en de e�ekten van de Coulomb-afstoting tussen de

elektronen de vorm van de Kohn-Sham potentiaal bepalen. In de uitgevoerde analyse wordt de

exchange-korrelatie potentiaal opgesplitst in twee termen, een aantrekkende langedrachtsterm en

een repulsieve kortdrachtsterm, die beide relatief eenvoudig te benaderen zijn. Een belangrijk ken-

merk van de exchange-korrelatie potentiaal is zijn atoomschillenstruktuur. Deze komt tot uiting

in de kortedrachtspotentiaal die een stapvorm heeft. De potentiaal is konstant binnen de atoom-

schillen en verandert snel op de schilovergangen. De atoomschillenstruktuur komt ook duidelijk

tot uiting in de eigenschappen van het exchange- en exchange-korrelatie gat en de konditionele

waarschijnlijkheidsamplitude. Beide grootheden beschrijven de verdeling van de andere elektronen

wanneer bekend is dat een gegeven elektron, die wij het referentie-elektron noemen, zich op een

bepaalde plaats in de ruimte bevindt. Het exchange gat en de konditionele waarschijnlijkheidsam-

plitude ondergaan grote veranderingen wanneer het referentie-elektron een schilovergang passeert.

Omdat verschillende delen van de Kohn-Sham potentiaal direkt in de konditionele waarschijnli-

jkheidsamplitudes kunnen worden uitgedrukt kan belangrijke informatie worden verkregen over de

Kohn-Sham potentiaal door de bestudering van deze waarschijnlijkheidsamplitudes. Bijvoorbeeld

de piekenstruktuur op de atoomschilovergangen in de zogenaamde kinetische potentiaal, die een

deel is van de funktionele afgeleide van de kinetische energie funktionaal, is direkt gerelateerd

aan de veranderingen van de waarschijnlijkheidsamplitude op de schilovergangen. Zoals besproken

wordt in hoofdstuk 10 beschrijft dezelfde kinetische potentiaal het links-rechts korrelatie-e�ekt in

dissoci�erende molekulen.

In hoofdstuk 8 leiden we de stappenstruktuur van de exchange-korrelatie potentiaal die in hoofd-

stuk 7 was gekonstateerd af. We maken hierbij een benadering voor de funktionele afgeleide naar

de elektronendichtheid van de paarkorrelatiefunktie. Een analytische uitdrukking voor deze funk-

tionele afgeleide van de paarkorrelatiefunktie, die verantwoordelijk is voor de stappenstruktuur in de

exchange-korrelatie potentiaal, was nog niet eerder afgeleid. De bijbehorende exchange potentiaal

is echter op een andere wijze eerder afgeleid door Krieger, Li en Iafrate (KLI). Deze potentiaal blijkt

een heel goede benadering voor de exakte Kohn-Sham exchange potentiaal. Een ander belangrijk

resultaat is een benaderde uitdrukking voor de inverse dichtheidsresponsfunktie die in verschillende

gebieden binnen de dichtheidsfunktionaaltheorie een belangrijke rol speelt (zoals in de konstruktie
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van potentialen uit dichtheden en in de berekening van energi�en van aangeslagen toestanden in

tijdsafhankelijke dichtheidsfunktionaaltheorie).

In hoofdstuk 9 stellen we benaderingen voor voor het stapgedeelte en het langedrachtsgedeelte van

de exchange-korrelatie potentiaal. Het langedrachtsgedeelte wordt benaderd door een gradi�ent-

uitdrukking met het goede langeafstandsgedrag afgeleid uit Beckes gradi�entfunktionaal voor de

exchange energie. De repulsieve stappotentiaal wordt geschreven als een som van orbitaaldichthe-

den met voorfaktoren die afhangen van de orbitaalenergi�en. Het analytisch verband tussen deze

faktoren en de orbitaalenergi�en wordt afgeleid door het opleggen van schalingsrelaties, ijkinvari-

antie en reduktie tot het goede elektronengasresultaat voor homogene systemen. De resulterende

potentiaal blijkt een praktische en nauwkeurige weergave te zijn van de exakte exchange potenti-

aal en leidt bovendien tot goede (van dezelfde kwaliteit als Beckes gradi�entbenadering) exchange

energi�en.

In hoofdstuk 10 en 11 bekijken we molekulaire systemen. In hoofdstuk 10 onderzoeken we de

eigenschappen van de Becke en Perdew gradi�entfunktionalen voor het geval van molekulaire disso-

ciatie. De Becke-Perdew gradi�entfunktionaal wordt nu binnen de kwantumchemie op grote schaal

toepast in molekulaire berekeningen omdat het goede geometri�en en ( met een nauwkeurheid van

ongeveer 0.2 elektronvolt of minder ) bindingsenergi�en geeft. We proberen meer inzicht te verkrij-

gen in de werking van deze gradi�entfunktionalen in chemische binding. We bekijken hiervoor eerst

de eigenschappen van de exakte Kohn-Sham potentiaal in het bindingsmiddelpuntgebied. Zoals

eerder opgemerkt vertoont de Kohn-Sham potentiaal in het bindingsmiddelpunt een piekstruktuur

die gerelateerd is aan het links-rechts korrelatie-e�ekt. Deze piekstruktuur vindt zijn oorsprong

in het kinetische gedeelte van de exchange-korrelatie funktionaal en kan worden afgeleid uit het

gedrag van de konditionele waarschijnlijkheidsamplitude. We laten zien dat er ook een piekstruk-

tuur aanwezig is in de exchange-korrelatie potentialen van de Becke-Perdew gradi�entfunktionaal,

echter met een verkeerde funktionele afhankelijkheid van de dichtheid. We laten verder zien waarom

de Becke gradi�entfunktionaal voor de exchange in het algemeen een repulsieve bijdrage levert aan

de bindingsenergie en waarom de Perdew korrelatiefunktionaal gewoonlijk een aantrekkende bij-

drage levert. Dit heeft te maken met het feit dat dichtheidsgradi�enten in de zadelpunten van de

elektronendichtheid (het bindingsmiddelpunt) nul zijn. Numerieke resultaten worden geanalyseerd

aan de hand van dichtheidheidsfunktionaalberekeningen aan het stikstofmolekuul.

In hoofdstuk 11 bekijken we exakte en benaderde dichtheidsfunktionaalresultaten voor het dis-

soci�erende waterstofmolekuul. Het waterstofmolekuul is gekozen voor deze analyse omdat hier-

voor de exakte dichtheidsfunktionaalgetallen kunnen worden berekend uit nauwkeurige elektronen-

dichtheden verkregen met grote kon�guratie interaktie berekeningen. Een nadeel is echter dat het

waterstofmolekuul niet een 'standaard' molekuul is in de zin dat er door de afwezigheid van gevulde

kernbanen geen Pauli-repulsie optreedt bij het vormen van de binding. De dichtheidsfunktionaal-

getallen worden verder vergeleken met resultaten verkregen in de Hartree-Fock benadering en met

de bijna exakte kon�guratie interaktie resultaten. Het blijkt dat DFT met gradi�entfunktionalen

een zeer nauwkeurige weergave geeft van de bindingskurve van het waterstofmolekuul. De kurve

wijkt echter af van de exakte kurve in de dissociatielimiet, hetgeen echter gekorrigeerd kan wor-

den door het uitvoeren van een onbeperkte Kohn-Sham berekening (Engels:unrestricted Kohn-

Sham). De DFT dissociatiefout is echter veel kleiner dan die in de Hartree-Fock benadering. Dit

komt omdat het exchange-korrelatie gat in de lokale dichtheidsbenadering en de gegeneraliseerde

gradi�entbenadering gelokaliseerd is rond het referentie-elektron en hierdoor veel meer lijkt op het

exakte exchange-korrelatie gat dan het gedelokaliseerde Hartree-Fock exchange gat. Dat er nog

steeds een dissociatiefout in DFT bestaat is het gevolg van het feit dat de benaderde dichtheids-

funktionalen niet invariant zijn onder spinrotaties hetgeen to problemen leidt voor gedegenereerde
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grondtoestanden zoals de open-schil fragmenten van een dissoci�erend molekuul.

In hoofdstuk 12 onderzoeken we het probleem hoe de exchange-korrelatie energie te berekenen in-

dien alleen de exchange-correlatie potentiaal bekend is. Uit de exchange potentiaal kan de exchange

energie berekend worden met behulp van de Levy-Perdew relatie die kan worden afgeleid uit de

schalingseigenschappen van de exchange funktionaal. Voor korrelatiefunktionalen zijn dergelijke

schalingseigenschappen niet bekend. Zoals we aantonen kan de korrelatie-energie echter wel wor-

den afgeleid uit de korrelatiepotentiaal door middel van lijnintegralen in de ruimte van elektronen-

dichtheden. Wegafhankelijkheid van deze lijnintegralen wordt besproken en integreerbaarheidsvoor-

waarden worden gegeven. We bespreken verder hoe verschillende invariantie-eigenschappen van de

exchange-korrelatie potentiaal kunnen worden afgeleid door het kiezen van paden die overeenkomen

met bepaalde symmetrie�en (rotatie,translatie,schaling) en leiden ongelijkheden af voor de korre-

latiepotentiaal. We laten vervolgens zien hoe het lijnintegraalformalisme de overgangstoestand-

methode van Ziegler voor de berekening van molekulaire bindingsenergi�en generaliseert.
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