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Chapter 1

General introduction

1.1 Introduction

The description of the physical properties of interacting many-particle systems has been one of the
most important goals of physics during this century. The problem is to derive the properties of
many-particle systems from the quantum mechanical laws of nature. This requires the solution of a
partial differential equation (the Schrédinger or Dirac equation ) of 3N spatial variables and N spin
variables (for electrons) where N is the number of particles in the system. For atoms the number
of electrons is in the range N ~ 1 — 100. Even small molecules have often more than 100 electrons
and for a solid one has N ~ 1023. It is clear that the problem cannot be solved without making
approximations somewhere along the line. However ’solving’ the Schrodinger or Dirac equation is
only part of the many-particle problem. The most important objective is to understand and predict
the properties of many-particle systems and to calculate the several measurable quantities, such as
the bonding energy, polarizability, conductivity,etc.. , rather than the wave function itself.

One way to circumvent the complete solution of the many-particle problem is to construct model
Hamiltonians containing only the physics one is interested in. A large number of model Hamilto-
nians is in use. One has for instance the Hiickel method or tight-binding model, the Hubbard and
Heisenberg Hamiltonians, the BCS-model etc.. to mention just a few (see for instance [1]). These
approximate methods have been quite succesful in explaining a large range of physical phenomena
ranging from bonding mechanisms in chemistry to ferromagnetism and superconductivity in solid
state physics. However if one is looking for systematic improvements of these approximate models
one still has to face the many-body problem.

A systematic way of improvement can be achieved for finite systems such as atoms and molecules
by variational methods or perturbation theory. A very simple method is the configuration interac-
tion method. One uses an approximate wave function with many parameters (sometimes millions!)
which are expansion coefficients of Slater determinants, and uses the variational principle to mini-
mize the energy with respect to these parameters. The minimizing wave function then approximates
the real wave function. The method is however not applicable to infinite systems. Also several vari-
ants of perturbation theory are available. A rather elegant formalism, which has been developed
in the 50’s, is the Greens function technique [2, 3, 4]. Instead of the wave function one uses the
one- and two-particle Greens functions to calculate the measurable quantities. The method can in
some cases also be applied to infinite systems, for instance quantum liquids or the electron gas.
The disadvantage of the above methods is that their application when possible to inhomogeneous
systems like atoms, molecules, solids and surfaces require a large computational effort.

A different formalism which is still exact and which can treat the systems mentioned with less
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computational effort is the density functional method [5, 6, 7, 8, 9] . The formalism has been devel-
oped in the 60’s by Hohenberg and Kohn [10] and Kohn and Sham [11]. The Kohn-Sham approach
to density functional theory (DFT) allows an exact description of the interacting many-particle
systems in terms of an effective non-interacting particle system. The effective potential in this non-
interacting particle system (the Kohn-Sham system) can be shown to be completely determined
by the electron density of the interacting system, and is for this reason called a density functional.
In particular the ground state energy of the system is a density functional. Exact expressions for
this functional are, due to the complicated nature of the many-body problem, not known. However
over the years, due to a great amount of thoughtful work, more accurate ,more ’physical’ and more
practical approximations have continued to appear.

The Kohn-Sham method has been used in solid state physics for about thirty years. By now, largely
due to the development of increasingly accurate density functionals, the method has also gained a
large popularity among quantum chemists, especially as it allows in many cases accurate treatments
of molecular systems unattainable by the more traditional quantum mechanical methods.

The review in the following chapter gives a basic introduction to density functional theory and the
Kohn-Sham method. The choice of the subjects in this review has to a large extent been influ-
enced by the subjects of the thesis work and personal interest. It therefore treats among others
exchange-correlation holes and pair-correlation functions, the OPM-model, scaling properties, and
generalized gradient approximations.

Two further chapters on the more mathematical aspects of density functional theory are included.
The first one is an introduction to functional calculus, the concepts of which are applied to den-
sity functional theory of Coulomb systems in the following section. This chapter contains a more
rigorous discussion of some mathematical aspects of density functional theory providing a justifi-
cation for the use of variational equations in DFT which assumes for instance differentiability of
functionals. From a physicists point of view these points are technicalities as all electron densities
to be considered in nature are smooth and well-behaved and the corresponding energy functional
should also be smooth and differentiable, at least at the collection of physical densities. Although
plausible, this still is an assumption. The fact that the statement is in fact true has been proved
by mathematicians some 20 years after the Hohenberg-Kohn paper providing a sound basis for
applications in DFT. The two chapters on functional analysis are hopefully useful for the reader
interested in the functional analytical aspects of DFT.

1.2 Overview of the thesis

In this thesis we investigate the properties of the Kohn-Sham effective potential for atomic and
molecular systems. We in particular investigate the exchange-correlation potential and its ap-
proximations such as the local density approximation (LDA) and the generalized gradient approx-
imations (GGA). We further propose improved approximations for the exchange and exchange-
correlation potential (shortly denoted as x-potential and xc-potential ) and discuss a method to
obtain exchange-correlation energy expressions from approximate potentials using line integrals.

In chapter 5 we discuss the properties of the xc-potential corresponding to the GGA’s of Becke
and Perdew which are compared to the exact xc-potential. The exact xc-potential is constructed
from accurate atomic electron densities by a newly developed iterative method. From this compar-
ison one can clearly see that the approximate GGA’s lack some properties satisfied by the exact
xc-potential, notably the long range Coulombic asymptotics which affects the highest occupied
orbital energies. To satisfy the asymptotic requirement a gradient expression is developed for the
xc-potential with the correct asymptotics leading to greatly improved atomic and molecular ioni-
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sation energies as determined from the highest occupied Kohn-Sham orbital.

In chapter 6 we give a more extensive discussion of several gradient approximations to the ex-
change potential. These are Padé approximants which are constructed to satisfy the correct scaling
properties, long range asymptotics and atomic shell structure of the exchange potential. The con-
structed Padé approximants lead to considerable improvements of the existing expressions for the
GGA exchange potentials which do not exhibit the right long range asymptotics and which have
an unphysical Coulombic divergence close to the atomic nucleus. The exchange energy is calcu-
lated from these Padé approximants using the Levy-Perdew relation. It turns out that to obtain
good exchange energies this way a good description of the exchange potential in the core region is
important.

In chapter 7 we give an analysis of electron correlation and atomic shell structure in terms of local
potentials. The analysis carried out leads to a splitup of the xc-potential into two terms, a long
range and a short range part, both of which are relatively easy to approximate. An important ques-
tion is how exchange and correlation effects influence the shape of the xc-potential as it provides
insight in the way to construct more accurate density functionals. An important feature of the
exchange and exchange-correlation potential is the atomic shell structure. The x- and xc-potential
can be written as the sum of two potentials, a smooth long range attractive Coulombic potential
and a short range repulsive step-like potential with clear atomic shell structure. The latter po-
tential is constant within the atomic shells but changes rapidly at the atomic shell boundaries.
The exchange-correlation energy is completely determined by the long range attractive part of the
xc-potential. The atomic shell structure is further clearly reflected in the properties of the exchange
and exchange-correlation hole and the conditional probability amplitude. Both quantities are re-
lated to the distribution of the other electrons when one electron, called the reference electron,
is known to be at a certain position in space. The exchange hole and the conditional probability
amplitude undergo rapid changes when the reference electron crosses atomic shell boundaries. As
several of the constituents of the Kohn-Sham and xc-potential can be expressed in terms of the
conditional probability amplitudes information on the structure of the Kohn-Sham potential can
directly be obtained from the study of these probability amplitudes which contain all the exchange
and correlation information of the system. For instance the peak structure at the atomic shell
boundaries in the so-called kinetic potential which is a part of the functional derivative of the
kinetic energy functional is directly related to changes in the conditional probabililty amplitudes
when the reference electron crosses atomic shell boundaries. As discussed in chapter 10 the same
potential describes the left-right correlation effect in dissociating molecules.

In chapter 7 we noted the step structure in the x- and xc-potential. In chapter 8 this step structure
is derived by making an approximation in the functional derivative of the pair correlation function.
The result is an equation for the exchange potential which has been derived earlier by Krieger, Li
and Tafrate (KLI) in a different way. This potential turns out to be a very accurate approximation
to the exact exchange potential. Another important result is an approximate expression for the
inverse density response function as it occurs in several places within density functional theory
(e.g. in the construction of xc-potentials from electron densities and in the calculation of excitation
energies in time-dependent DFT).

In chapter 9 we propose an approximation for the above discussed short range step-like and long
range Coulombic part of the exchange potential. The long range part is approximated by a density
gradient expression with the correct asymptotics derived from the Becke GGA for the exchange
energy. The short range repulsive step-like part is written as a summation of orbital densities with
coefficients that depend on the orbital energies. The analytic dependence of these coefficients on
the orbital energies is determined by imposing the correct scaling relations, gauge invariance and
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reduction to the correct electron gas result for homogeneous systems. The resulting potential turns
out to be a practical and accurate representation of the exchange potential and it moreover yields
accurate (of Becke GGA quality ) values for the exchange energies.

In chapters 10 and 11 we consider molecular systems. In chapter 10 we discuss the properties of
the GGA’s of Becke and Perdew for the case of molecular dissociation. The Becke-Perdew GGA
is widely applied in quantum chemistry as it yields accurate ( with an accuracy of about 0.2 eV )
bond energies and geometries for molecules. In this chapter we try to obtain more insight in the
reasons for this good performance of the gradient corrected functionals. We first discuss the prop-
erties of the exact Kohn-Sham potential in the bond midpoint region. As has been noted before
the Kohn-Sham potential in the bond midpoint region exhibits a peak structure related to the left-
right correlation effect. This peak structure arises from the kinetic part of the exchange-correlation
functional and can be expressed in terms of the conditional probability amplitude. We show that
this peak structure is also present in Becke-Perdew GGA however with a wrong functional depen-
dence on the electron density. We furthermore explain why the Becke GGA for the exchange in
general yields repulsive contributions to the bond energy and why the Perdew GGA for correlation
yields an attractive contribution. This is related to the fact that density gradients at the saddle
point in the electron density (the bond midpoint) are zero. Numerical results are presented for the
dissociating nitrogen molecule and contributions from different regions of space are analyzed.

In chapter 11 we discuss exact and approximate (the Becke-Perdew GGA) density functional re-
sults for the dissociating hydrogen molecule. The hydrogen molecule is chosen for the analysis as
the exact DFT quantities needed for comparison with the approximate results can be calculated
from accurate electron densities obtained from large configuration interaction calculations on this
molecule. A disadvantage however is that this molecule is not a ’standard’ molecule in the sense
that is does not have core orbitals and therefore it lacks the Pauli repulsion contribution to the bond
energy. The DFT results are further compared to the results of the Hartree-Fock approximation
and the configuration interaction method which yields almost exact results. It turns out that the
DFT results with GGA’s included give a very accurate representation of the binding curve of the
hydrogen molecule. The DFT curve deviates from the exact curve however in the dissociation limit,
which can be cured by performing an unrestricted Kohn-Sham calculation. The DFT dissociation
error is however much smaller than the error in the Hartree-Fock approximation. This is due to the
fact that the LDA and GGA exchange-correlation hole is localized around the reference electron
and resembles much more the true exchange-correlation hole than the delocalized Hartree-Fock
exchange hole. The fact that there is still a dissociation error in DFT is due to the fact that the
approximate density functionals are not invariant under spin rotations, which leads to problems
for degenerate ground states (which are in practice solved by performing unrestricted calculations).
We finally analyze the bond energy contribution of the Becke-Perdew GGA for certain density
variations.

In chapter 12 we discuss the problem how to calculate the exchange-correlation energy if only the
exchange-correlation potential is known. From the exchange potential one can calculate the ex-
change energy using the Levy-Perdew relation which can be derived using the scaling properties of
the exchange potential. For the correlation potentials such scaling relations are however not known.
However as we show the correlation energy can be obtained from line integrals in the space of elec-
tron densities. Path dependence of the line integrals is discussed and integrability conditions are
presented. We further discuss how several invariance properties of the xc-potential can be derived
by selecting certain paths corresponding to certain symmetries (rotation, translation, scaling) and
derive some inequalities for the correlation potential. We then show that the line integral formalism
generalizes the transition state method of Ziegler for the calculation of molecular bond energies.



Chapter 2

A review of density functional theory

2.1 Key concepts and formulas

The evolution of a system of N particles moving in a external potential v(r) and having internal
particle interactions w(rirs) is in many cases where relativistic effects are not important to a very
good approximation determined by the Schrodinger equation

H(ry,...,rN)¥(ry,...,rN,t) =00 ¥(r;...rN, 1) (2.1)

where the Hamiltonian H is given by

H(ry,...,ry Z——VQ—i—v ri) + = Zw r;r;) (2.2)
275]
In the above equations we neglected the internal degrees of freedom of the particles such as spin.
For many-electron systems such as atoms, molecules or solids we have to take the electron spin
into account and the stationary states of the system are determined from the time-independent
Schrodinger equation

H(I‘l e rN)\I!(rlal e I'NO'N) = E\IJ(rlal N I‘NO'N) (23)

where o; are the spin coordinates of the electrons and we require the wave function of the system to
be antisymmetric under interchange of space and spin variables. The Hamiltonian can alternatively
be written in second quantized notation as

H=T+V+W (2.4)
where

- Y / §F ()24, () dr (25)

RIS / B (0)u(x) o (x)dr (26)

W= X [0 @0 wlex o () (v)drdr’ (27)

We further denote 2; = (r;o;). The action of the operators ¢} (r) and 1), (r) on a N-electron state
Uy in coordinate space is defined as

1 -

[Q/A);— (I‘)\I/]N+1((II1 e (I,‘N) = T—HA[é(w - :EN+1)\I/N(£E1 N :EN)] (28)
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where

6(x — x;) = 6(r —1i)dg0, (2.9)
and

[ () U]t (@1 ... 2n—1) = VNUN (21 ... 2N_1,2) (2.10)

where A is the antisymmetrization operator defined as

(AU)(z1...zN) = Z sign(P)¥(zp(1) - .- Tp(n)) (2.11)
PeSn

where the summation runs over all permutations P of the group of permutations Sy of NV elements.
The operator 1/;;“ (r) adds a particle with spin o at position r to the N-particle state ¥ and operator
Q/A)U(I') removes a particle with spin ¢ from the N-particle state ¥ . One can readily verify using
the above definitions that the Hamiltonians 2.3 and 2.4 are equivalent. One can furthermore derive
the anticommutation relations

o) bor ()] = [dF (0,95 ()] =0 (2.12)
[zﬁa(r),z/?;(r’)} = (r —1")dgq (2.13)

+
where [A, B]; = AB + BA.
We now define the electron density as

p(r) = (T[p(x)|T) = (U] 3 P f (r)1ho (r)|T) :NZ/|\I/(ram2...:1:N)|2d:1:2...dmN (2.14)

where dxr denotes integration over the spatial variable r and summation over the spin variable o.
The electron density p(r) is proportional to the probability per unit volume of finding an electron
at position r.

2.2 Density matrices and density functionals

An important method of calculating ground state properties of many-particle systems is the varia-
tional method which is based on the variational principle which states in the case of fermion systems
that for any anti-symmetric wavefunction ¥ :

U|H| )

E[V] = ( > B (2.15)

(W) —

where Ej is the ground state energy of the system. This can be derived assuming H has a lowest
eigenvalue which is almost always true for all (non-relativistic) cases of interest. This means that
the ground state wavefunction is a stationary point of the energy functional E[V¥], so we have

B S 1 U HIY) 5(T|W)
0= U (zy...oy) (U|D) l&ll(wl L IN) ElYl 0U(zy...zN)
_ ﬁ (B0 (@1...on) — BV (2 ...on)| (2.16)
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which is just Schrodingers equation as expected.
From the expression of the Hamiltonian 2.4 it follows that we can write the expectation value of H
with state |U) as

A 1 1
(W) =3 Y / V(e 1)), _odr+ S / pr()u(r)dr+5 3 / T,y (v, ' )w(r, ' )drdr! (2.17)
In the above expression we have defined the one-particle density matrix v, as
Yo (r,1) = ()b (r') )y ()| T) = N / U*(r'oxy...zN)U(rosy ... oy)dy ... TN (2.18)

and the diagonal two-particle density matrix ',/ as

Lo (r,0') = (U7 ()] (¢ )hor (') 3ho (1))
— N(N- 1)/|\I/(ra, Po'zy...on)des. .. doy (2.19)

A general M-particle density matrix (for an overview of the properties of density matrices see
reference [12] ) is defined as:

Dy (ri01 ... epoan ol .. xhohy) = <\y|z/3j,l (r))... I/S;M () ibo, (£1) - . - they, (T2r)|T)

N! .
= m/‘l/ (1'110',1...1'11\/[0'%/[%]\/[_1_1...:EN)\I/(I‘10'1...I'MO'M:EM+1...(I,‘N)dxM+1...de(Q.QO)

In systems were there are only two-particle interactions present we can restrict ourselves to the two-
particle density matrix. To calculate the energy of the system we then only need the one-particle
density matrix and the diagonal two-particle density matrix which are related to Dy by

Loi0y(r1,12) = Do(r101,T202;T101,T202) (2.21)
1
'yg(rl,rll) = Dl(rla, I‘IIO') = H Z/Dz(rlargag;rllalrzag)drz (222)
a2

One could therefore wonder if one could derive a variational principle for density matrices instead
of wavefunctions. This is readliy done by defining

BlDu] = inf (V|H|) (2.23)

M

where the infimum of the expectation value is searched over all normalized anti-symmetric wave-
functions ¥ yielding Djs (denoted ¥ — Djs). This means that E[Dj/] is defined on the set Dy of
M -particle density matrices obtainable from normalized antisymmetric wavefunctions, i.e

Dy = {Dpy |3V : U — Dy, (U|¥) = 1, Panti-symmetric} (2.24)
One has the variational property:

An arbitrary function Dps(x;...zp; 2] ... 2,) will in general not belong to the set Dj;. One
might therefore ask what the necessary constraints are for a function Djys to belong to Dys. This
problem, which is known as the IN-representability problem for M-particle density matrices, has
received considerable attention for the cases M = 1 and M = 2 [13]. The reason for this is that
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equation 2.17 gives an explicit expression for the total energy in terms of Dy and can therefore
be applied for variational calculations. However to apply this formula one needs the constraints
for Dy to belong to Dy which can then be incorporated in the calculation by means of Lagrange
multipliers. If one minimizes without these constraints the energy expression one might get lower
than Ey. However the IN-representability problem for two-particle density matrices has not been
solved until now.

The N-representability problem for one-particle density matrices on the other hand has been
solved [14] and we will therefore have a look at one-particle density matrix functionals. The energy
for the one-particle density matrix can be written as

:—_Z/Vr'yg (r,r')],_ 7ﬂ/dr—i-z:/pg (r)dr + Wy] (2.26)

where W[y] is defined as

W{y] = inf (\I/|W|\I/) (2.27)
Uy
A very nice property of the functional W{y] is that it is defined independent of the external potential
v. It can therefore in principle (but not in practice) be calculated once and for all independent of
v. For practical applications one needs to know the necessary conditions for v to belong to D;.
These conditions can be formulated as constraints on the eigenvalues u;, of v,. If we have

/70(1"1,1‘2)@0(1"2)611"2 = ioPio (r2) (2.28)

then the set D; is equal to

Dy = {n| /%(r, r)dr = Ny, 0 < pip < 1} (2.29)

The pi, are called the natural occupation numbers and the orbitals ¢;, are called the natural
orbitals. The fact that 0 < u;, <1 is a consequence of the Pauli-principle, any orbital ¢, can be
occupied with maximally one electron with spin . For the application of the variation theorem one
needs approximate expressions for W[y]. One of the simplest expressions follows by considering a
~ obtainable from a Slater determinant which yields

Wiy = %Z/w(rl,PZ)[%(rlarl)%(rzarz) — Yo (r1,12)7Y0 (r2, r1)]dr1drs (2.30)

As one can prove [15] that for this approximate W/[y] the energy is always minimized by a ~,
obtainable from a Slater determinant wave function the variational equations corresponding to
this W{[y] will be equal to the Hartree-Fock equations to be discussed in a later section. Some
approximations which go beyond the one proposed here are known [16, 17] but the variational
equations are not solved.

An other approach for which approximations to the functionals are easier to obtain is the density
functional approach. In the spirit of the lines described above one can define an energy density
functional by

o= [ ple)ote) + Fualol (2.31)
where the functional Frz, introduced by Levy and Lieb is [18, 19] defined as
Frirlp] = inf (U|T + W|¥) (2.32)
V—p
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where the infimum is searched over all normalized antisymmetric wavefunctions giving electron
density p. The infimum can actually be shown to be a minimum [19]. As for any density integrating
to N electrons and which satisfies p > 0 one can easily construct a wavefunction (even a Slater
determinant) which yields p the densities in the set

N =1{plo 20, [ p(x)ir = N} (2.33)

satisfy the N-representability conditions. With the introduction of a Kohn-Sham system accurate
approximate expressions for the functional F;, can be found. This leads in practice to the solution
of a system of equations for noninteracting particles moving in an effective external potential.

2.3 The pair-correlation function and the exchange-correlation
hole

Important insight into the behaviour of interacting many-particle systems can be obtained by the
analysis of correlation functions. Especially insightful are the pair-correlation function g, (ri,rs)
and the exchange-correlation hole function p,.(r1, rs) Extensive discussions of the exchange-correlation
hole function have been given by Slater [20] and McWeeny [21]. We define the function

F(7'1(7'2 (rla I'2)

P (01) (2.34)

Pfflffz (I'2|I'1) =

The function P, ,,(r2|r1) gives the probability to find an electron with spin oy at ry if we know
that there is an electron at r; with spin o;. We define the exchange-correlation hole function
pIL?2(ry,r2) by the equation

Py, (T2|T1) = poy (T2) + pge” (r1,T2) (2.35)

As the presence of the reference electron at r; reduces the probability to find an electron near ry
the function p,. represents a hole in the electron density p,(rz2). It has the property

z:/p‘”"2 ri,ro)dry = —1 (2.36)

The hole therefore contains one electron. The electron repulsion energy between the electrons may
now be written

(T|W|T) = 2/%(&1 Ldry + W, (2.37)
1

where W is the Coulombic repulsive potential between the electrons and the exchange-correlation
energy is given by

— /Pal r1)pge” (r1,T2)
1 — o

1
dridry = 53 / P (E1)01 (r1)dry (2.38)
o1

(71 )

where vgc,g(rl) is the potential of the exchange-correlation hole of the reference electron at ry
defined as

(7102
ol /'0 (r1, 72) dridrs (2.39)

:DC,O’l |I'1 — I'2|
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For neutral finite systems such as atoms the asymptotic behaviour of cho_ at large distance r
from the system decays Coulombically as —1/r. If we move the reference electron to infinity then,
for instance for an atom, the probability to find an electron near the atomic nucleus is reduced.
Another way of putting this is to say that the reference electron experiences the potential of the
positive ion it leaves behind. Let us discuss the exchange-correlation hole function a bit further.
The probability to find another electron near the reference electron is reduced for two different
reasons, one reason is the Pauli-principle which only affects electrons with like spin, and the other
reason is the Coulomb repulsion which is spin-independent. The Pauli principle forbids, even if
there where no Coulomb interactions between the electrons, electrons with the same spin to occupy
the same position in space. This is called the exchange effect. The corresponding hole function p7'??
is called the exchange-hole function. For a non-interacting system of electrons the exchange-hole
function is readily calculated. The wave function of such a system is just a Slater determinant

Up(rioq...ryon) = \/%Mbl(rlal) . on(ryoN)] (2.40)
We find
2
p3' 72 (r1,12) = —%%m (2.41)
where
No’l
= ¢i(rio1)¢; (rz01) (2.42)

So we see that the hole for unlike spin electrons is zero as expected. If the reference electron at ry is
well-located within orbital ¢; and the other orbital densities are small at ry then py, (r1) ~ |¢;(r1)|?
and we find approximately

Pglgz (1‘1,1'2) ~ _|¢i(r20—2)|260'10'2 (243)

The exchange-correlation hole for an interacting system of electrons is much more difficult to
calculate. Note however that to calculate W, or the hole potential v, we only need the spherical
averaged part py. of the exchange-correlation hole, defined as

pre’’ (r1,8) = / P (r1, T + 8)d€; (2.44)

where df2; is the integration volume of the angular variables for s. The exchange-correlation hole
potential becomes

Wb / 42D 18) (2.45)

xc,al

Another useful function for the description of electron correlation in many-electron systems is the
pair-correlation function gy, 4, (r1,r2) defined as

Ffflffz (rla r2)

Joi02\r1,r2) = 2.46
) = ) 240
Then we can write
010 r 7r
W10 =3 5 [ oo oo 22 g (2.47

01 o2
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The function describes the screening of the interparticle interactions due to exchange- and correla-
tion effects, i.e. the 1/r15 potential is replaced by the screened potential g/r12. The expression for
Wze then becomes

Waem 2 3 [ oo (s (o) U7 2 L g, (2.48)

o102 |I'1 —I'2|

The pair-correlation functions satisfies the sum rule
2/902(1'2)(90102 (r1,r2) — 1)drz = —1 (2.49)
g2

And for the exchange-correlation hole potential we have

Uh (rl) _ Z/ Posy (rZ)(gmUz (r17r2) _ 1)dr2 (250)

TC,01 |I'1 — I'2|

From the sum rule we again find that v, has a Coulombic asymptotic behaviour.

2.4 Effective non-interacting particle models

Important insight in the properties of many-particle systems can be obtained from the study of
effective non-interacting particle models. In these models the interacting system of particles is
replaced by a non-interacting system of particles in which the external field is replaced by an effective
external field which incorporates to some extent the interparticle interactions in an average way.
Within the Kohn-Sham approach to DFT one can do this in a formally exact manner. In this section
we will however discuss some approximate models, which by their relative ease in computation and
by their physically appealling interpretation, have gained a considerable popularity. It turns out
that from quite simple models such as the Hiickel method in chemistry one can already understand
many properties of chemical bonding. With the appearance of more powerful computers more
sophisticated approximations, such as the Hartree-Fock approximation, have become quite popular
in chemistry.

In the Hartree-Fock approximation the ground state wave function is approximated by a Slater
determinant

\I/D(I‘10'1 N I'NO'N) = \/%Wl(rlal) N ¢N(rNUN)| (251)

The corresponding energy expression is defined as the expectation value of the Hamiltonian with
this Slater determinant wave function. The interparticle interaction W is taken to be Coulombic.

1 1 d
El{$:}] = —3 Xa:/qbf(ro)Vqui(ro)dr +/p(r)v(r)dr+ 5 / %drdr' + E,[{¢i }](2.52)
where the electron density is given by

pr) =33 I¢i(ro)f* (2.53)

and the exchange energy by
1 s (r, )2
Eul{g)] = — [ D00

2 |r — 1|

drdr’ (2.54)
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where
N
Vo(r,t') =Y ¢i(ro)gi(r'o) (2.55)
i

In order to obtain the equations for the effective one-particle orbitals ¢; we use the variational
theorem and we minimize the functional

QUfpit) = Bligit = 3 Ny | [ 61l teo)ar — oy (2:56)
ij

where the Lagrange multipliers \;; ensure orthonormality of the orbitals. The Euler-Lagrange
equations are then obtained from

Q) 02 02
=0 =0 =0 2.57
5¢Z~(r0) (5¢;k (I‘U) 5)\1']' ( )

yielding

1 p(r
—§V2 +o(r) + /

v’ —

" ¢i(ro) /Z (r,")p;(r'o)dr’ = €;¢;(ro) (2.58)

where the one-particle energies ¢; are obtained from a diagonalization of the matrix of Lagrange

multipliers );;. The integral kernel Z2F" is given by
HF Yo (r, r')
Yoy (r,r) = 1 (2.59)

The above equations constitute the Hartree-Fock equations which is a set of integro-differential
equations for the orbitals ¢;. Some of the features of the Hartree-Fock model become more clear if
we rewrite these equations in a slightly modified form where we replace the integral kernel with a
set of orbital dependent potentials

[—%VQ )+ / P ol (20) | gi(eo) = ei(xo) (2.60)
where
HF _ [ ni(ro,x'o)
P (pg) = /7|r_r,| dr (2.61)
and
ni(ro,x'o) = ¢*(r0)|“;; ((igr) |)quz(r o) (2.62)

The most important contribution of -y, to n; when ¢; is an occupied orbital is the term ¢;(ro) ¢} (r'o)
so we find that approximately

ni(ro,r'o) ~ |¢i(r'o)[* (2.63)
so we have
(! 2
o (o)~ [ 12N g (2.64)

v — |
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So we see that the term n; for occupied orbitals substracts out the density of orbital ¢;. This is
something which is intuitively clear. The effective electron should move in the field of the charge
cloud of the other electrons, excluding the field of its own charge cloud. For atomic systems with
nuclear charge Z this implies that the asymptotic form of the total effective Hartree-Fock potential
for occupied orbitals is given by

+/p — o), (Z-N+1)

|r — /| T

HF
UTOT,i (ro) ~

(r = o0) (2.65)

which decays like —1/r for neutral atoms. For unoccupied orbitals we have

) o (Z-N)

|r — /| 7

i) ~ -2+ (r = ) (2.66)
which decays faster than Coulombic for neutral atoms. This last result implies that the virtual
spectrum of a neutral atom within the Hartree-Fock approximation does not resemble the Rydberg-
like series characteristic for particles bounded by a Coulombic potential. The virtual orbitals
(when bounded) of a neutral atom will be quite diffuse. This is of some importance when the
virtual Hartree-Fock orbitals are used in more elaborate correlated methods such as configuration
interaction expansions.

The Hartree-Fock equations have the computational disadvantage that every effective electron
moves in a different potential. To simplify the equations one could therefore approximate the the
HF-exchange energy locally by the HF-exchange energy of the homogeneous electron gas yielding

E,=—«a <%>% /p(r)%drl (2.67)

where oo = 2/3. The variational equations then become

Hvuv(rw / ) 4, () o0 ]@( ) = cih(r) (2.68)

r—rv| 3

Wl
wl—=

N
2 16:()]” = p(x) (2.69)

This is a considerable simplification of the Hartree-Fock equations. The main advantage from a
computational point of view is that one now does not have to calculate a nonlocal potential which
requires large computational effort. In actual applications for atoms, molecules and solids it turns
out that the accuracy can be improved by replacing the & = 2/3 of the electron gas by a = 0.7. The
method, originally developed by Slater [20], is known as the X a-method and has extensively been
used in solid state physics and quantum chemistry due to its simplicity and surprising accuracy
which in many cases exceeds the accuracy of the Hartree-Fock approximation. The reason for this
is among others, that the well-known molecular dissociation error in Hartree-Fock is considerably
reduced in the X a-approximation due to the localized character of the X a-exchange hole which
actually resembles more the true exchange-correlation hole than the exchange hole. A more exten-
sive discussion of the feature in connection with the Local Density Approximation (LDA) is given
in section of this chapter.

The X a-method shows that it is possible to obtain fairly accurate results within an effective non-
interacting particle model with a local potential depending only on the electron density p. In the
next two sections we will show that the Xa-model can be regarded as an approximation to an
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exact non-interacting particle model, known as the Kohn-Sham system, containing a density de-
pendent local potential. From the solution of the Kohn-Sham equations it is in principle possible
to obtain the exact ground state density and energy. In practice of course we have to resort to
approximations.

2.5 The Hohenberg-Kohn theorem

In the following we will demonstrate that the ground state energy of any interacting many-particle
system with a given fixed interparticle interaction W is uniquely determined by its ground state
density. Furthermore the knowledge of the ground state density p determines the external potential
v of the system (to within a trivial constant).

An essential part of the proof of the latter p — v relation is the fact that when calculating the
expectation value of the Hamiltonian H with a certain state |¥) a term containing the electron
density and the external potential explicitly separates out as

(O|V| W) = / p(r)o(r)dr (2.70)

For the same reason one can prove from
(W) =Y / T, (v, o' Yus(r, ') drdr’ (2.71)
oo’

that the two-particle interaction W is (to within a constant ) a unique functional of the diagonal
two-particle density matrix I',,.

Another essential ingredient of the proof of the HK-theorem is the use of the variational theorem.
We will derive the theorem for systems with non-degenerate ground states. The theorem is quite
easily extended to the case of degenerate ground states. However to avoid unnecessary complication
we will discuss the degenerate case in a later instant.

An external potential V leads to a ground state density in an obvious way. First of all V leads to
a ground state |¥) by solving the Schrédinger equation

H|V) = E|D) (2.72)

This provides us with a map C : V — & from the set of external potentials V to the set of
ground state wave functions ®. Secondly, for any ground state wave function one can calculate the
corresponding electron density from

p(r) = (¥|p(r)|T) :NZ/|\I/(r0:1:2...$N)|2d$2...d:1:N (2.73)

which gives a second map D : ® — AN from the set of ground state wave functions to the set
of ground state densities M. The statement of the Hohenberg-Kohn theorem is then: The map
DC : V — N is invertible. To prove this we first show that two different external potentials
V # V' + C (with C an arbitrary constant) lead to two different wave functions (that is differing
more than a phase factor).

The proof is by contradiction. Suppose we have

(T + Vi + W)lgp1) = Erlyn) (2.74)

(T + Vo + W)lgha) = Ealth) (2.75)
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where Vi # Vi + C where C is a constant and let us assume that |¢1) = [¢p) = |¢), then by
subtraction of these equations we have

(Vi = Va)|y) = (By — Ea)|h) (2.76)

As Vl and 172 are multiplicative operators we must have VI — 172 = Fq — E5 which is in contradiction
with Vi # Vs 4+ C unless |t)) vanishes in some region in space. This is however impossible by
the unique continuation theorem valid for all reasonably well-behaved potentials ( for instance for
potentials not containing infinite barriers etc.). From the above contradiction we then conclude
that our assumption was wrong so two potentials differing more than a constant yield different
ground state wave functions and hence the map C' is invertable. A more rigorous discussion of the
set of allowable potentials in DFT is presented in chapter 4 of this thesis.

The second part of the proof consists of showing that two different ground state wave functions
yield different ground state densities. The proof proceeds again by contradiction. Let us assume
that |11) and |i;) yield the same ground state density p. Then we have

By = (Y|Hylihr) < (ho|Hylho) = (o Hy + Vi — Valuhy) = Eo + /P(r)(vl(r) — va(r))dr (2.77)

similarly we find

By < By + / o(£) (02 (r) — v1 (r))dr (2.78)
Adding both inequalities then leads to the contradiction
FEi+ FEy < E1+ Ey (279)

and therefore our assumption was wrong, |¢1) and |1)2) must yield different densities and the map
D is invertible. Therefore by our previous result the map DC is also invertable and the ground
state density uniquely determines the external potential.

Due to the invertability of the map D every ground state expectation value of an operator A is
determined by the ground state density

Alp] = (o)l Alp[p]) (2.80)
In particular for the ground state energy we find
Eulpl = WIAIEI1) = [ pe)o(x)de + Fiuxlp) (2.81)

where the functional Fx|[p] is defined as

Frxlp] = ($lo)|T + Wlo]) (2.82)

The functional Fy g is universal in the sense that it does not depend on the external potential V.
It can therefore in principle (but not in practice ) be calculated for all ground state densities p.
This is the most important conclusion of the HK-theorem, once approximations for Fx are known
we can apply it to all electronic systems ranging from atoms and molecules to solids.

The energy functional FE, satisfies a variational property

By = Eyylpo] = ($[po]|T + Vo + Wplpo]) < ($alIT + Vo + We[o]) = Eus[0] (2.83)
if p # po. We therefore find

By = min By o) = mig | [ plrvo(w)de -+ Firiclp (2.84)

A more thorough discussion of the properties of Fyg including a discussion of the extension of
Fri to a functional Frr, defined on a larger set of densities is given in chapter 4 of this thesis.
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2.6 The Kohn-Sham equations

To apply the DFT formalism one obviously needs good approximations for the functional Fr or
Frr. Accurate approximations have been obtained by means of the Kohn-Sham method [11]. A
main advantage of this scheme is that it allows a straightforward determination of a large part of
the kinetic energy in a simple way. Another advantage, from a more physical point of view, is that
it provides an exact one-particle picture of interacting electronic systems. This then provides a
rigorous basis for the one-particle arguments used in solid state physics and chemistry to explain
and predict certain features of chemical bonding.

We introduce a non-interacting particle system with Hamiltonian H s, ground state density p and
external potential vs. The ground state (assumed to be non-degenerate for the moment) is a Slater
determinant of orbitals ¢; which satisfy the equations ( we neglect spin for the moment)

5V + o) i) = i) (2:85)

with
N
2 16:()” = p(r) (2.86)

If we apply the Hohenberg-Kohn theorem to this non-interacting system we find that there is at
most one external potential vs to within a constant which generates p ( one usually chooses this
constant in such a way that vs — 0 for |r| — co.) Therefore, for a given ground state density p, all
the properties of the system are determined. This is in particular true for the kinetic energy Ts[p]
and the total energy E,,[p] given by

N
Tl = 3"~ [ 60 V2 w)dr (287)
and
Eolpl = Tl + [ ple)os(e)ir (2.88)

The functional Ts[p], which is called the Kohn-Sham kinetic energy, is just a particular case of the
functional Fg for the case W = 0. The ground state density of the system can now equivalently
be obtained by the solution of the Euler-Lagrange equations

= 25 o]+ 0, (x) — s (2.89)

5£>{ = | pte)ir ()

where we introduced the Lagrange multiplier i to satisfy the constraint that the density integrates
to the correct number of electrons. Let us now go back to the interacting system where the energy
functional reads

/ p(r)o(r)dr + Frlp] (2.90)

and let us define the exchange-correlation energy functional E,.[p] as

Bocle] = Fuxclel - %%%%dm—m1 (2.91)



i T e - 444 ALY VW AELLALVE MY VLA L SV

As Fpg is only defined for ground state densities of interacting systems and T is only definend for
ground state densities of non-interacting systems, we have implicitly assumed that for any ground
state density p of an interacting system there exists a non-interacting system with the same ground
state density. This is the central assertion of the Kohn-Sham scheme. If we assume this assertion
to be true then the Euler-Lagrange equation of the interacting system is given by

— 5 [Polel = [ otma] = £ o+ [ L Ko+ Sl 9)

If we define the exchange-correlation potential vz, by

one([pl; 1) = gﬁﬂ;; B (2.93)

we find using the fact that the equations for the interacting and the non-interacting system are
solved for the same density that

vs() = o) + | . f'2,|dr'+vm([p];r> (2.94)

to within a constant ( we can always choose the arbitrary constant in v, in such a way that v, — 0
for |r| — oo and then p — ps = 0). We therefore find that we can find the ground state density of
the interacting system by Solving the Kohn-Sham equations

=57 o)+ [ AL ()] i) = ) (2:95

N
2 16:()]” = p(x) (2.96)

The advantage of the above approach is that we now have reduced the problem of finding good
approximations to the functional F g to finding good approximations for the much smaller quantity
E,.. R

Note that the kinetic energy of the interacting system T'[p] = (¢[p]|T'|¢¥[p]) with 1[p] the ground
state wave function of the interacting system with density p, is not equal to the kinetic energy of
the non-interacting system T[p] with the same ground state density. It follows from

(Md@W@D+/Mﬂ%&MF=W@WZWM)

> (L) = Tlel + [ plw)os(e (2.97)

where 1,[p] is the Kohn-Sham determinant and H, is the Kohn-Sham Hamiltonian, that

T[p] > Ts[p] (2.98)
and
Tlp] = min(¥|T]7) (2.99)
—p

where we minimize over all anti-symmetric and normalized wave functions yielding density p. If we
define the exchange-correlation part of the kinetic energy as

Telp] = Tlp] — Tspl (2.100)
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we therefore find

Ticlp] 2 0 (2.101)
So we have

Egelp] = Tuelpl + Waclp] = Waelp] (2.102)
where

Waelp] = WAl W I0e) — 5 [ pr - ) deydr, (2.103)

Before we will look into approximations for the exchange-correlation energy functional we will
first discuss some exact scaling properties of density functionals which give useful constraints on
approximate functionals.

2.7 Scaling properties

We will now derive some scaling properties [22] of some density functionals which can be defined
in terms of the Kohn-Sham orbitals. Consider the Kohn-Sham equations

1
|:—§V2 + ’US(I‘):| ¢Z(r) = ei¢i(r) (2104)
N
Yo 1si(r))? =1 (2.105)
and define the scaled coordinate r = Ar’ then
1
Ve = er, (2.106)

and we obtain

—%Vf, + A0 (Ar) | i (Ar') = A2e;hs (M) (2.107)

If we define
$ir(r) = AZg;(Ar) (2.108)
€ix = e (2.109)
pa(r) = X3p(Ar) (2.110)

then we obtain

[—%Vz/ + )\Q’US(AI') (ﬁi’)\(r') = ei,/\gﬁi,/\(r') (2111)

N
D 19ia(@)]* = pa(r) (2.112)
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We therefore conclude that if vs(r) generates ground state density p(r) , which we will denote with
vs([p]; ) , then vy \(r) = A?vs(Ar) generates ground state density py(r). However as there is by the
Hohenberg-Kohn theorem at most one potential which generates p) we must conclude that

vs([pali ) = Au,([p); Ar) (2.113)
to within a constant. We further obtain

$i[oalix) = A2 gi([p]; Ar) (2.114)

eiloa] = A2 o] (2.115)

This implies that the Kohn-Sham kinetic energy functional satisfies

Tyloa] = A2T3) (2.116)
Let us now define the exchange energy functional as
L[ |ys(ry, r2)?
E,lpl=—= | == dr,d 2.11
(] 1 it — 1o ridary (2.117)
where
7s(r1,12) Zqéz (r1) ¢} (r2) (2.118)

is the one-particle density matrix for the Kohn-Sham system. Using the above derived equations
we find

N
Ys([palsri,r2) = Zd)i([m];h)ﬁ([m];ra) =

= /\32¢z 1 Ar1)e; ([o]; Arz) = Ay ([pl; Ary, Ara) (2.119)

This then yields
Balpa] = A [p) (2.120)
The functionals Ts and E, are special cases of homogeneously scaling functionals of the form
Alpa] = A¥ A (2.121)

For these functionals we obviously have the property

d

—A -1 =kA 2.122
N [oAlIa=1 [p] ( )
If we further denote
0A
a(lpl;r) = 2.123
([pl;r) e (o] ( )
then on the other hand
d 5A i)

24 -
Y oAl A=1 5o (1) (oAl A=1 ——|a=1dr
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= [ allpliv)3p(x) + v Vo(e)idr = [ ple)r - Va([plr)ds (2.124)

where in the last step we performed partial integration. We therefore find

= / )41 Vp(r))dr (2.125)

In particular we find for T and E, that
Ty06) = 5 [ 0.l ) Bo) + 1 Vplw)dr (2.126)
Balpl = [ vallph ) 3p(x) + - Vplr))ds (2.127)

where the exchange potential v, is defined as the functional derivative of E,

va(lplix) = fp—]f)

This last relation between the exchange potential and exchange energy is often denoted as the
Levy-Perdew relation [22]. The scaling property of the functional A[p] further implies that

(] (2.128)

allpalir) = Nea([pl: r) (2.129)
This we will derive as follows. From

51p] = [ allplir)op(x)dr (2.130)

51p2] = [ alloaliv)dpa()dr (2.131)

Spa(r) = X30p(Ar) (2.132)

5A[pa] = NG A[p] (2.133)

it follows that

[ alloaiw)opa(e)iie = 541pa) = N5A[g] = X [ al(pl; 1)3p(x)dr =

_ / a([p]; Ar)Sp(Ar)dAr = Ak / a([p]: A\r)\35p(Ar)dr = AF / a((pl: Ar)pa(r)dr  (2.134)
which yields

0= [ [alloxl ) = Aea(lols Ar)] dpa(x)dr (2.135)
This relation is true for all A and all variations

/(5,0)\(r)dr =0 (2.136)
This then implies that

a([pal;r) = Mea([p]; Ar) (2.137)
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Application of this relation to the functionals Ty and E, yields [23]
vs([oal; v) = Mg ([p); Ar) (2.138)
va([paliT) = Avg ([p]; Ar) (2.139)

The first equation of the above we alreday derived above. For the correlation energy functional
defined as

E.p] = Brelp] — Ealf] (2.140)

and its corresponding correlation potential

“ ] (2.141)

no scaling relations are known. One can however prove the scaling inequalities

E.pa] < AEJp] A<1 (2.142)
E.pal > AEJp] A>1 (2.143)

Proofs of the above relations and other scaling relations can be found in reference [22].

2.8 The coupling constant integration

The coupling constant integration technique [24, 25, 26] is a useful way of deriving relations among
density functionals. It provides a way of expressing the exchange-correlation energy in terms of a
coupling constant integrated pair correlation function g.

We define the Hamiltonian H) by

Hy=T+V\+ \W (2.144)

For A = 1 we have the fully interacting system with external potential V= V>\21, having ground
state density p. For 0 < A <1 we define V3 in such a way that the ground state density p remains
unchanged. For A\ = 0 we then obviously have V =V, which is equal to the Kohn-Sham potential
corresponding to density p. If we denote the ground state for coupling constant A by |¢)) then by
the Hellmann-Feynman theorem we obtain

dE dH),
S0 = w52

Therefore

D) = Walihia) + [ on(r)o(r)de (2.145)

B(1) = BO) + [ AW Ig)ir + [ p(e)(o(z) — vy (x))d
= Tip)+ [ oetede + [ (hrlWga)ir =

_T p]+/p(r) r)dr + 2/P|r1 i 2| ) deydes + Baolp] (2.146)
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where

B, / P (F1)Poa(X2) (o (1 o) 1)deydrs (2.147)

A L Bk 1

Here we defined the coupling constant integrated pair-correlation function g as

1
Joros = /0 Iro102(T1,T2) (2.148)

where g, is the pair-correlation function corresponding to |¢))). The relation between E . and the
coupling constant integrated pair-correlation function is useful for constructing approximations to
E.;. by means of constructing approximations to g. Useful in this respect are relations between
density scaling and coupling constant integration. Suppose that ¥y is the ground state eigenfunction
of Hy with a ground state density p, so we can denote Uy = Wy[p]. We have (we leave the spin
indices out for notational convenience)

Z——Vz—i-v)\ (r;) + = Z|r
1

If we define the scaled coordinate r = ar’ we obtain

Z——VZ,—i—av)\ar + = Z|r_ x

If we take o = 1/ and define ® by

Ua(ry...ry) = EVy(r;...ry) (2.149)

rj|

Ty (ar]...arly) = 2EVy(ar]...arly)  (2.150)

U(ry...rx) = A2 B(Ar... Ary) (2.151)
Then @ satisfies
1 2 -2 -1/ 1 1 ! / —2 / !
Z—Evr; + A ua (A ri)+§ o7 O(r]...ry) = A “E®(r]...rY) (2.152)
i iz T TN

So @ is a ground state wave function at full coupling strength yielding density p;/5(r) = A3p(A ).
We therefore denote ® = Wy_1[p;/5]). So we find that

Ualp)(rr...tn) = A7 B(Ary ... Ary) = A2 sy [pp] (Ars .. Ary) (2.153)

The diagonal two-particle density matrix at coupling strength X is then [27]

Choron([pliT1,12) = Y /|‘1’/\ [pl(rio1...rxon)[Pdrs ... dry =

03...0N

S /A3N|\I/A:1[p1//\](>\r101...ArNUN)|2dr3...drN:

03...0N

= Z )\ /|\I/,\ 1 ,01//\]()\1‘101 )\I‘NUN)| d)\I'g d)\I‘N = )\ Fglg2([p1//\] >\I'1,>\I'2) (2 154)

03...0N

In particular we find for the pair-correlation function at coupling constant \ that

F/\,Ulffz([p];rlarQ) . AGFffle([pl//\];)‘rla)‘rQ) _

ro109 ([P]; Iy, r2) = Por (I'I)PUQ (r2) o Poy (1‘1)002 (r2)
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_ Loy ([:01/)\]3 Ary, Ar)
P1/x01 (AT1)P1)x 05 (AT2

7= goro2([P1/2]; Ar1, Ara) (2.155)
So we can calculate the coupling constant integrated pair-correlation function g as

1
Goron (0] 11, 12) = / G2 (01 /Js A1, Ara)dA (2.156)

This is a useful relation as approximations for g[p] are often based on models for full coupling
strength. The coupling constant average can then be obtained from the above formula.

We will further derive an expression for vy in terms of potentials at full coupling strength. We will
first show that if we define (with W being Coulombic)

Fiplp) = min(y|T + AW |4)) (2.157)
Y—p
where we search over all normalized anti-symmetric wave functions yielding density p that
/A
Frolpa) = XFi o] (2.158)
where py(r) = A3p(Ar) and F; = F77'. Equivalently one has

Fpplpl = NFrilpy) (2.159)

The above equations are readily proved (see Y.Wang in ref [13]). Every wave function 1 yielding
density p) can be written as

P(r1...vn) = A2 D(Ary ... Ary) = Dy(ry...ry) (2.160)
This equation actually defines ® and ®). Then @ yields density p. Therefore we have

Frrlpx] = min ($T + Wy) = min(®,\|T + W|®,) =
p—px P—p

N ~ N 1 .
= min(®|A\2T + AW |®) = A% min(®|T + ~W|®) = A2F (o] (2.161)
P—p P—p A

which proves the statement. The total energy functional for the system at coupling strength X is
given by

B\l = [ or@)p(e)dr + Fy o] (2.162)

For A = 1 we recover our usual energy functional for the fully interacting system. And for A = 0
we have F?, [p] = Ts[p] and we obtain the energy functional of the non-interacting system which is
the Kohn-Sham system. The variational equation for the density is given by

) 5F/\
0= 5p(0) {Eg} [p] — 1A /p(r)dr} = 5p(LrL) [p] + va(r) — px (2.163)

In particular for A = 1 we find

. 0F1,

= 5o)

[p] +v(r) — p (2.164)
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By the definition of vy the variational equations are for all A solved for the same density p From
the last two equations we then find ( to within a constant ) that

SFLL §F,
v(r) = - +v(r 2.165
) = 55— 5]+ o) (2.165)
We now split up Fz‘L as
A P 1‘1 A
F7y lp] = Tslp] + dr dry + E;.[p] (2.166)
2 Ir1 —ro |

where the above equation defines E;.[p]. Then we can write

§E SE
vx(r) = v(r) + (1 — Novg e 14 2.167
(1) = 0{e) + (1 = Vo (£) + 55 — e (2.167)
where we defined the Hartree potential vy as
(2.168)

r—r|
From the known scaling property of T and the scaling property 2.159 it further follows that
Ep[p] = N Exclpy )] (2.169)

If we define the exchange energy for the system with coupling constant A\ as

— A /'75 ko)l ) o (2.170)
Ity — 1ol

where 7, is the Kohn-Sham one particle density matrix then it follows directly from the above
definition that

Ey[p] = AEq[p] (2.171)

If we furthermore define the correlation energy functional at coupling constant A as

E[p] = Ey.lp] — E}lp) (2.172)
we find

EXpl = N Ec[py)»] (2.173)
So we obtain

SEy. . . | 0, SE, ‘ '

(ol ) = 5o(r) [p] = 5o(r) RS e )[m/x] Avg([p];T) + A2vc([p1/2];T) (2.174)
and we finally get the following expression for vy [28]

oA () = v(r) + (1 = N (wa((pli 1) + w11 (1)) + ve([p} ¥) = N2oc(lpr 5 v) (2.175)

For A\ = 1 we find vy = v and for A = 0 we have vy = v;. This equation has recently been used
to derive exact perturbative expressions for the correlation functional in terms of the Kohn-Sham
orbitals and eigenvalues, by performing an expansion in the coupling constant parameter A [29].
How these expressions can be used in a Kohn-Sham calculation is discussed in the section on the
Optimized Potential Model.
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2.9 Virial relations and the kinetic part of F,.

Exact relations among density functionals can be derived from the general quantum mechanical
virial theorem

N
Y= () r;-ViU(r;...ry)) (2.176)
=1

where the brackets stand for expectation values with the ground state wave function where U
represents the sum of all potentials

U:V—I—W:Zv(ri)—i-%Zw(ri,rj) (2.177)

If W is Coulombic this yields

= /p(r)r - Vo(r)dr (2.178)
If we define
T(p] = ($[p)|TI¥[p)) (2.179)
Wp] = (4[]l W |[p]) (2.180)
Then we have
O] + Wp] = /p(r)r  Vo(r)dr (2.181)

One should note however that the above relation is not universal. For a given density p the above
relation is only satisfied for the particular external potential which generates the prescribed density
p- Universal relations can however be derived on the basis of the virial relation. From the variational
relations of the energy functional

5p { “/P dr}: 0 5i?/)+v(r)—u (2.182)

we find by acting with pr - V on the above equation that

/p r)r- V dr+/p /p r)r- Vo(r (2.183)

which by addition to the virial relation yields [22]

Tl + [ pleye- V5o

The above equation does not involve the external potential anymore and is universal. For the
special case of non-interacting particles we have W = 0 and T'[p] = T[p]. In that case the above
relation yields

+/p rV

drdr = /p V—d (2.184)

e = 2T p]—l—/p v)r - Vo, ([p]; r)dr = 0 (2.185)
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which we already proved by scaling. The last two equations in combination with

Wipl = Execlp] + Taelp] + % / %drwﬁ? (2.187)

then yields [30, 22]

Tolpl = [ (Go(a) + 7 Vp()vre([pl v)dx — Evelp (2.188)

So we have now established a relation between the kinetic part of the exchange-correlation energy
functional and the exchange-correlation energy and potential. If we further split up the exchange-
correlation potential v,. = v; + v, and use the Levy-Perdew relation for the exchange functional
we obtain

Tl = [ Go(w) + 7 Vp()vellpl ) — Bl (2.189)

The above relation provides a way to calculate approximate expressions of the kinetic contribution
of the exchange-correlation energy from approximate correlation functionals. The equation can be
rewritten as

Tuelo] = 2 lpalliar — Bl (2.190)

as can be checked by differentiation. Further relations for 7. in connection with functional inte-
gration can be found in chapter 12 of this thesis.

2.10 Asymptotic properties of the exchange-correlation potential

In this section we will discuss the long-range properties of the exchange-correlation potential in finite
systems such as atoms and molecules. For simplicity we will discuss the case of spin unpolarized
systems. We can write the exchange-correlation energy in terms of the coupling constant integrated
pair-correlation function g as

p(r
1)drd 2.191
Bl = 5 [ G0 (ki ) — D (2.191)
By functional differentiation the expression for the exchange-correlation potential becomes

ch(r) = ch,scr( ) + U;(ésspcr(r) (2.192)

where the exchange-correlation screening part ( where g represents the sreening of the interparticle
interactions due to exchange-correlation eﬁects) of vz 1s defined as

Ve, ser (F3) :/"(rl 9llpliry,rs) / Pzclrs;8) 41 24, (2.193)
zc,ser\1'3 |I'1 —I'3| .

and the screening response potential as

resp P 1'1 1'2 59([ ] r17r2)
xc,scr 2 |I‘1 — I‘2| (5[)(1‘3)

v dridrs (2.194)
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The potential vy scr is just the potential of the coupling constant integrated exchange-correlation
hole. Due to the fact that this hole integrates to one electron (or the sumrule property of § ) we
find that for neutral finite systems

1
Vze,ser(T) ~ o (| = o0) (2.195)

This is therefore a long range Coulombic potential. If we pull an electron to infinity then it will
just experience the Coulombic potential of the positive ion it leaves behind. For the calculation
of the exchange-correlation energy we only need a good approximation for the screening potential
Uge,ser 88 We have

Ealp] = % / (1) 0z ser (£)dr (2.196)
The other part vy, of the exchange-correlation potential is short ranged and for atoms it shows a
clear atomic shell structure. It is constant within the atomic shells but changes rapidly at the atomic
shell boundaries. The function dg/dp which describes the sensitivity of the exchange-correlation
screening due to density variations shows a clear dependence on the atomic shell structure. An
extensive discussion of this function is given in chapter of this thesis. As v, s is long-ranged and

Vyeoter 18 short-ranged ( decaying faster than Coulombic) we find

Vae ~ —% (r = o) (2.197)
A more rigorous derivation of the above relation can be found in reference [31]. The asymptotic
behaviour of v, is important for density functional theories for excitation energies which have been
developed, as one then needs a correct description of the virtual spectrum, such as the Rydberg-like
series in atoms. Also density dependent properties such as polarizabilities are sensitive to a correct
behaviour of the exchange-correlation potential. This is an important observation as most density
functionals in use, such as the current LDA+GGA exchange-correlation functionals, do not satisfy
this asymptotic relation for the exchange-correlation potential [32].

2.11 The Optimized Potential Model

Constructing approximate density functionals by using direct expressions in terms of the density
itself can be quite difficult in some cases. This is for instance true for the kinetic energy functional
Ts, for which direct Thomas-Fermi like approximations in terms of the density are much more
inaccurate. It is moreover more difficult to represent properties such as the atomic shell structure
in the exchange-correlation potential correctly be means of direct expressions in the density than
expressions in terms of Kohn-Sham orbitals. It is therefore interesting to study energy expressions
which depend on the density through the intermediate use of the Kohn-Sham orbitals and energies,
like Ts and E,. Such expressions have recently been proposed by Gorling and Levy [29]. For E,
we already had

E.[p] = Ex[{¢i}] (2.198)

For E. we can write

Ec[p] = Ec[{#i,€}] (2.199)



e 44 LUVLJ YV LALJYVY LAY LALLM 4LA 4 4 4L ViAZY VU A4V LAL Lt Euv 4L

For practical applications we need

OB [{¢i}]

2.200
wlplim) = 508 (2.200)
0E[{¢i, €i}]
cp) — 2.201
vl = S (2201)
This can by means of partial differentiation be written as
Z / 55E 5@ )dr + c.c. (2.202)
dE, 5¢Z ) OE. J¢;
2/5 dr’ + c.c. +Z 9t 5p00) (2.203)

From the above expressions we can see that we need to know the functional derivatives d¢;/dp and
de;/6p. We will determine these in the following. The orbitals ¢; satisfy the Kohn-Sham equations

5V + ol i) = ) (2:204)

N

D 16i(x)” = p(x) (2.205)
From response theory it is then not difficult to derive [33]

S — Gl () (2.206)

0€;

iy = )

Where G; is the Greens function of the Kohn-Sham system defined as
()" (r
Gi(r,r') =) $i(O)9 &) (2.208)
i T

We can therefore calculate the density response function y; of the Kohn-Sham system as

XS(I',I‘, Z (51) |¢l = _22¢Z I‘ r’ ¢z( ) (2209)

(51)5

The expressions for v; and v, can now be written as

Z / e Giler m2) i () ()i e (2.210)

and similarly for the correlation potential

2/5 rl,rz)qbl(rg)xs (rg,r)dridry + c.c.+
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> OE, _
#3050 [ 1oen) B, (e, m)n (2211)

In these equations y, ! is the inverse density response function determined by the equation
/X?l(rl, r3)Xs(rs3, r2)drs = 6(r1 — ro) (2.212)

It must be emphasized however that y, ! is only determined to within a constant. This is because
a change of v by a constant does not affect the density. We have

Sp(ry) = / Xs (£1, £2) 50, (£2)drs (2.213)

If dvs(r) = C is a constant then dp(r) = 0 and we find

/Xs(rl,rg)drg =0 (2.214)

The constant function is therefore an eigenfunction of x, with eigenvalue 0. So if a certain y; !
satisfies equation 2.212 then x;! + C will satisfy this equation as well. The constant can however
be fixed by choosing a particular gauge for the potential v, , for instance vs(r) — 0 (r — o00).

As x, is explicitly known in terms of ¢; and ¢; the above equations for v, and v. together with
the Kohn-Sham equations constitute a self-consistent set of equations which can be solved once
approximate expressions for E.[{¢;,¢€;}] are known.

Note that the problem is equivalent to minimizing a total energy expression E,[{¢;, €;}] under the
constraint that the orbitals ¢; obey an independent particle equation with a local potential, i.e.
one has to find the local potential that solves the Euler-Lagrange equation

OE,
dvs(r)
For this reason these equation are called the Optimized Potential Model (OPM) equations [34, 33,

35, 36]. The simplest case is the exchange-only OPM, for which we can put E. = 0, yielding the
x-only OPM equations

[{¢i,ei}] =0 (2.215)

=5V +oullhn)| i) = ) (2.216)

N
2 16:()]” = p(x) (2.217)

(i) = o)+ [ L ar 4l 2.218)
’ N Wy
/xs(r,r)vx(r)dr = Jou () (2.219)

For solving these equations one needs to solve an integral equation (to be more precise a Fredholm
integral equation of the first kind) for the exchange potential v,. This requires inversion of the
integral kernel x; (after fixing a gauge) [37, 36]. One can however avoid this problem if one makes
explicit orbital dependent approximations for the inverse function x;'. An explicit expression can
be derived on the basis of an approximation for the Kohn-Sham Greens function G; proposed by
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Sharp and Horton [34] and Krieger et al. [35]. One finds (see chapter 8 of this thesis) in the natural
gauge where vy — 0 (r — o) for x; ( for the spin unpolarized non-degenerate case)

N—1
I L -
where the coefficients 7;; are given by
nik = (I — N)3! (2.221)
where I is the unity matrix and N is the matrix
_ / () Pl (0 (2.222)
p(r)

where all the matrices are of dimension N — 1. If one uses this approximation for y, ! one obtains
the following approximation for the OPM exchange potential [35]

KLI |¢z r
vEE (1) ) + Z 0 (2.223)

w; = (Pilve — vildi) (2.224)

where v; is equal to the orbital dependent Hartree-Fock potential (only its self-consistent orbitals
are different ). The potential vg is the Slater potential. These equations have been derived first by
Krieger, Li and Iafrate in a different way. This approximation turns out to be very accurate [38,
39, 40, 41]

From these approximate equations for v, we can easily see the structure of the exchange potential.
It consists of a part vg which has a Coulombic long range —1/r behaviour and a part we will call
the step potential. For atomic systems this step potential is constant within the atomic shells and
changing rapidly at the atomic shell boundaries. It has therefore a step-like structure with the
heigths of the steps approximately equal to the constants w;. A more extensive discussion of all
these features can be found in chapter 8 of this thesis.

2.12 Approximate density functionals: LDA and GGA

The simplest and most widely used density functional approximation for the exchange-correlation
energy is the Local Density Approximation (LDA). In this approximation one uses the exchange-

correlation energy density of the homogeneous electron gas €29 (py) dependent on the homogeneous
density py and replaces this for the inhomogeneous system with density p(r) by

exe  (p(r) = €22 (90) | p=p(r) (2.225)
The exchange-correlation energy functional then becomes
BEPAlp) = [ ehPA(p(r))dr (2.226)

At first sight this approximation seems to work only for systems with slowly varying densities, such
as the weakly perturbed electron gas. However the approximation works surprisingly well even for
systems which have very inhomogeneous electron densities such as atoms and molecules. This calls
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for an explanation.
A more detailed look on LDA can be obtained from considerations of the xc-hole and the pair-
correlation function. We have

PP (1, 12) = p(r1) 7™ ([p); [r1 — va]) — 1] (2.227)

where ghom[

p| is the coupling constant integrated pair-correlation function of the homogeneous
electron gas. By now accurate expressions for " [p| are known. The simplest part is the exchange
part of the pair-correlation function which is unaffected by the coupling constant integration. It is

given (in its spin unpolarized form) by

~ 9 [sin (kp(r)|r; — ra|) — kp(r1)|ry — ra| cos (kp(ry)|rp — ra))]?
hom
f jr,re) =1—5 2.228
g (ol ) =1 - RIS (2.228)
where kp(r) is the local Fermi wave vector defined as
3.1 L

kp(r) = (—)3p(r)3 (2.229)
It satisfies the scaling property

grom([pliri,r2) = g ([p1/al; Are, Ara) (2.230)

where p;/,(r) = A3p(A~'r). The corresponding exchange functional as can be calculated from the
above pair-correlation function is then

ELDA[) % /p (2.231)

which satisfies the correct exchange scaling. Corresponding expressions exist for the correlation
part of g"™[p] and for EFPA[p]. The first important thing to note is that the LDA xc-hole is
spherical around the reference electron

il (r1,12) = pue(ry, ) (2.232)

where s = |r; — ro| and secondly it satisfies the sum rule

/pLDA (r,r9)dre = 47r/ pEPA(r), 5)s%ds = —1 (2.233)

The above relations provide some insight in the unexpected success of LDA in strongly inhomo-
geneous systems. The coupling constant averaged xc-hole in real inhomogeneous systems is not
spherically symmetric. Therefore the LDA xc-hole cannot adequately approximate this xc-hole.
However the spherically averaged hole is reasonably well reproduced within the local density ap-
proximation. Consequently the exchange-correlation energy which is determined by the spherically
averaged xc-hole is reasonably well produced as well. The satisfaction of the sum rule 2.233 further
implies that if the LDA xc-hole pLDA(r, s) has positive errors for some values of s, it must have
negative errors for other values of s leading to a systematic cancelation of errors.

An obvious way to go beyond the local density approximation is to extend the exchange-correlation
functional with terms containing gradients of the electron density. The gradients then measure
changes of the electron density and can therefore be expected to improve the local density approxi-
mation. Most of the gradient functionals developed are based on the response theory of the weakly
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varying electron gas [42]. The approximations obtained in this way are called Gradient Expansion
Approximations (GEA). This then leads to the expressions

ESPAp) = EEPAp) + 6 / (V'Z)Zdr +... (2.234)
p3
ESEAp] = ELPAp) + /C(p) (Vp’?er +... (2.235)

where 3 is a constant and C(p) is a function determined by response theory. However in practice,
the success of LDA nothwithstanding, the GEA provides no systematic improvement over LDA
as realistic densities in atoms and molecules do not vary slowly over space. An analysis of the
gradient expansion of the xc-hole shows that although the short range part (near the reference
electron) is improved by the gradient expansion, the long range part is considerably worsened [43].
If one however by hand corrects the long range part of the gradient corrected xc-hole and enforces
the sum rule property one can obtain xc-energy functionals which give a considerable improvement
over LDA for energetics. The corresponding approximations are known as Generalized Gradient
Approximations or GGA’s. The most widely used GGA’s are the Becke GGA [44] for the exchange
energy and the exchange- and correlation GGA’s by Perdew [45] and Perdew and Wang [46, 47,
43, 48]. We will give a short account of the ideas behind the derivation of these GGA’s.

The Becke GGA correction to the LDA is of the form

O] = [ p(e)? £ (o)) (2.236)

where z(r) = |Vp(r)|/ p(r)% and f is a function to be determined. The variable z is a dimensionless
quantity introduced to satisfy the scaling property of the exchange functional. In order to obtain
the GEA for weakly varying densities we must have the following small z behaviour of f

fla) ~ =B (210) (2.237)

We can write the exchange energy in terms of the potential of the exchange hole v as

1
Erlp) = 5 [ ple)ol(e)ir (2.238)
In the above ansatz we have

ol (r) = ol EPA(x) + 2p(r)3 £ (2(r)) (2.239)

x

To satisfy the correct asymptotics for v for finite systems ( v ~ —1/r (r — o00) ) we must
have [49, 32]

f(m)w—%é (x—)oo)w—%% (r = o0) (2.240)

which follows directly by inserting exponentially decaying densities. One of the simplest interpola-
tions between the large and the small z behaviour of f(z) is then found by taking

_ pa*
1 +6Q8zsinh 'z

flz) = (2.241)

The coefficient § was fitted by Becke to obtain the correct exchange energy of the noble gas
atoms. A somewhat different approach to obtain GGA’s has been used by Langreth and Mehl [50],
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Perdew [45], and Perdew and Wang [43, 48]. One can write the spherical average of the coupling
constant integrated xc-hole in momentum space as [50, 43]

ks
Puc(r, k) /pxc r,s) ™3 ds —/ 47 2%%0(1' s)ds (2.242)

Its Fourier inverse is given by

in (k
sin (k) > (e, k) dk (2.243)
S

_ 1 o0
p:vc(I',S) = W/O 4’/Tk2 A

Langreth and Perdew [51] and Langreth and Mehl [50] have carried out an GEA wavevector analysis
for the spherically averaged correlation hole within the random phase approximation (RPA) yielding

2T p(r 2v3 00
P e k) = P (e ) + kFT\(/_) (OO)( P(lE) ;) P (_kF;/(_r) %k) 224
where kpp(r) = %/ﬂ is the Fermi-Thomas wavevector or inverse screening length and C' is
a local functlon of the electron density. From equation 2.242 we find
lllm Pue(r / 4152 pye(r, s)ds = (2.245)
In particular we have for the correlation hole in momentum space
pe(r,k=0)=0 (2.246)

One can see from equation 2.244 that this property is violated by the GEA correlation hole (it
is satisfied by the LDA correlation hole). To repair this feature Langreth and Mehl and Perdew
propose a wavevector space cut-off. One replaces the gradient contribution to p,.(r, k) by zero for
k < k. where k, = f|Vp(r)|/p(r) is a cut-off proportional to the inhomogeneity wavevector, i.e.
one removes the long wave length part of the Fourier analysis of the xc-hole. This then leads to
the following approximation for the correlation energy functional [45]

B8] = B2 — [ e t0(p) VA gy (2.247)
p(r)s
where
C(0) Vs
— 1.745f ) O (2.248)

Other GGA approximations for exchange and correlation have been obtained by Perdew and
Wang [43, 48, 47] using real space cut-offs of the xc-hole. We will describe the procedure for
the exchange energy functional. The correlation functional can be treated in a similar manner.
The GEA exchange hole in the second order gradient expansion has the following structure

PSP (r,5) = kp(r)® [Au(kr (r)s) + 2(r) By (ki (r)5)] (2.249)

where kp(r) = (37r2p(r))% is the local Fermi wavevector and z(r) = |Vp|/p% is a dimensionless
inhomogeneity parameter. In the GGA one takes

A (x, 5) = P9 (v, 8)0(U (2) — ke(r)s) (2.250)



e 44 LUVLJ YV LALJYVY LAY LALLM 4LA 4 4 4L ViAZY VU A4V LAL Lt Euv 4L

The Heaviside function 6 provides a long range cutoff of the exchange hole. The cut-off radius is
chosen such that the sum rule is satisfied

(9) U(x)
1= / 4752 pye(r, s)ds = / 4’ [Ax(u) + :Jc(r)QBx(u)] du (2.251)
0 0
One obtains
BEAY) = [ ple)

with

Wl

F(z)dr (2.252)

F(x) = /OU(w) 4 [Ax(u) + x(r)QBx(u)] du (2.253)

The functions U(z) and F(z) can be evaluated numerically and fitted to an analytical expression
for practical applications. A pleasing feature from a theoretical point of view is that the above
approach does not contain any adjustable parameters which need to be fitted to known exchange
energies.

Completely analogous to the exchange case one can also carry out a real-space cut-off procedure
for the correlation hole leading to parameter free GGA’s for the correlation energy. These GGA’s
turn out to yield accurate atomic correlation energies [52, 53, 54, 55]

2.13 An integral equation for the exchange-correlation potential

In this section we will establish some connections between density functional theory and Greens
function theory. We will in particular derive an integral equation for the exchange-correlation
potential in terms of the irreducible self-energy. This equation was first derived by Sham and
Schliiter [56] and Sham [57].

We first discuss the key concepts of Greens function theory. The one-particle Greens function is
defined as the following expectation value

iG(at,a't') = 0(t — ) {(W(8)slp(@)e TG (@) T (H)s) (2.254)
— 0 — () sl (@)e T (") |0 (1)s)
where 0 is the Heaviside function and
|T(t))g = e FT > (2.255)

is the ground state in the Schrodinger picture where E is the groundstate energy. The Greens
function as defined above has a nice physical interpretation. For ¢ > t' we add by the action of
¢t (2') a particle to the ground state |¥(#)g) at spin-space point #’. The in this way created
N + 1-particle state will then propagate under the influence of the Hamiltonoperator H from t' to
t where we take overlap with the N + 1-particle state ¢+ ()| ®¥(¢))g. The Greens function for ¢ > ¢/
therefore describes the transition amplitude that a particle which is added to the ground state of
many-particle system will move in the time ¢ — ¢’ from point z’ to point z. In a similar manner we
have for ¢’ > t a propagation of a N — 1-particle state. So for ¢ > ¢’ we are dealing with particle
propagation and for ¢’ > ¢ with hole propagation.

The Greens function may be written in more compact notation by going to the Heisenberg picture

iG(zt, a't') = 9(t—tj)(‘III@/?(fEt)H@/3+(x't')HI‘1’> —0(' = )| (2t e (at) | ) (2:256)
= (UT[(at) my" (2"t u]|T)
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where we defined
P(xt)y = eim@[;(x)e_im (2.257)
@/3+(xt)H _ ez‘thj)Jr(x)e—z‘ﬁt
and the time-ordered product of two fermion operators as
TIA()B(t)] = 0(t — t"A(t)B(t") — 0(t' — t) B(t')A(¢) (2.258)

The time-ordered expression is especially suitable for a perturbation expansion where the time-
ordering appears in a natural way.

As G describes the time propagation of a N + 1-particle state and a N — 1-particle state it contains
information about the excitation spectrum of the system. This is made explicit by writing

iGat,a't) = Ot —1) 3 e B =P (o) (@) [N WN L (o) ) (2.259)
— 0t — 1) Y e E BT DO (@t (o) [ Y o) @)
n
where EN*t1 and EY~! are the energies of the eigenstates [N 1) and [¥V~1) of the N + 1- and

N — 1-particle systems. From this equation we can see that G only depends on z and z’ and the
time difference t — t'. We can therefore define the Fourier transform of G by

+o0 - nd
G(z,2';w) = Gz, z'st —t')e @t i (2.260)
—o 2w
Using the following expression for the Heaviside step function
_1 400 e—ZwT
6(7) = lim —/ i (2.261)
o 27 J_o w+1in
we find an expression for G which clearly reveals its analytical structure
Gla,a'iw) =3 Sol@)fn(@) | gn(@)gn(2) (2.262)

~ w—an—i-m w —€p 1N

where f,, and g,, are defined as
falz) = (U(z)| TN+ = \/N+1/\11*(331...xN)\I/iLV“(xl...xNx)dxl...de (2.263)
gu(z) = (UNHy(z)|0) = \/N/\yij—l*(xl...xN,l)qu(xl...xN,lm)dwl...de,l (2.264)

and where o, = EN*! — E and ¢, = E — EN*! correspond to the electron affinities —a, and the
ionisation energies —e,. In the above derivation we assumed all the levels EN*! and EN~! of the
N —1 and N + 1 systems to be discrete. This is of course not true for a real electronic system such
as an atom or a molecule where a continuous spectrum always exists. For an infinite system such
a solid there is even no discrete spectrum at all. For these cases one has to replace the summation
by an integral over the energies. This changes the analytical structure of G of equation 2.262
,i.e. in the addition to the simple poles corresponding to the discrete levels we obtain branch cuts
corresponding to the continuum states.

If we want to find approximations for G we need an equation of motion. Such an equation can be
derived using the Heisenberg equation of motion

i0pp(xt) i = [1h(at) r, H] (2.265)
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which using the commutation relations 2.13 and the form of the Hamiltonian 2.4 gives
. 1 ) ) )
i@¢@ﬂH:[_§v2+uuyg/wu¢q¢wwa¢@%ﬁmf Dt (2.266)
With the above equation and the definition of G one finds

) 1
(0, + 5 Vi —o(r)Glaty, 2 ) =

5(]71 — 1711)5(151 — tll) —i/w(rl,rg)G2($1t1,$2t1,m'lt'l,@tf)drg (2267)

where ti" means t; + 0 where ¢ | 0. Here we defined the two-particle Green function as
Ga(w1ty, mate, w1 t), whth) = (—i)*(U|T [ (w1t1) b (wata) mpT (zhth) mep ™ (12)) ]| T)  (2.268)

and where the time-ordered product of a arbitrary number of fermion operators has been defined
as

T[A;(t1)As(ta) ... An(ta)] = sign(P)Apq) (tp)) Ape) (tp@) - - - Apm) (tpm)) (2.269)

where the permutaion P is chosen such that tp(1) > tp2) > ... > tp(,). The two-partcle Greens
function G5 has a similar physical interpretation as G as a transition amplitude but now with
two particles added or removed from the system. Another important quantity is the self-energy >
defined by the equation

] 1
(0, + 5 V1 = v(E)Glarty, o) =

el —-xﬁ)é(tl——tﬁ)——it/nu(rl,rg)XXantl,xgtz)(?(xgtz,xitﬁ)dxgdtgdrg (2.270)
The Fourier transform of the equation yields

[w— h(z1)] G(z1, 75w /E (71,725 w)G (12, 7 w)dzy = 0(z1 — ) (2.271)
If we define the Greens function G for a system of non-interacting particles by the equation

[w— h(z1)] Go(z1, 2} ;w) = §(zy — 2)) (2.272)
We obtain the equation

G(z1,z);w) = Go(z1, 2} w) + /GU(IEI,IEZ;u))E(IEZ,IEg;u})G(xg,x’l;w)dIQdIg (2.273)
This equation is known as Dysons equation. We will write this more symbolically as

G =Go+ GoEG (2.274)
In the same operator notation we have

w—h-%]G=1 (2.275)
We now split up the self-energy in Hartree part and a remainder ;. as follows

Y(z1, z0;w) = 0(z1 — z2)vE (21) + Bpe(z1, 2, W) (2.276)
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where vy is the repulsive potential of the electronic cloud. Let us now rewrite the Dyson equation
as

[w — hy — i] G=1 (2.277)
where

ho(r) = 52+ 0(x) + v () + el (2.278)

is the Kohn-Sham Hamiltonian and we defined 3 as

Y(z1, T2 w) = Bge(1, T23w) — 0(21 — T2)vse(21) (2.279)
One obtains an alternative Dyson equation in terms of the Kohn-Sham Greens function G

G =G, + G50 (2.280)
where G satisfies

[w—hs]Gs =1 (2.281)

By the definition of the Kohn-Sham system the diagonal of G5 yields the ground state density of
the system

d;
p(r) = —iGs(z1t, x1t+) = —i/2—wGs($1,x1;w) (2.282)
s
being equal to the diagonal Greens function of the fully interacting system, i.e.
. [ dw
p(r) = —z/—G(xl,:Jcl;w) (2.283)
27
From the Dyson equation it then follows that
dw ~
/d(IIl/d(IIQ/2—G((II,$1;W)2($1,$2;0))G($2,$;0)) =0 (2.284)
™

which by definition of ) yields the following integral equation for vg..

[ K)o rde = Q) (2.285)
where
dw
K(ry,ry) = gGs(rl,rz;w)G(rg,rl;w) (2.286)
dw
Q(r) :/2—/dr1/dr205(1‘, ri;w)ye(ry, ro;w)G(ra, ryw) (2.287)
T

Which is an integral equation for the exchange-correlation potential. The equation can be solved
self-consistently once an explicit expansion of G in terms of G is given. One of the simplest
approximations is

G =G, (2.288)
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dw G4(ri,r2;0)  s(ry,r2)

D = _fsvbd) 2.289
xC(rl,rQ) 27r |I‘1 —I‘2| |I‘1 —I‘2| ( )
yielding
dw
K(I’l,rg) = gG’s(rl,rg;w)G’s(rg,rl;w) = Xs(rl,rg) (2290)
'Ys ry, r2) dw
/drldrg Gs(r, ri;w)Gs(ra, r;w) (2.291)
[y — 1y
These equations together with
1
[—EVQ 4 us(r)] B1(r) = exhs(x) (2.202)
N
> 1i()|* = p(r) (2.293)

yield the x-only OPM equations.
The integral equation for v, can also be derived in an alternative way. Omne can express the
exchange-correlation energy functional as

Eyclp] = itr(In (1 — £Gy) + G) — iPye[p] (2.294)

where in diagrammatic perturbation theory ®,. is expressed as a sum of so-called skeleton diagrams
in terms of the Greens function G excluding two first order graphs. For a derivation we refer to
Sham and Schliter [56] and Sham [57]. Functional differentiation of the above expression then
yields the integral equation for vy, (see for example the references [58, 59]) The integral equation
for vz has been used in the so-called GW-approximation [2, 60, 61, 62] to estimate band gap
corrections to the LDA [63] for semiconductors and insulators.



Chapter 3

A review of functional calculus

3.1 Introduction

In this review we present some aspects of nonlinear functional analysis [64, 65] .We thereby concen-
trate on differential and integral calculus on function spaces. Of most practical importance is the
finding of extrema of functionals. This is the central problem in the calculus of variations which is
for instance widely used in the Lagrangian formalism in classical mechanics. In order to do calculus
on more general spaces than the real numbers R and the complex numbers C those general spaces
have to satisfy some requirements. Roughly said, they must look like the space of real numbers.
The important features to be carried over to these spaces are its vectorspace structure (adding and
multiplying), its topological structure (there is a distance between two points) and the complete-
ness property (the real numbers form a continuum). General spaces with these properties are called
Banach spaces. Special cases of Banach spaces are of course the real numbers R and the complex
numbers C themselves.

3.2 Banach spaces

3.2.1 Definition

Many for theorems in ordinary calculus depend on three basic properties of the real numbers. Any
extension of ordinary calculus to more general spaces should exhibit these basic properties. These
are summed up in the following cryptic statements:

a] You can add and multiply points
b] There is a distance between points
c|] There is a continuum of points

We will now discuss each statement separately. This then leads to the definition of Banach
space.
First of all a Banach space B is a vectorspace which means that if x,y € B and A € R or C then:

r,y€ B=zrz+y€eB
r€BandAeRorC = \z€eB

43
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We thus just add and multiply as for the real numbers.
Secondly a Banach space is a normed space which means that we have on B a function |||| : B — R=°
from B to the positive real numbers including zero with the following properties:

Azl = |Alllz|
[l +yll < llzll + llyll
lz| =0 2=0

These properties are a copy of the properties of the length of an ordinary vector in three-dimensional
space. The introduction of a norm now allows us to define the distance between two points by the
following formula:

d(z,y) = |lz —yl|
We have for instance:
dz,y) =0z =y

So now we can talk about the nearness of points. This is a very important ingredient in calculus
because now we can talk about the convergence of limits or about continuous functions which map
nearby points to nearby points.

The third important property of the real numbers is its completeness. This is best illustrated with
an example. Consider the space of rational numbers © embedded in the space of real numbers R.
Both Q and R are normed vectorspaces but they differ in one property. Between two points in Q
there are points which do not lie in Q. We have for instance v/2 € [g, %] but /2 is not an element of
Q. This is not the case for the real numbers. Between two real numbers there is no no-real number.
The real numbers thus form a continuum. How is this property characterised mathematically ?
We continue our example. We can approach v/2 € R as close as we like with a sequence of rational
numbers z,, € Q. The limit of this sequence is in R of course well-defined and given by v/2. This
limit is however not defined in @ as we walk out of the space of rational numbers into the space of
real numbers. One can in Q however still notice 'convergence’ as the difference |z, — x| goes to
zero if n and m go to infinity. Sequences with this property are called Cauchy sequences. Cauchy
sequences do not always converge in Q but they do converge in R. This then finally leads to
the definition of complete spaces. A complete space is a space in which every Cauchy sequence
converges to an elemant of the space.

Now we can finally state the definition of a Banach space. A Banach space is a complete, normed
vectorspace.

3.2.2 Example

To make things more concrete we will now give an example of a Banach space. Consider the
collection of continuous functions defined on the interval [a,b] € R. This space we will denote by
Cla, b]. This is a Banach space if the norm is appropriately chosen. One can check all requirements:

a] Adding of two continuous functions or multiplying a continuous function by a real number
yields again a continuous function. So C[a,b] is a vectorspace over the field of real or complex
numbers.

b] We define the norm of a function by:

171 = macc |7 (a) (1)
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This makes C[a,b] a normed space. One can easily check the requrements for the norm.
c] We still have to check that Cf[a,b] with the given norm is complete space. This is always the
most difficult part to check. Suppose we have a Cauchy sequence of continuous functions {f,} .
Then for any point = € [a,b] :

@) = Fnla)| < max [fule) = Fn(@) = 1 = Full 20 (m.m = o0)
This means that f,(z) for each = € [a, b] is Cauchy sequence in R and as R is complete this Cauchy
sequence converges to some f(z) € R. This gives a limit function f(z). We still have to prove that
this limit function is continuous. For fixed n we have for all z € [a, b] :

|f($) - fn($)| = rr}l—r>noo |fm($) - fn($)| < max_lim |fm($) - fn($)| =

z€[a,b] M—>00

= nax |f($) - fn($)| = “f _fn“
z€a,b]
Thus the sequence of continuous functions converges uniformly to f and hence its limit function f
is continuous and f € C|a, b].

3.2.3 The Banach spaces L and H'

We now describe two types of Banach spaces which are relevant to quantum mechanics and density
functional theory in particular. The first Banach space of importance is the space of functions for
which the Lebesque integral

1t @Pda (32

exists where x is usually a n-dimensional real vector and p a positive real number. This space is
usually denoted as LP(R"™). Another important space is the space of real functions for which the
Lebesque integral

[ 1@ +19f (@) do (33

exists which called the Sobolev space H'(R™) ( the 1 in H' gives the order of the derivative). As
both spaces are based on the concept of Lebesque integral we will give in the following a short
account on the definition of the Lebesque integral based on measure theory. In measure theory one
is interested in the question how to define a volume element for more general spaces than the real
numbers. Such a definition is needed if one wants to perform integration on more general spaces
Consider the space B and a family A of subsets of B containing the empty set (). A positive
measure m (which is intuitively something like a volume) is then defined as a mapping from A into
the extended real numbers m : A — Ry U {400} which is countably additive for every disjoint
family of subsets (a1, ..., ay,...) in A with union in A :

m(Ui2,a;) = Zm(ai) (3.4)
i=1

and

m(0) =0 (3.5)
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The space (B,.A4,m) endowed with measure m is called a measure space. The elements of A are
called measurable subsets of B and m/(a) is the measure of a € A.

A property is said to hold almost everywhere if it holds for all points of B except possibly for points
of a set a of measure m(a) = 0.

As an example we take the space of real numbers R and take for A the collection of subsets of
R generated by the open intervals through union and intersection (which makes R a topological
space). We define the measure m on an open interval ]a,b[,b > a by:

m(]a,b]) =b—a (3.6)
We then have for instance for a < b < c:

m(la,c]) =c—a=b—a+c—b=m(]a,b]) +m(]b,c[) (3.7)
On the other hand we have:

m(la,b[) +m(]b, c[) = m(Ja, b[U]b, ) = m(]a, c[\{b}) (3.8)

and

m(la, ) = m(Ja, c\{b} U {b}) = m(Ja, c[\{b}) +-m({b}) (3.9)

Hence it follows that m({b}) = 0 and so this measure for a single point is zero. By countable
addition it follows for example that the measure of the collection of rational numbers Q is zero:

m(Q) = m(U2{gi}) Zm ({ai}) =0 (3.10)

In this measure two functions which differ on the set O are almost everywhere equal as they differ
on a set of measure zero.

The measure we have defined here on the real numbers is known as the Lebesque measure and is
the basis of the Lebesque integration theory. For a function f : R — R the Lebesque integral is
defined as follows. Divide the range of f into a finite number of small intervals and find the set q;
of all x € R for which f(z) is in the i-th interval. Assign a measure m(q;) to the set a;. Let k; be
some value of f(x) in the i-th interval and let f,, be the step function equal to k; when z € a;. The
Lebesque integral is then the limit when it exists of:

/fdm =Y himi(a) (3.11)

when the sequence of functions (f,,) tend to f in a sense we will make more precise in the following.
In order to do this we need some further definitions.
A real function f: B — R on the measure space (B,.4,m) is said to be measurable when:

{zla < f(z) <b} € A, Va,beR (3.12)

A function on (B,.A,m) is called a step function or simple if it is zero except on a finite number n
of disjoint sets a; € A of finite measure m(a;) where the function is equal to a finite constant k;.
The integral of a step function is by definition:

/ fdm = zn:kim(ai) (3.13)
B i=1
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For example if we denote the rational numbers on the real interval I = [0, 1] by Q and we define the
step function to be equal to two on Q and one elsewhere then the integral in the Lebesque-measure
is given by:

/Ifdm — 2m(Q) +m(1\Q) = 0+1=1 (3.14)

We finally give the definition of the integral of a measurable function. We first consider the case of
a positive function.Let f be a positive real valued function on the measure space (B,.4,m). Then
we define the integral of f with respect to the measure m by:

/dem = sup {/B pdm} (3.15)

as p ranges over all step functions with 0 < p < f. If this integral is finite then f is said to be
integrable. Now an arbitrary real valued function can always be written f = f* — f~ with f™ and
f~ positive functions. Then f is integrable if both f* and f~ are integrable and its integral is
given by:

[ gam= [ fram— [ fdm (3.16)

The integral on the real numbers R or R™ with respect to the Lebesque measure is called Lebesque
integral. The Lebesque integral of two functions is equal if the two functions are equal almost
everywhere. In the remainder of this section we will regard these functions as equal. More precisely
we look at the equivalence class of functions which are equal almost everywhere. In a somewhat
loose notation we will denote the equivalence class to which function f belongs with the same f.
We now define

L(R) = {41 [ 1f@)Pdz < oo} (3.17)

where the integral is a Lebesque integral. For p > 1 we can assign to this space a norm |||, which
makes this space a Banach space

1
p
150 = | [ 1@ (3.18)
This is a consequence of the Minkovski inequality

1f +glly < [1fllp +1lgllp (3.19)

for p > 1. We further define the space L (R) as the space of (classes of ) measurable functions
bounded almost everywhere with norm

[1flloc = esssup |f(z)] (3.20)

where the essential supremum ’ess sup’ is defined as the smallest number M such that |f(z)| < M
almost everywhere. This a again a Banach space. An important inequality that can be proven for
the LP-spaces with 0 < p < oo is the Holder inequality

19l < [1Fllpllgllq (3.21)

with 1/p +1/q = 1 with f € L? and g € LY. We further define the Sobolev space H!(R) as the
Banach space

H'(R) = {f € L*(R)] / |f (@) + |V f(2)[Pdz < oo (3.22)
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with corresponding norm

171 = [ [ir@P + V4o Pds] (3.23)

( the derivative Vf for f € L? can be defined by means of a Fourier transform ). We now have
discussed the most important Banach spaces for applications in physics. We will in the next section
discuss functions on Banach spaces which will be called operators or functionals.

3.3 Operators and functionals

Every map F : By — By in which By and B5 are Banach spaces is called an operator. For the special
case By = R this operator is called a functional. The spaces B; and Bs are in general different
spaces with different norms. We can consider for example the operator F' : Cla,b] — C|a,b] given
by:

Flf]=f? (3.24)

or the functional F': Cla,b] — R given by:

Fifl = [ P (3.25)

Special operators are the linear operators from B; to Bs. Those operators have the property that

if f,g € By and A € R then:
F[Xf] = AF[f]
F[f + 9] = F[f] + Flg]

The space of linear operators from By to Bj is also a vectorspace. On this space we can also
introduce a norm by:

\F LAl
Fll = =12
171 = sup {5

(3.26)

} (3.27)

in which ||||; and ||||2 are the norms on the spaces By and Bs. If the above operatornorm exists for
an operator F' then this operator is called bounded. The space of bounded linear operators from
B; to Bj is again a Banach space which is denoted by [Bjy, Bs]. This space will reappear in the
next section when we want to define higher order derivatives.

We now have obtained all the knowledge necessary to define integration and differentiation on
Banach spaces. We can now go on and prove most of the theorems of ordinary calculus by imitating
the proofs. This then yields ordinary calculus as a special case of calculus on Banach spaces.

3.4 Functional differentiation

3.4.1 The Fréchet derivative

In analogy with ordinary calculus on the vectorspace R™ we can define two types of derivatives.
The first is the Fréchet-derivative, which is analogous to the total derivative in vector calculus,
and the second is the Gateaux-derivative which is analogous to the directional derivative in vector
calculus.We will start with the total derivative.
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An operator F': D — By with Dp C By in which B; and By are Banach spaces with norms |||
and ||||2 is called differentiable in f € Dp if there exists a linear operator:

oF
of
such that for f + h € Dp:

FLS - FLA - A
il al:

(f) € [B1, Bs] (3.28)

=0 (3.29)

If %—1;( f) exists for all f € Dp then this linear functional is called the Fréchet-derivative of F'. This
definition is analogous to the corresponding definition of the total derivative in vectorcalculus in
R"™ in which case %—1;( f) is a n x n-matrix working on the n-component vector h.

We will now give some examples. Consider again the operator F' : Cla,b] — Cla,b] defined by

F[f] = f?. Its Fréchet-derivative is a linear operator ‘g—?( f) : By — By defined by:

oF
57 )kl =271 € Cla, ] (3.30)
This follows directly from the definition of %:
I(F+h)? =2 =SFOmI 2
lim = m —— =
In]|—0 [17] a0 IRl

1 1
= lim — max |h%(z)| < lim — (max |h(z))2 = lim ||kl =0
[bl|—0 ||A| me[a,b]| (@) = [lhll=o0 ||A]] (we[a,b]| @) ||h||ao” |

Hence we have proven our statement. As a next example we will calculate the Fréchet-derivative
of the functional F' : Cfa,b] — R defined by:

F[f] = /ab 2 (z)da (3.31)

Its Fréchet-derivative is given by the linear functional %—I;( f): Cla,b] — R given by:

oF b
5B = [ 2f@h(e)da (3.32)

We again check the definition:

1 b b b 1 b
lim —/ f+h2dx—/ f2dx—/ 2fhdz| = lim —/ h2d
||l -0 IIhH| a ( ) a a | [bl[—=0 [|B]| Ja

. b—a 2 .
< fim St (ma [A(@)))? = (b= )] =0

which proves our statement.

We now have defined the derivative of an operator as a linear operator. This is in accordance with
the view of regarding the derivative of a function as a linear approximation to that function. In
order to calculate higher order approximations we must carry out a Taylor-expansion and define
higher order derivatives. Before addressing this question we will now give another definition of the
derivative which is called the Géateaux-derivative.
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3.4.2 The Gateaux-derivative

The Gateaux-derivative of an operator F' : By — By in the direction h € By is a linear operator
‘;—1; € [Bi1, Bs] defined by:

(5F F[f +th] — F[f]
The limit should be taken in the norm ||||2 of Bs ,thus one has to check:
. Flf+th)| - F oF
i | L0 g, = o (334

t—0 t of

The existence of the Gateaux-derivative is guaranteed if F' is also Fréchet-differentiable and in that
case they are equal. However existence of the Gateaux-derivative does not guarantee the existence
of the Fréchet-derivative. This is easy to imagine as F' might be differentiable in some directions
but not in all directions, or those derivatives might not be equal.

We will now give some examples of the Gateaux-derivative. Consider F': Cla,b] — R defined by:

Fil = [ e (3.35)

Then the Gateaux-derivative ‘;—1;( f): Cla,b] = R is given by:

oF 1, b 4 b o4
S 0k =i (/a (f+th)3d:1:—/af3dx):
—hm /f 1+3t?+0(t))—f3d:1:—

t—0

:lim/ 2 fihdz + O(t) /fzhdac

Another important example is the derivation of the Euler-Lagrange equations. Consider the Ba-
nach space of continuously differentiable functions on some subspace V' of three-dimensional space,
denoted by C''(V). We can then define the functional F : C'(V) — R by:

Fif] = /V L(f, V)dr (3.36)

in which £ is a local function of f and V f. The functions f and V f are supposed to disappear on
the edge of V. Then the Gateaux-derivative of F' is given by:

‘;?( P = lim [ £(F +th VS +9h) = £,V )i =
oL, L
—}g% afh+tm Vh+ O(t*)dr =
oL oc

If we are looking for extreme values of F' then W( )[h] must be zero for all variations h. In that
case we must have:
oL
oL . 9L
of ovf

which yields the famous Fuler-Lagrange equations.

=0 (3.38)



e L 4L ViV L L4LULAVLAL AL L JAVdA Y L AL AL ARSLN

3.4.3 Higher order derivatives

We will now adress the question of higher order derivatives. We note that if F' : By — By then
‘;—1;( f) is a linear operator. It is an element of the space [Bi, Bz]. So we can define an operator
% : By — [Bi1, B2] which assigns to each element f € By the functional derivative ‘f;—?( f) in f.
Thus:

oF oF
5F cfe ﬁ(f) € (B, By] (3.39)

As the space [Bj, B3] is also a Banach space we can differentiate % again and obtain a linear
operator:

5F

W(f) : By = [B1, By (3.40)
thus f;TE( f) € [B1,[B1,B2]]. This is called the second order derivative of F. We can now start
allover again and define an operator:

52 F 5°F

— — By,|B1, B 3.41

This operator can then be further differentiated and so on. If we go on like this , this procedure
finally gives our n'*-order derivative which is a functional:

F L OF
ofr

NG (f) € lBl, [Bl, [VBI, . [Bll’ BQ] .. ]]] (342)

n

Let us make this more concrete with an example. Take the functional F' : Cla,b] — R defined by:

Fifl = [ P (3.43)

The functional derivative is a linear functional %—I;( f) : Cla,b] — R given by:

oF b
SR = | 2t @h@yda (3.44)

We will denote this functional by '2f’. We can now define the operator ‘;—1; : Cla,b] — [Cla, b, R]
by:
oF
of
This assigns to each function f a linear functional. We now can differentiate this operator again.
This yields again a linear operator which is an element of [C[a, b], [C[a, b], R]] defined by:

1= 2f (3.45)

§2F )
W(f)[h] =2h (3.46)

The proof of this statement is not difficult. If we denote the norm on the space [Cla, b], R] by |||3
then we have:
1 OF oF 5’ F

”hlnllﬂimmn T (f +h)— ﬁ(f) - W(f)[h”h =
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19 I_ 1o olp! Y
o Ry a2y 0

= 1 = 0
||Al[1 =0 AR b1 =0 [[A]]1

As ffTE assigns to each point f € Cfa,b] a linear operator working on a point h € C [a b] which

in its turn assigns a linear operator working on a point k € C[a,b] we can also regard 2 5 f2 as an
operator which assigns to each point f € C|a,b] a bilinear operator on C|a, b]:

§2F §2F

— — 4
defined by:

§°F b

Sz (Dl = 20K = / 2h(2)k(z)dz (3.48)
This is completely general. We can equivalently view ‘f;}f as an operator:

o"F

(5fn : By — [Bl X ... X Bl,Bg] (34:9)

—_—

n
whichs assigns to each f € B; a multilinear operator on the product space By x ... x By which is
also a Banach space:

o"F o"F
hiy...,hy) —
5fn (f)( 1, ) n) 5fn

This is analogous to the case of vector calculus in which the n'-order derivatives are multilinear
tensors. In our example we have as a first order derivative the linear functional:

(H)h1,-- o] € By (3.50)

F b
0 (F)H] = / 2 f () () dz (3.51)
a
and as a second order derivative the bilinear functional:
52F
)h, k 2h(x 3.52
5 f2 I= / (3.52)

Those operators are often given by their integral kernels when it is possible to regard the functional
derivative as a linear integral operator. In the case of our example we have:

(5F b oF
( )[h] = j 6f(x)h(x)dx (3.53)
52 h,k s " h(x)k(y)dzd 4
5—ﬂ(f>[,1—/tl/am (2)(y) dody (3.54)
where the integral kernels are given by:
= 2f(a) (3.59)
0f (@) '
5% F
@ @) =26(z —y) (3.56)
In general we can write:
oF o"F
5fm (H)[hiy--. hy 5f($1)“.5f($n)h1(x1)...hn(xn)dxl...dxn (3.57)

This completes our discussing of the higher order derivatives. We can now go on to define Taylor
sequences, but before we do that we will first give extremal points of functionals and give an
overview on functional integration.
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3.5 Variational calculus

3.5.1 Extremal points of functionals

One of the most important applications of functional calculus concerns the determination of ex-
tremal points. One usually looks for local or global minima of functionals. Important applications
can be found in almost all areas of physics.

In the following we will discuss local minima of a functional F' : B — R from a Banach space B
to the real numbers. All the results derived can easily be applied to the case of local maxima as
they are local minima of the functional —F. We first state a definition. A functional F' has a local
minimum at fo € B when there exists a neigbourhood V(fy) = {f € B|||f — fol| < €} such that

Flfo] <F[f]  VfeV(fo) (3.58)

Let F be Fréchet differentiable ( Gateaux differentiable in every direction h € B ). Then a necessary
condition for F' to have a local minimum at fj is

oF
of
For a proof we define g : R — R by g(t) = F[fo + th] for h € B. As fj is a local minimum we have

g(0) = F[fo] and g(t) > F[fo] . Therefor g : R — R has a local minimum at ¢ = 0 and therefore
dg/dt(0) = 0 and we find

(fo) =0 (3.59)

dg oF
0=—(0)= 5F

So 0F/0f(fo) = 0. The following theorem is useful for practical applications. Let F' : B — R be
twice differentiable. A sufficient condition for fy to have a minimum at fp € B is that

oF

(fo)lh]  VheB (3.60)

57 (fo) =0 (3.61)
and

5°F

W(f)[ha h| 20  VfheB (3.62)
To prove this we define k: R — R by

k(t) = F[fo+th] + (1 — t)(;—?(fo + th)[h] (3.63)
Then k(1) = F[fo + h] and k(0) = F[fo] because the derivative at f, vanishes

dk §°F

SO = (1= 05 o+ ), (3.69)

Which yields
! §*F
Flfo + 1] — Flfo] = k(1) — k(0) = /0 (1= 1) (o + 1) [, hldt > 0 (3.65)

and we find that F[fy + h] > F[fy] , and therefore fy must be a local minimum.
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3.5.2 Convex functionals

An important class of functionals for variational calculations is the set of convex functionals. A
functional F': B — R is convex when for fi, fo € B and 0 < Ay, Ay < 1 with A\; + Ay = 1 we have

FlArf1 + Xafo] S MF[f1] + X F[fo] (3.66)
It is readily verified that an equivalent definition is
N N N
FDY NSl <D NFIfi] Y Ai=10<X<1 (3.67)
i=1 i=1 i=1

The importance of convexity for variational problems can be inferred from the following statement.
If F: B— R is convex and F is twice differentiable then

CF >0 ViheB (3.68)

df2 ’ )
To prove this we first note that due to the convexity of F' we have for 0 <¢ <1

Flfo+t(f - fo)] = FItf + (1 - t)fo] < tFIf]+ (1 - ) FLfo] (3.69)

and therefore

Flfo+t(f _th)] —Flfol _ pigy— Fif) (3.70)

Taking the limit ¢ | 0 and using the differentiability of ' we find

57 (llf = ) < FLA) — LA (3.71)
Similarly by interchanging f and fy we find

SF (Dl = 11 < Fliol = FLf (3.72)
Adding both inequalities then yields

oF

(570 = 57 ) U =l 2 0 (3.73)

This inequality means that F/df is a monotonously increasing functional. If we take f = fy + th
and take the limit ¢ | 0 and use the fact that F' is twice differentiable we have

2
o o)) 1] = S (ol (370

1 (6F
Ogltifgi <5f(f0+ th) —

of
which proves our statement. The converse, which we will not prove here, is also true. If F' is twice
differentiable and the second derivative is always larger than or equal to zero then F' is convex.
From the results of the previous section we can now conclude that if 0F/df(fy) = 0 for a twice
differentiable convex functional then fy is a local minimum of F.

We will now discuss one other quantity which is useful to prove differentiability of convex function-
als, which is the tangent functional or subgradient. Suppose that F': B — R is a convex functional
which is differentiable at fy then

F[f] = F[fo] = — (fo)lf — fol VienB (3.75)

> OF
of
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This equation which has been derived above is equivalent to equation 3.71. The above equation is
a special case of the more general equation

F[f1= F[fo] > L[f — fol VfenB (3.76)

where L : B — R is a bounded linear functional. If for a convex functional F such a linear functional
exists at fo then F' is called subdifferentiable at fy. The functional L is called a subgradient or a
tangent functional. One can prove the following statement. For a proof see [66]. If there is for a
convex functional F' a unique tangent functional at fy € B then F' is Gateaux differentiable at fy
and

5 7 (fo) (3.77)
Gateaux differentiability of a convex functional is therefore equivalent to the uniqueness of a tangent
functional. This can be illustrated with the following example. Let the Banach space B be the real
numbers B = R and the function ' : R — R defined as F'(z) = |z|. This is a convex function. The
linear functions Li(z) = z and Ly(z) = —z are both subgradients at the point z = 0. Therefore
there is no unique subgradient at £ = 0 and F' is not differentiable at x = 0. For z > 0 there is the
unique subgradient L; and for < 0 there is a unique subgradient Lo. Therefore F' is differentiable

for z # 0.

3.6 Functional integration

3.6.1 The line integral

As a motivation for the definition of line integrals in Banach spaces we will first give a familiar
example of line integration in ordinary vector calculus. Suppose we have a curve 7 : R — R? in
three-dimensional space starting at @ = 7(0) and ending in b = 7(1). Suppose we also have a scalar
function F : R* — R and we define F,(t) = F(5(t)) then it follows:

dr, ay
F(~5 .
S20) = VFGE®) - 0 (3.78)
From this formula we can deduce:
- 1dF dy
F(b) — F(a) = F(5( .
B - F@= [ o= [ vEGH)- T o (379)

In general we can for a given vectorfield ¥ calculate the line integral along curve 4 which is defined

I L dy
/_fv-d'y:/o T0) - Sy (3.80)

In general the outcome of this integral is path dependent.Only if there exists some scalar function
F with VF = ¥ then the outcome of the integral is path independent. In that case we have a
conservative vectorfield.

Let us generalise this to Banach spaces. Consider a functional F' : B — R where B is Banach space
with norm ||||. We can then define for a given f,h € B the function k¥ : R — R by:

k(t) = F[f + th] (3.81)
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Then:

dk, . k(t+s)—k(t)
=i =
:y%FU+HHﬂT—FU+Hﬂ &§U+MH]

This thus yields the Gateaux-derivative in point f + th. This then gives:

L dk L§F
FIf+1) =PI = W) = (0) = [ (@t = [ (7 + th[lae (3.82)
0 0o of
So we have derived the formula:
1
FUA = FUf = [ S0+t~ s ~ Lt (3.83)

This defines the line integral of %—? € [B,[B,R]] along the path y(t) = fo, +t(fy — fo) € B. This can
be generalised to arbitrary elements v € [B, [B,R]]. Suppose we have an operator v : B — [B,R]
then the integral of v from f, to f; is defined by:

fo !
[ ol = [ otfa i = f)l — Fulat (3.84)
fa 0

(By v(f)[h] we mean v in point f € B working on h € B.) This integral can also be defined for
more general paths by splitting up the general path in small straight pieces on which the integral
is defined and then taking the limit of an infinite number of infinitesimal pieces. This then leads
to the following definition:

/ [fldf = / (t)]dt (3.85)

where v : R — B is a differentiable path in Banach space. Using this definition we can prove the
following statements just as for ordinary line integrals:

/7 ol =- [ ol (3.86)

Aﬂmﬂ+ﬁfmﬂzéﬂfmﬁ -

where —+v is v with reverse orientation thus with parameter ¢ running from 1 to 0. Further is
v1 + 2 the combined path obtained by first walking along path v, and subsequently walking along
path yo. If the integrals are path independent the outcome of the integrals can only depend on the
endpoints of the path and we can denote the integral by:

[ ot = | " otslaf (3.88)

where f, = (0) and f, = y(1). In that case the above statements give:

fo fa
ol == [ olnar (3.89)
fa fo
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fe v fo
/f "ol + /f "ol = /f "ol (3.90)

Suppose we have an operator v € [B,[B,R]] for which the line integral is path independent. We
will prove for the case of a straight path (the particular path is not important as the integral is
path independent) that if we define the functional ' : B — R by

f 1
FIAL= [ olblai = [ o(fat 807 = fa)lf = Sl (3.9)
with v € [B,[B,R]] then
OF
S =vneBR (3.92)

The proof is analogous to the corresponding proof for the Riemann integral.We calculate:

Ff +th) - F[f] 1 /fthv[k]d

: t k= % /Otv(f + sh)[h]ds (3.93)

Here we used the path independence property:

f+th f f+th
/a o[k]dk — /f o[k|dk = /f o[k]dk (3.94)
Then it follows:
F[f +th] — F[f]

LB opinll =15 [ @0 + sl - v()ds

IN

L h)lh hl|d <1 h)h hlIt} =
o | (sl = (A < mae {Io( + swB] — o(P[BIE} =

= max {[o(/ +sh)[] ~v(D[AI} =0 (2 0)

Thus we have:
oF F[f 4+ th] — F[f]

57 (Hih] = lim p = ()] (3.95)

and hence we have proven our statement. Thus path independency for line-integrals of v implies
that v(f) is the functional derivative of some functional F : B — R We will now give some
examples. Suppose we have an operator v : C|a,b] — [Cla,b], R] defined by:

4
olf] =3/ € [Cla.b). R] (3.96)
The action of this operator on a function h € Cla, b] is defined as:
4 1 bg 1
o)A = 5P = [ S )b de (3.97)

Then the integral of v from f, to f} is given by:

[ b = [ St £)5 0~ Fulde =
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W=

_ /ab dm%(fb 1) /01 dt(fo +t(fs — fa))

= [ = fB Gt — ) =

4 4
= [ sty — i = Fi8) - FU
where F': Cla,b] — R is defined by:

Flf]= /abfg(x)dx (3.98)

One can check that the functional derivative of F' yields v(f) and hence the result is path in-
dependent. Our final example in this section also involves gradients. Define the functional F' :
CY(V) — R in which C'(V) is the space of continuous differentiable functions on some subset of
three-dimensional space R? by:

F[f]:/‘/(Zi) dr (3.99)

The functions f and V f are supposed to disappear on the edge of V. Using the Euler-Lagrange
equations 3.37 we find for the functional derivative:

_OF 0 (R 9 (V)

v(f) 5f(f) W( FE ) an( IE ) =
(Vf) Vf (Vf) VZf 8 (Vf)?
= . v = - =
3 (fs) 3 f3 NE [z
_ 4V Vi
=3 i —2f% c[C'(V),R] (3.100)

We will now integrate this derivative from 0 € C1(V) to f € C'(V)). Then we must calculate:

/ _ [ ey [PV VR
/0 u[k]dk_/o v(tf)[f]dt_/vd f/o dig T YT "

:/Vdrf( % /dtt’l— V;f/ dtt~
- Je ST - [
:/V(Vf)2 = FIf] (3.101)

3

which recovers our starting functional.
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3.6.2 Integrability conditions

In the calculation of line integrals it is often useful to know whether a given line integral is path
independent because in that case we can try to deform the path to a contour for which the integral
is easy to calculate without changing the outcome of the integral. We thus like to have an easy
to verify criterion which tells us whether a given line integral is path independent. For everyday
three-dimensional vectorfields such a criterion is easy to give. The line integral along the field is
path independent if this field is rotationless. Mathematically this means that its curl should vanish.
This condition is readily derived. Suppose we have a vectorfield v : R? — R3. If the line integral
along this vectorfield is path independent then this vectorfield should be the gradient of some scalar
function f : R? — R thus:

v=Vf (3.102)
Or in terms of vector components:
v; = O;f (3.103)

If f is twice differentiable then it follows that:

Ovi — Ojvg = OO0 f — 0;0f =0 (3.104)
and hence:
V xv=0 (3.105)

In the derivation of this condition we used the fact that we could interchange the differentiation with
respect to different variables. In general it is true for a n-times differentiable function f: R3 — R
that:

03,0y ... 0i, [ = 03,1, 0y - Oiy f (3.106)
where p is an arbitrary permutation of the numbers 1,2,...,n. A direct generalisation of this
statement to n-times differentiable operators F' : By — By on Banach space would be:

o"F o"F

5fn (f)[hla ha, ... 7hn] = 5fn (f)[hp(1)7 hp(2)7 s 7hp(n)] (3107)
where h; € By. Using the definition of differentiation one can prove this statement. In particular
we have for the bilinear operator ‘E;Tg(f) € [B1 x By, Bo] that:

§*F §*F

—(H)h, k] = = (f)[k, h 3.108

72 (DK = Gz (Dlk A (3.108)

for h, k € By. If it is possible to view this operator as an integral operator then the integral kernel
should be symmetric:

52F 52F
0f(2)0f(y) ~ 0f(y)of(x) (3.109)

Suppose we have in point f € By a linear operator v(f) : By — Bs which is the functional derivative
of an operator F': By — Bo, thus:

_oF
o

v(f) (f) € [B1, Bs] (3.110)
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If we let this operator work on an element h € By and we take the derivative in direction k € By
then:

Sv . o(f +tk) —o(f)

57 (DA = Jim ; [h] =
1, 6°F SF? 52F
= lim 2 (G577 (f + th)h] = 55 (NI = 577 (Db (3.111)

Thus using the symmetry of the second order derivative (equation 3.108) we can conclude that if
v € [By, [B1, Bs] is the derivative of a twice differentiable operator F': By — Bj then:

SHOMIE = 5 () (3.112)
Using the integral kernel notation:

O pmE = [ 2 b)) dndy (3.113)

57 5 ()

we must have for the integral kernels:
dv(x) B dv(y)
0f(y)  0f(x)
This is a necessary condition for the path independence for the line integral of v. We now give
some examples. Consider a functional F' : C?[a,b] — R on the space C?[a,b] of twice continuously
differentiable functions on the interval [a,b]. The functions are also required to vanish at the

endpoints of the interval so we are really working in a subspace of C?[a,b] . Let the functional F
be defined by:

(3.114)

Ch1df
Fif]= : 5 z))?dz (3.115)
Its functional derivative v(f) = %( f) € [C?*[a,b],R] is given by:
dZ
o(f) = d—x‘é € [C?[a,b], R] (3.116)

This is easily derived using the Euler-Lagrange equations 3.37. Its action on a function h € C?[a, b]
is given by:
d2 f b dZ f
= -5
x o dx
Asv(f) € [C?[a,b], R] is the functional derivative of functional F the operator 3% 7€ [C?[a, b], [C*[a, b], R]]
should be a symmetric linear operator This is easily checked:

(x)h(z)dz (3.117)

dv I L d’f —
ﬁ(f)[h][k] —g%z . ( (f+ k) — dz 2)h( w)dr =
b 2k b dk dh
=/ @(i)h(i)diz— j %(I)%(I)dI (3.118)

In the last step we used partial integration and the fact that h(a) = h(b) = 0. In this derivation all
the limits are taken in the norm sense. A more careful derivation using norms shows that this last
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result is indeed correct. This last formula is obviously symmetric in h and k. If we use the integral
kernel notation we have:

dv(z) d_2
0f(y)  da?
which is also symmetric.

As a final example we consider on the same space an operator v(f) € [C?[a,b], R] with a nonsym-
metric derivative.Let v(f) be defined by:

b
oD = [ (- @)he)ds (3.120)

iz —y) (3.119)

Its derivative is given by:

ov gy — (e

5f(f)[h][k] =lim— | ((—(f +th))* = (-)*)h(w)dz =
o 4
- dac( )dx( )hiw)dy (3.121)

This formula is not symmetric in h and k£.We can also write this as:

/ / ", y) D@ ZY) by k(y)dady (3.122)

So the integral kernel is given by:

dv(z) df d
0f(y)  dzdy

—i(z —vy) (3.123)

This kernel is nonsymmetric so any line integral along v will be path dependent. This ends our
discussion of functional integration. There is one important topic left which is very useful in the
approximation of functionals and that is the definition of Taylor-sequences. We will deal with this
question in the next section.

3.7 Taylor expansions

In this section we will derive the Taylor formula for operators F' : By — Bs. For given f,h € By
define the function k : R — Bs by:

N
1 nO"F
Z—l—t (f +th)[h,...,h] (3.124)
— ' fn SN——
we now will use the following formula for the Riemann integral:
L dk
k(1) — k(0) = —(t)dt (3.125)
o dt

in order to calculate %(t) we must calculate:

d o"F 1,6"F o"F
E(afn(fﬂh)) hm (6f (f+th+sh)[h,...,h]—6fn

(f +th)[h,...,h])



S ~MAeLLdAL L ALJEL U 44 LUVLJ YV LALJYVY UL 4L ULV U AL LULAVLAL VdAI V AU

5n+1 n+1F
ST (f +th)[h, ..., h][h] = ST (f +th)[h,... A (3.126)
n n+1

It thus follows that:

L O"F

n:l ) 6fn (f-i—th)[h,_‘_’h]
N 5n+1F 6N+1F
= %(1 e %(1 — ) S (f )k k) (3.127)
n=0 "~ I
We further have:
)~ KO = FU 4= 32 Lo o
n=0""

Using equation 3.125 for the Riemann integral this yields:

N n N+lp
F[f+h]= f]+z 1'(;;: h]+/ N(SfNH (f +th)[h,...,h]dt(3.129)

If F: By — B> is infinitely differentiable and if the restterm:

1 N+1
Ry (f.h) :/0 %(1 —t)N(;fof(th)[h,...,h]dt (3.130)

goes to zero for N — oo ,thus if:
lim || Ry (f,R)ll> =0 (3.131)
N—o0
then we have within the convergence radius:

F[f +h] = F[f] + Z Tt, ?}f [y ..., ] (3.132)

In the integral kernel notation we have:

FIf +h] = F[f] +nz:1%/5f($1)5‘n‘l‘[75f(x2)h(:1:1)...h(acn)dxl...d:z:n (3.133)

We now have derived most formulas needed in practical application of functional calculus. This
final chapter therefore ends our review of functional calculus. A more rigorous discussion on all the
discussed topics can be found in [64, 65].



Chapter 4

Density functionals for Coulomb
systems

4.1 Introduction

In this section we will discuss the several functional analytical properties of density functionals
for electronic systems with Coulombic interparticle interactions. To derive continuity and differ-
entiability of the density functionals we restrict ourselves to a certain set of external potentials,
mathematically denoted as L>°(R?) + L3/?(R3) with contains the physically important Coulomb
potential as well as any finite sum of Coulomb potentials relevant to molecular systems. The dis-
cussion in this section is largely based on the mathematical papers by Lieb [19] and Englisch and
Englisch [67, 68]

4.2 Conditions on the electron density and external potentials

The electron density corresponding to a normalized N-electron wave function W is defined as
pr)=N ¥ /|\Il(r01, £y0s ... rnoN)drs .. . dey (4.1)
01...0N

We first put some constraints on the wave function. First of all because of the probability inter-
pretation one likes the wavefunction to be normalizable to one, so we require || V|| < oo where the
norm is defined as

o= 3 /|\IJ(r101...rNaN)|2dr1...drN (4.2)

01...0N

Secondly because of the superposition principle in quantum mechanics one requires that also some
infinite linear combinations exist and are normalizable. More precisely we first define

M
Ty =Y am¥Up, (4.3)
i=1

with || ¥, || =1 and

M

Slai* =1 (4.4)

=1

63
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One can easily check this to be a Cauchy sequence

Hm | Upq — Ul >0 (M — o0) (4.5)
M —00

Then we would like the limit function to exist, i.e. we would like that our space of normalizable
functions contains some limit functions ¥ such that

li v - = 4.
Jim = Wy]| =0 (46)

so we require the above Cauchy sequence to converge, more compactly we like our space of functions
to be complete with respect to the square integral norm. It can be proven that the smallest space
which is complete with respect to the above norm is the space L? of functions ¥ for which the
Lebesque integral of |¥|? exists. For a definition of the Lebesque integral we refer to the previous
chapter. A third requirement on wavefunctions is that their kinetic energy expectation value must
be finite. The expectation values of the potential energy operators we will discuss later on. So we
require that

T Z Z /|V \I/ 1‘101 I'NUN)| dry...dry < 0o (47)
i=101...0N

Here VU is defined almost everywhere (a precise definition of VU for a L?-function can be given
using Fourier transforms ). This implies that

Z /|\I/ rioy. I'NUN +Z|V \I/ 1‘101 I‘NUN)| dry...dry < 0o (4.8)

01...0N =1

and so we now find that ¥ € H'(R?*Y). All these constraints on ¥ have consequences for the
constraints on the electron density p. First of all because ¥ € L?(R3N) we find from equation 4.1
that p € L'(R?) which means that the Lebesque integral of the electron density is finite

/p(r)dr < 00 (4.9)

We now will show that the finiteness of the kinetic energy implies that p must also be in L3(R?)
which together with the previous results implies that p € L'(R?) N L3(R3).
If we consider a wave function ¥ € H'(R3Y) which yields density p then

Vpr)=N Y /\1/ (roy...vtyoN)VU(roy...ryon)dry...dry + cc. (4.10)

J1...ON

Using the Schwarz inequality

|/f(:1:1 zN)g (@1 ... zy)dy ... dxy, |2

/|f ¥ Pda .. dmN/|g an)Pdey .. doy (4.11)
we find
[Vo(r)]? <

4N2 Z /|\If rop. I‘NUN)| dI‘2 dI‘N Z /|V\I/ rop. I‘NUN)| dI‘Q...dI‘N

01.-.-ON 01.--ON
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1

:8 2]\/v Z /|V\I/ roj . I'NUN)| dry...dry (4.12)

g1...0N

So we find that

r 2
=5 [19 /oty = %/Lpp((r))) dr < T[¥] < o0 (4.13)

Therefore \/p(r) € H'(R3?). If we now use the Sobolev inequality for functions f € H'(R?)

,;>

[1vsa =36t [ [ 170 dr} (4.14)
we find that

/p )dr < §/|V\/7|2 < oo (4.15)

so we conclude that p € L3(R?) which together with p € L'(R3) implies p € L'(R?) N L3(R?).
Some definitions are useful for further discussions in this section. We define the sets

Sn = {plp(x) > 0,/ € H(R?), [ plx)dr = N} (4.16)

,;>

and
R = {plo(x) 2 0.p € L*(RY), [ plr)dr = N} (4.17)

The set Ry is convex, that is, if p; and ps € Ry then p = Aip1 + Aops € Ry with 0 < A, A < 1
and A\; + Ay = 1 . This follows from

/ p(r)dr = A\, / p1()dr + Ao / po(x)dr = N (4.18)
and

[A1p1 + A2p2lls < Atllprlls + Azllp2ls < oo (4.19)
The set Sy is also convex. This follows from

Vp =X Vp1 +XoVpo =201 /p1V/p1 + 2X0/p2V/p2 = a1 Vaq + oV (4.20)
with a1 = v/2X1p1 and ay = /2X2p7 and from the Schwarz inequality

(1Vay + @Vas)? < (of + a3)((Ven)? + (Vaz)?) (4.21)
This yields

(V0)? < 4p(\ (VD) + Aa(V V7)) (4.22)
and we find
/ (VP)2dr < A / (/B1)2dr + Ao / (V2)2dr < oo (4.23)

So p € Sy. In particular it follows that the von Weiszacker kinetic energy functional 4.13 is a
convex functional, i.e.

TW[)\IPI + )\ng] < MTw [p1] + XoTw [pg] (4.24)
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We will now prove the following statement. For any electron density p € Sy there is a Slater
determinant wavefunction ¥ € H'(R3N) which yields this density (i.e. with satisfies relation 4.1 ).
The proof is by explicit construction. We write r = (r1,79,73) and define

+o0 +o0
flr) = / dvy / dvz/ dvzp(vy,vg,v3) (4.25)

The function f is monotonously increasing with f(—oc0) = 0 and f(+o00) = 2w. We define the
orbitals ¢,, by

6u(8) = (1, ra,rs) = [ PET2T) e (i) (4.26)
forn=0,...,N —1. Then
ne)? = 22 (1.27)
and for n # m we have
JR N B ey B L
_ m(ez(n m) (o0 _ giln=m)f(=o)) _ g (4.28)

So the orbitals ¢, form an orthonormal set which sum to the prescribed density and therefore the
corresponding Slater determinant wavefunction will yield the same density.

After having discussed the density and the expectation value of the kinetic energy operator we will
now discuss the expectation value of the potential energy operators. Because ¥ € H'(R3V) it
follows [19] that for

1 1

V= 4.2
W 2 Z |I'i - I'j| ( 9)
i#]
we have
(T|W|¥) < oo (4.30)
Also a lower bound for this quantity can be proven. If U yields density p we have
(U|W|T) > /” ) ey des —C/p?» (4.31)
1 — r2|

with C' = 1.68 [69]. We now turn to the expectation values of the external potential V. From the
condition

‘ / p(r)o(r)dr| < 0o

and p € LY(R?) N L?}(R?) we can deduce some constraints on the external potential v(r). If
p € L'(R3) then the above integral exists for bounded potentials,i.e. for potentials v € L>®(R3?).
This follows directly from

‘/p r)dr

(4.32)

< esssup |v(r |/,0 )dr < oo (4.33)



LT + L vt A e A Mt 2 A VYiaty A A =LY

if v € L®(R3). If p € L3(R?) then the above integral exists for potentials in the set L2 (R3). This
follows from the Hélder inequality

19l < 1Fllpllgllq (4.34)

with 1/p+1/¢g=1. Ifv e L3 (R3) then we find using this inequality

LG

= [levlly < llpllslfolls < oo (4.35)

The most general set of potentials for which the expectation value (¥|V|¥) exists is therefore the
set

L3(R?) + L™®(R?) = {vfv = u + w,u € L2(R?),w € L™(R?)} (4.36)

This set is a Banach space with norm

[o]] = inf{[ju]ls + [|wlloc |0 = v +w} (4.37)
An important potential in this Banach space is Coulombic potential as it can be written as

1

- =u(r) +w(r) (4.38)

r

where r = |r| and

01 —r) w(r) = O(r—1)

r s

u(r) = (4.39)

where 0 is the Heaviside function, #(z) = 0 if z < 0 and 6(z) = 1 if x > 0. One can readily
check that u € L%(R3) and w € L®(R?). The Banach space L%(R3) + L®(R?) does not contain
external potentials that go to infinity as |r| — co. This choice precludes some physically interesting
potentials such as the harmonic oscillator potential. These potentials can be handled with the
methods to be disussed but then one has to put additional restrictions on p such that the integral
of pv makes sense.

4.3 Properties of the energy functional E[v]

For the external potentials in the set L3 (R3) + L*°(R3) we define the total energy functional E[v]
as

Elv] = inf(U|H|T) (4.40)

where ¥ € H'(R3N) and where the wave function ¥ is normalized to one ||¥| = 1. We will prove
some properties of this functional. First of all we have that E[v] is concave, that is

E[)\lvl + )\21)2] > )\1E[1)1] + )\QE[Q)Q] (4.41)

for all v € L%(R?’) + L®(R3) and 0 < A\;, A2 < 1 and A\; + Ay = 1. This follows directly from the
variational principle. If ¥ is a wave function corresponding to the infimum in equation 4.40 then
E[] = (UT+V+W|T) =X\ (U|T + Vi + W|T) + M (U|T + Vi + W |T)
> )\1E[1)1] + )\QE[Q)Q] (4.42)
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where we used A; + Ao = 1. A simple application of the above relation is the following. Consider a
molecular Hamiltonian with NV atoms of positive nuclear charge Z; at positions R;.

4.4
Z |r - (4.43)
if we define the total nuclear charge
N
Z=> 7 (4.44)
i=1
and define \; = Z;/Z then we find using the concavity property of E[v] that
N
AiZ Z
PR = By > Yo
i=1 |r l| =1 l|
VA
= ZAE |] = [—m] (4.45)

So we conclude that the total electronic energy of a molecule with total nuclear charge Z is always
larger than or equal to the total energy of an atom with the same nuclear charge Z and the same
number of electrons. For instance the electronic energy of the hydrogen molecule is larger than the
electronic energy of the helium atom.

A second property of E[v] is that it is monotonously decreasing, that is, if v1(r) < ve(r) for all r
(almost everywhere) then E[vi] < E[vs]. This follows again from the variational property. If ¥ is
a wave function corresponding to the infimum in equation 4.40 then

Elvs] = (U|T + Va4 W) = (U|T + Vi + W|T) + (U|V5 — V3| L)
> Evn]+ /p(r) (va(r) — v1(r))dr > Elv] (4.46)
We further state without proof a third property of E[v], which is : E[v] is continuous in the

L5 + L®-norm. So if we have a sequence of external potentials {v;} in the Banach space L3 +L®
with norm ||| converging to v € L3 + L™ then

lim |jv; —v|| =0 = lim |E[v;] — E[v]| =0 (4.47)
11— 00 11— 00

The proof of this can be found in the paper by Lieb [19].

4.4 The Hohenberg-Kohn functionals Fpx[p] and Fryxk[p]

We will now discuss the Hohenberg-Kohn functional which has been introduced by Hohenberg and
Kohn in their well-known paper. First we will prove the Hohenberg-Kohn theorem. Suppose that
U, and Uy € H'(R3N) are non-degenerate ground state wave functions corresponding to external
potentials vy and vy € L™ —|—L% with corresponding electron densities p1 and ps. Then if v1 # vo+C
where C' is constant then p; # ps.

As a first step we have that if v; # vo + C' that ¥y # Wy, This follows by contradiction. Suppose
VU, = Uy = ¥ then by subtraction of the Hamiltonian for ¥; and ¥y we find that

(1)1 — ’Uz)\If = (E1 — Eg)\p (448)
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If v; — vy is not constant in some region then ¥ must vanish in this region for the above equation
to be true. However if v1,v9 € L™ + L2 then ¥ cannot vanish on an open set (a set with nonzero
measure) by the unique continuation theorem. So we obtain a contradiction and we find ¥; # Ws.
So different potentials ( differing more than a constant) give different wavefunctions. In the following
we will denote ¥; = ¥[v;] and Uy = Ulvs].

These different wave functions also yield different densities. This follows again by contradiction. If
p1 = pa = p then

Elv1] = (Wi]|T + Vi + W|P[v1]) < ($[oa]|T + Vi + WP [v2])

— (Woa][T + Vo + W[ W[a]) + /p(r) (01 (x) — v (r))dr

= Bloa] + [ plr)(01(x) — va(e))dr (4.49)
Likewise
Blvs] < EJvi] + / () (w3 (r) — vy (r))dr (4.50)

Adding the both inequalities yields the contradiction
Elvi] + Elvs] < E[v1] + E[ve] (4.51)

So we conclude that p; # ps, which proves our statement.
We now define the set Ay as

An = {p|pcomes from a non-degenerate ground state} (4.52)

where we only consider ground state densities from potentials in the set L™ + L3. The set An
is a subset of the previously defined set Sy. The densities in the set Ay we will call pure state
v-representable densities, shortly denoted as PS-V-densities. From the Hohenberg-Kohn theorem
there is a unique external potential v (to within a constant) and a unique ground state wave
function ¥[p] (to within a phase factor) which yields this density. On the set of PS-V densities we
can therefore define the Hohenberg-Kohn functional Fry as

Fuxlp] = (¥[o]|T + W|¥[p]) (4.53)
we can then define the energy functional E, as
Eulpl = [ ple)o(e)ds + Fuxclo (4.54)

If pg is a ground state density corresponding to external potential vy and p an arbitrary other
ground state density then

Eulpl = [ ple)oo(e)dr + Fuclpl = (WaIT + Vo + W W[l
> (Wlpo)| T + Vo + W[ [po]) = Eu 0] (4.55)
Therefore

B} = inf { [ p(e)ote)de + Fuclo)} (4.56)
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For application of the above formula we have to known Fgg on the set Ay. As the set Ay is
difficult to determine we need an extension of Fi to a larger better known set. We will however
first discuss the above functional. The functional F'y i has some mathematical inconveniences. First
of all its domain Ay is not convex, that is, if p1, p2 € An then not necessarily A\1p1 + Ag9p2 € Ay
with 0 < A, A9 <1 and A\ + A9 = 1. We will prove this in a later instant.

The functional Fyg is however convex, that is, if p;,p2 € Ax and if A\jp; + Aopy € Ayx with
0 S )\1,)\2 S 1 then

Frrlhip1r + Xep2] < MiFuk(pi] + M Fuk(p2] (4.57)

This is readily proved. Suppose that the ground state densities p1, p2, A1 p1 + A2p2 € An correspond
to the external potentials vi,v9 and v. Then

[ owyow)ds + Fuclol = [ ple)oteyds + (@pl|T + |9l =
= (W) W] = M (TIp] o)) + Ao (o] ¥ o)

< A(T[o]|T + WIE[p1]) + Ao (W [p2]|T + W [p5]) + /(Alpl(r) + A2p2(r))v(r)dr

= MFuklpr) + NoFurclpo) + [ p(ryo(r)dr (4.58)

and we obtain the convexity of Fgg. The functional Fyk is defined on the set Apy. This is not a
convex set. There are convex combinations of PS-V ground state densities which are not in Ay. An
example of this is a convex combination of densities corresponding to a g-fold degenerate ground
state multiplet

q q
p=> Xipi D N=1 0<)\<1 (4.59)
i=1 i=1

which in general is not in Ay. We will demonstrate this at the end of this section. We can however
readily extend our functional Fg to this type of densities. We define

By ={p= Z Aipi|pi comes from the same v for all 7, Z Ai=1,0< )\ <1} (4.60)
- :

2

We call these densities ensemble v-representable densities or E-V-densities. We will now extend the
functional Fi to the set By of ensemble v-representable densities. The corresponding ensemble
functional we will denote by Frpk. For a degenerate ground state multiplet {1;)} with ¢-fold
degeneracy corresponding to some external potential v we define the ensemble density matrices

q q
D= Nyl D xn=1, 0<x<1 (4.61)
i=1 i=1
the corresponding ensemble density is given by
plr) = TrDj(r) (4.62)

where p(r) is the density operator. We now prove the following extension of the Hohenberg-Kohn
theorem to arbitrary degenerate ground states. Suppose D; and D, are ground state ensemble
density matrices belonging to vy and vs resp., with corresponding densities p; and po. If v1 # vo+C'
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with C a constant then p; # po.

The proof is analogous to the proof of the non-degenerate case. First the sets of ground state
ensemble density matrices corresponding to the two different potentials v; and wve are disjoint.
Suppose v; generates the ground state multiplet A = {|¢;), ¢ = 1...¢1} and vy generates the
ground state multiplet As = {|¢;),7 = 1...¢qo}. All the wave functions within these multiplets may
without loss of generality be chosen orthonormal. Then none of the wave functions in the sets Ay
and Ay are equal. This follows from the same argument as used in the proof of the Hohenberg-Kohn
theorem for the non-degenerate case. In particular, as the sets A; and As are only defined to within
a unitary transformation no |¢;) in Ag is a linear combination of the |¢;) in A;. This then implies
that two ground state ensemble density matrices constructed from the ground states in A; and A»
are different

q1 q2
Dy =" Nilgi) (el # Y pilths) (1hil = Dy (4.63)

where > \; = > p; = 1. This follows for instance by taking the inproduct on both sides with |y, )
as the |¢;) are not linear combinations of the |¢;).
Secondly, if Hy =T + Vi + W and Hy =T 4 Vo + W then

TrD, Hy > TrDoH, (4.64)

This follows directly from

q1 q1
TrDiHy = NipilHalgi) > Y Xi(hil Halthi) =

=1 =1
q1 a2 . o
1=1 1=1

Now we can show that Dy and Dy yield different densities. We proceed again by reductio ad
absurdum. Suppose p; = p2 = p. Using the last result we find

E[Q}l] = T‘I‘ﬁlgl = T‘I‘ﬁl(HQ + V1 - VQ) =

=TrD Hy + / p(r) (v (r) — va(r))dr > TrDy Hy + / p(r)(vi(r) — va(r))dr =

= Bloa] + [ plr)(01(x) — va(e))dr (4.66)
Likewise we have

Blva] > Bor] + [ ple)(02(x) = v1(6))dr (4.67)
which added to the last inequality leads to the contradiction

E[v1] + E[v3] > E[v1] + E[v9] (4.68)

Therefore Dy and Dy must give different densities, which proves the theorem.
Within the set of ensemble ground state density matrices corresponding to the same potential how-
ever, two different density matrices can yield the same density. The energy TrD H for those different
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density matrices is however the same. For every E-V-density p we can therefore unambiguously
define

Fpuklp) = TeD[p)(T + W) (4.69)

where f)[p] is any of the ground state ensemble density matrices corresponding to p. We can now
define an extension of the energy functional F, to the set of E-V-densities

ol = [ ple)oe)de + Feuxclp) = TeDlol (4.70)
Similarly as for Fgx we easily can prove
= inf {/p dr+FEHK[p]} (4.71)
pEBN

The functional Fggk is an extension of Flgx as we have

FEHK[,O] = FHK[,O] if pE AN (4.72)

This follows directly from the fact that for a non-degenerate ground state |¥[p]) corresponding to
p we have D[p] = [U[p]){¥[p]| ,s0

Fpuxlpl = TeD[p)(T + W) = (Y [pl|T + W |¥[p]) = Frx o] (4.73)

We can furthermore prove that Fgpk is convex by the same proof as for Fyx. Nothing is however
known on the the convexity of the set of E-V-densities By which constitute the domain of Fpyxk.
As we will now demonstrate the subset of PS-V-densities Ay of By is not convex. More precisely
we will now show that there are E-V-densities which are not PS-V-densities. As any E-V-density
is a convex combination of PS-V densities this then demonstrates the non-convexity of Ay .
Consider an atom with total angular momentum quantum number L > 0 which has a 2L + 1-
degenerate ground state. The external potential v is the Coulomb potential. The degeneracy is due
to the fact that the Hamiltonian of the system is invariant with respect to rotations. The ground
state wave-functions then transform among one another according to a 2L + 1-dimensional unitary
representation of the rotation group. We assume that there is no accidental degeneracy. If we
denote the ground state wave functions by {|[p;]) = |¢i),i =1...2L + 1} and the corresponding
electron densities by p; then the following convex combination

1 2L+1
= ; 4.74

is invariant under all rotations and therefore spherically symmetric. However the p; are not spher-
ical. In fact not any of the densities corresponding to linear combinations of the ground states |;)
is spherically symmetric. As the p; is obtained from |¢;) which by a unitary transformation can be
obtained from any other [¢);) and the external potential is invariant under rotations we find that

/pZ r)dr = /pj r)dr = /p (4.75)

forall 0 <4,7 < 2L+ 1. Let us now suppose that p is generated from a ground state wave function
¥[p], then this wave function is not a linear combination of the |1;) otherwise p would not be
spherically symmetric. Then we find

[ 8eyow)ds + Fuklp) = [ pe)ow)ds + AT + W{a) = (612111917
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2L+1 1 R 2L+1 R R 2L+1 1
> ; m(l/)[PiHHW[Pi]) => 2L+1(1/J[Pi]|T+W|‘1’[Pz‘]>+ 22::1

/ pi(£)o(r)dr

£ 2L+ 1
=Y B+ [ eyoterar (4.76)
—i:1 oL+ 1 HK|Pi pLr)v .

This then gives

2L+1

Fuklp) >

=1

F i 4.

But we already knew that Fyx was convex on the set of ground state densities which leads to a
contradiction and therefore we must conclude that p is not a ground state density of any potential.
The density p is however a convex combination of ground state densities corresponding to the same
external potential and therefore by definition an ensemble v-representable density. We therefore
have constructed a E-V-density which is not a PS-V-density. Therefore Ay is a real subset of By
and moreover Ay is not convex.

4.5 The Levy and Lieb functionals Frr[p] and Fp[p]

The functionals Fgg and Frgx have the unfortunate mathematical difficulty that their domains of
definition Ay and By ,although they are well-defined, are difficult to characterize, i.e. it is difficult
to know if a given density p belongs to Ay or By. Although there are reasons to assume that all
reasonably well-behaved (that is, twice differentiable, bounded and positive ) densities belong to
By this remains until now an unproven statement. It is therefore desirable to extend the domains
of definition of Fyx and Fgyk to an easily characterizable (preferably convex) set of densities.
This can be achieved using the constrained search procedure introduced by Levy. We define the
Levy-Lieb functional Frr, as

Frilp) = gﬂw@ + W) (4.78)

where the infimum is searched over all normalized anti-symmetric N-particle wave functions in
H'(R3N) yielding density p. As shown earlier such a density is always in the convex set Sy which
is again a subspace of L' NL®. One can furthermore show, as has been done by Lieb [19], that the
infimum is always a minimum, i.e. there is always a minimizing wave function.

Let us discuss some properties of Frr. The functional Fr is an extension of the Hohenberg-Kohn
functional Fgx which was defined on Ay to the larger set Sy, i.e

Frilpl = Fuklp] if p€ An (4.79)

This is readily derived. Suppose p is some ground state density corresponding to some external
potential v and ground state wave function ¥[p] then

/P(r)v(r)dr + Frrxlpo] = (Y[l H|¥[p]) (|H|p) =

= inf
Y—p

= [ pwyolr)dr + inf GIT + W) = [ pe)o(e)dr + Fralp (4.80)
—p
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We define a corresponding energy functional

/p dr—i—FLL[ ] (4.81)

If pg is the ground state density corresponding to v with corresponding ground state wave function
¥lpo] then

Bylp) = inf (WIH[$) = (blooll [ po]) = B [po] (4.82)

Minimizing E, over the set Sy therefore yields the ground state density pg corresponding to external
potential v. The functional Fr; has however one inconvenient property, it is not convex. We take
the example of the previous section where we presented a density p which did not correspond
to a ground state wavefunction. It was however a convex combination of degenerate ground state
densities p; with corresponding ground states |1[p;]) corresponding to an external potential v. Then
we find

/P r)dr + Frz[p| = lnf( |H |4))
2L+1 1 2L+t

> 5y 2 (el H o) = 2L+1§:FupJ+/p (r)dr (4.83)
i=1

and we find

N
Frilp] > 2L+ 2; (4.84)

which proves the non-convexity of Frr. This is somewhat unfortunate as convexity is an important
property which can be used to derive differentiability of functionals. We will therefore now define
a different but related functional with the same domain Sy which is also convex. This is the Lieb
functional Fr, defined as

Frlp] = ;lf TeD(T 4+ W) (4.85)
p

where the infimum is searched over all N-particle density matrices

D=3 Nlp)gl D=1 ypeH (RY) (4.86)
=1

=1

which yield the given density p(r) = TrDp(r). One can also for this case prove the infimum to be
a minimum, i.e. there is a minimizing density matrix. This functional is an extension of Frgi to
the larger set Sy, that is

Filpl = Ferxlpl if p€ By (4.87)

This follows directly from the fact that if p € By then there is a potential v which generates a
ground state ensemble density matrix D[p] which yields p. So

[ oy + Funiclpl = [ pyol)ds + TeDlp)(T + ) = TeD[ol

= inf TtDH = [ p(r)v(r)dr + inf TeD(T + W) p(r)v(r)dr + Fr[p] (4.88)
D—p D—p
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We can again define an energy functional

Eulpl = [ ple)o(x)dr + Fylp (4.89)

which by a similar proof as for Fj, assumes its minimum at the ground state density corresponding
to potential v. We further have the following relations

Filpl = Frilp] if pe Ax (4.90)
and
Frlpl < Frilp] if p€ By and p ¢ Ax (4.91)

The first relation follows from the fact that is the density p is a pure state v-representable density
then the minimizing density matrix for Fp, is a pure state density matrix. The second relation
follows from the fact that if p is an ensemble v-representable density there is a ground state ensemble
density matrix D[p] for which we have

[ owyotw)ds + Fulp) = [ p(e)ole)ds + TeDlp] (T + ) = (i 1) (4.92)

where |1);( is any of the ground states in the degenerate ground state multiplet. Any wave function
yielding density p can not be a linear combination of these ground state wave-functions otherwise
p would be pure state v-representable. Therefore its expectation value with the Hamiltonian must
be larger, i.e

(i) < int WL = [ pe)o(e)dr + Frelo (4.93)
—p

which proves our statement.
We will now demonstrate another important property of Fj , which is its convexity. If p =
A1p1 + Agp2 then we have

MFp[p1] + XoFplpa) = A _inf TrD(T + W) + Xy inf TeDo(T + W) =
Di—p1 Da—p2

= inf  Tr(A\ Dy 4 X Do)(T + W) > inf TeD(T + W) = Fy[p] (4.94)
D1,D2—p1,p2 D—p

We therefore now have established that F7 is a convex functional on a convex space. This is
important information which enables one to derive the Gateaux differentiability of the functional
F;, at the set By of ensemble v-representable densities. We will discuss this feature of Fy, in the
next section.

4.6 Gateaux differentiability of Fp,

We now turn to the question of the differentiability of the functional F7. A convenient property
of F7, which it shares with the functional F7, is that it is defined on a convex set Sy. This means
that whenever p, py € Sy that also pg + t(p — po) € Sy when 0 < ¢ < 1. In view of the definition
of the Gateaux derivative

iy Frlpo + (0 = po)] = Fr[po] _ 0FL
t—0 t op

(po)lp — pol (4.95)
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this is a convenient property. If the functional derivative 0Fp/dp(pg) exists then it is a linear
functional on the space L' N L3. These linear functionals can be identified with the Banach space of
potentials L2 + L°°. The potential is then regarded as the bounded linear functional with assigns
to each density the value of the integral of pv. More mathematically formulated, the dual space of
L' N L3 ( which is the space of bounded linear functionals on L' N L3 ) is the space L? + L™ [19].
If we use the convexity of Fr we find for 0 <¢ <1 that

Filpo + t(p — po)] = Frltp + (1 — t)po] < tFr[p] + (1 — ) FL[po] (4.96)

and it follows that

Frpo +t(p — po)] — FL|po]
t

If we assume Gateaux differentiability at density pg then we find

&m—nmpﬂgﬂmﬁ““fm‘ﬂmd=ﬁﬁmm—m (4.98)

< Fylp] - Fupo] (4.97)

Conversely, from the results of section 3.5.2 , we know because of the convexity of Ff, that if there
is a unique linear continuous functional (which is called a tangent functional or a subgradient)
L:L'N L3+~ R such that

Fi[p] — FLpo] > L[p — po] (4.99)
is satisfied for all p € Sy then Fj, is Gateaux differentiable at py with

0Fy,

— =1L 4.100

L (po) (4.100)
To prove the differentiability of Fr, at pg it is therefore sufficient to prove the existance of a unique
continuous tangent functional at py. We will ﬁgst prove the following statement. Thge functional
F7, has a continuous tangent functional —v € L2 + L at py € Sy if there is a v € L2 + L* such

that
Elo] = / po(2)o(x)dr + Fypo] (4.101)

is satisfied. This is readily derived. Suppose the above relation is satisfied for some v. We will
show —v to be tangent functional. We have

Fupo] + / po(£)o(r)dr = Efv] < inf TeDH = Fy[p] + / p(r)v(r)dr (4.102)
D—p
Therefore
Fulp] = Filpo) = ~ [ o)(p(e) — po(e))dr = Llp — ] (4.103)

Where we define the linear functional L : L' NL? — R by
Lipes — / v(r)p(r)dr (4.104)

This functional is continuous. If we split up v € L5+ L® as v =u+w where u € L3 and w € L™
then we have

[L[p — pol| < /IU(F)IIP—poldP+/|U)(1“)||P—po|dr < lullsllp = polls + llwlleo o = poll1 (4.105)
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So if p — pp in the norm on L' N L3 then |L[p — po]| goes to zero, which proves the continuity of L.
We will now show that if —v is a tangent functional then equation 4.101 is satisfied. If equation 4.103
is satisfied then

B> int |Filo]+ / peyo)ds| > inf [Fufml+ [ pyoyir| -
Fulpol + [ pole)o(e)ds > Blv] (4.106)

which proves our statement.

We will now show that if pg € By then Fr has a unique tangent functional —v € L3 + L™ at 00-
(Unique means here that v is determined to within an overall constant). Therefore Fy, is Gateaux
differentiable on the set of ensemble v-representable densities. From the previous results it follows
that to prove this we must show that for every py € By there is a unique potential v (to within
a constant) which satisfies equation 4.101. If py € By then there is an external potential v and a
ground state ensemble density matrix ﬁ[po] yielding density pg. Then obviously

Blo] = TDlpolf = [ po(x)o(x)dr + Filpo] (4.107)

We must now show its uniqueness. Suppose that we have a © # v + C' which satisfies

Elv]) = /pg r)dr + Fr.[po] (4.108)
As we have Fi[pg] = TrD[po](T + W) we can also write

B[#] = [ polw)o(w)ds + TeDlpo)(T + W) = Tefl Dlpo] = > Auti Al (4.109)

where H is the Hamiltonian corresponding to external potential v and |1,[)~,) are ground states
corresponding to potential v. However as the |i;) are not ground states for H we obtain

0] = Zki<l/)i|ﬁ|l/)z‘) > E[v] (4.110)

which is a contradiction and therefore v must be unique. We therefore have proven the differen-
tiability of F7, on the set of ensemble-v-representable densities. We can further prove that FT, is
not differentiable at the non-E-V-densities. As proven by Lieb, for any density p € Sy there is a
density matrix D[p] which minimizes the constrained search for Fy,. Let us write

= 2 il (¢ (4.111)

Suppose that p is not E-V-representable, i.e. p € By . Since p is not ensemble v-representable
there is at least one |1/;) which cannot be a ground state for a potential v. Therefore

] < ZA (i | H| ;) = /p r)dr + Fy[p] (4.112)

It follows that equation 4.101 can never be satisfied for non-E-V-densities, which yields that Fp, is
not differentiable at the non-E-V-densities.
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Let us summarize the results of this section. The functional F7, is differentiable at the ensemble
v-representable densities and nowhere else. This means that the Euler-Lagrange equation

5Fp,
+
dp(r)

is well-defined on the set By. Here u is a Lagrange multiplier to ensure the correct normalization
of the density. The energy functional is minimized for the ground state ensemble densities corre-
sponding to external potential v. As the Euler-Lagrange equation is well-defined for these densities,
they are found as the solution of the above Euler-Lagrange equation. This then puts the variational
equations within density functional theory on rigorous grounds.

v(r)—p=0 (4.113)

4.7 The Kohn-Sham equations

Very important in any practical application of density functional theory are the Kohn-Sham equa-
tions. The Kohn-Sham system is introduced as the non-interacting system of particles which yield
the same density as the fully interacting system of particles. If we consider a system non-interacting
particles then W = 0. For this system our functionals Fyg, Fegr, Frr and Fr then only contain
the kinetic energy operator. We therefore denote these functionals as Ty i, Trrk,Trr, and Ty, and
define

Tr(p] = (Yol T | [p]) (4.114)

Tpux(p) = TrDlp)T (4.115)

Tyelpl = inf (WIT]) (4.116)

Tr[p] = gnf TeDT (4.117)
—p

The functionals Tr;, and Tp are defined on the same set Sy as Frr and Fp for the interacting
system. The functionals Tyx and Tk are now defined on the sets Ay and By of PS-V and E-V
densities for the non-interacting system. The set A’y is not convex, and convexity is unknown for
the set Bf. The various convexity or non-convexity properties of the functionals Fyr, Frnk, FLL
and Ff, carry directly over to the functionals Ty x, Terk,Trr, and Tr. For Ty, we can similarly to
Fy, prove that it is Gateaux differentiable on the set of non-interacting ensemble v-representable
densities By.

Let us now define the exchange-correlation functional E,. 1,

Euerlp] = Frlp] — 2/" FUPE2) ey — T[] (4.118)
r1 — 1“2|
The functional E,. r, is defined on the set Si. As Fy, is differentiable on By and 77, is differentiable
on B)y the exchange-correlation functional E. j is differentiable on the intersection of both sets
By N BEV

Suppose now that an external potential in a non-interacting system vy generates density p € By
then the variational equation corresponding to the energy functional of the non-interacting system

Eo,lpl = Tulp) + [ ple)os(e)ir (4.119)
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is given by
0Ty,
—— tvs(r) —pus =0 4.120
Sy ) (4120)

where ps is a Lagrange-multiplier to ensure the correct normalization of the density. As p is an
enesemble v-representable ground state we also have

[—%VQ + Us(r)] ¢i(r) = €idi(r) (4.121)
p(r) = TrD[p]p(r) = Z Aili(r)|? (4.122)

On the other hand if p is also in By and is generated by an external potential v then p is obtained
from the solution of the Fuler-Lagrange equation

OFT,
+o(r) —p=0 4.123
o+ (1123)
with p again a Lagrange multiplier for the density normalization. So if p € By N By we find
5TL / p(r’) , 5E$C L
— +u(r) + [ —=dr' + = —u=0 4.124
o) T ) e ) (4124

If we denote vy, 1,(r) = 6Ey.,1,/0p(r) we obtain (to within a constant)

vs(r) = v(r) + / | rp(_r;)”dr’ + 0per (1) (4.125)

We therefore can find the ground state density for the interacting system by the solution of the
equations

[—%V2 +o(r) + / |rp(_r'l).,| dr' + vge ()| ¢i(r) = €idi(r) (4.126)
p(r) = TrD[p]p(r) = Z il (r) (4.127)

which constitute the Kohn-Sham equations. Note however that the above equations are only
valid for densities in By N BYy. Englisch and Englisch have however proved that for interacting
ensemble v-representable densities the above Kohn-Sham equations always have a solution, which
means By = Bly. It further means that 77, is differentiable for all densities which are ensemble
v-representable with respect to the interacting system. This then puts the Kohn-Sham equations
on rigorous grounds.
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Chapter 5

An exchange-correlation potential
with correct asymptotic behaviour

In this work we analyse the properties of the exchange-correlation potential in the Kohn-Sham form
of density functional theory, which leads to requirements for approximate potentials. Fulfilment of
these requirements is checked for existing gradient-corrected potentials. In order to examine the
behaviour of approximate potentials over all space we compare these potentials with exact Kohn-
Sham potentials calculated from correlated densities using a newly developed iterative procedure.
The main failures in the existing gradient corrected potentials arise in the asymptotic region of the
atom where these potentials decay too fast and at the atomic nucleus where the potentials exhibit
a Coulomb-like singular behaviour. We show that the main errors can be corrected by a simple
potential in terms of the density and its gradients leading to considerably improved one-electron
energies compared to the local density approximation. For Be and Ne it is shown that the electron
density is improved in the outer region.

5.1 Introduction

In the past few years there has been considerable progress within density functional theory [5] in
the calculation of properties of electronic systems ranging from solids to atoms and molecules. This
progress is due to the introduction of gradient-corrected density functionals [44, 45, 43, 50] that
give an overall improvement to the exchange-correlation energies of the local density approximation
(LDA). For instance the atomisation energies of a standard set of molecules are improved by an
order of magnitude compared to LDA[70], thereby correcting the overbinding of LDA. There are
also succesful applications of nonlocal corrections in transition metal chemistry [71] and solid state
and surface physics [47]. (Although the gradient corrected potentials are still local, we follow the
conventional nomenclature of "nonlocal corrections” to distinguish from the LDA.) However several
other features are not improved by the present day nonlocal corrections. This is especially the case
for properties that are sensitively dependent on the behaviour of the exchange-correlation potential.
One can for instance prove rigorously [31, 72] that the eigenvalue of the highest occupied Kohn-
Sham orbital represents the ionisation energy of the system. However, typical errors in LDA for this
quantity are 5 eV. This same error prevents the calculations of bound state solutions for negative
ions as LDA gives an unbound outer electron with positive eigenvalue. The origin of this error
can be traced to the incorrect asymptotic decay of the LDA exchange-correlation potential. This
potential has an exponential decay into the vacuum as can directly be seen from the expontial decay

81
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of the density itself. On physical grounds however (see for a proof [31]) the outer electron should
experience the mean field of the ion it leaves behind, i.e. a potential that decays Coulombically like
—1/r. The LDA electron is therefore too weakly bound and for negative ions even unbound. This
breakdown of LDA in the outer region of the atom or molecule is also reflected in the exchange-
correlation energy per particle €,.(r) which can equivalently be seen als the potential due to the
exchange-correlation hole and which has an asymptotic decay like —1/2r. The LDA in this case
gives again an exponential decay. In the electron gas this quantity €. is usually expressed in terms
of ?he Wigner-Seitz radius rs representing the mean electronic distance which is proportional to
p 3. If the local density approximation is applied to the outer regions of atoms and molecules r;
grows exponentially and loses its meaning as a mean interelectronic distance which should grow
linearly. If one believes (for intuitive physical reasons) that the mean electronic distance determines
€z then the bad representation of this quantity by LDA explains the failure of LDA in this region.
One might now wonder if the present day nonlocal gradient corrections give any improvement for
this asymptotic failure of LDA. Somewhat surprisingly, this is not the case. Although they give
large improvements in energies they give little improvement in the asymptotic behaviour of the
exchange-correlation potential. This is immediately apparent from the fact, undoubtedly noted
by many DFT practitioners, that the gradient corrected potentials yield almost no improvement
in the LDA eigenvalues, which are generally in error by 5-6 eV. In this paper we discuss, apart
from the fairly well known asymptotic behaviour, other requirements which are to be fulfilled
by the exact exchange or exchange-correlation potential. Those requirements apply to limiting
or special situations (r — oo, r | 0, transition regions from one atomic shell to the next, limit
of homogeneous electron gas) and also comprise invariance conditions (translational, rotational).
They are useful in constructing approximate Kohn-Sham potentials. In section 5.3 we use the
formulated requirements to examine some of the presently used nonlocal functionals, in particular
the Becke correction for exchange and the Perdew correction for correlation. In order to investigate
the potentials at arbitrary 7, we need the exact Kohn-Sham potential over all space. In section 5.4
we discuss a general procedure to construct the Kohn-Sham exchange-correlation potential from a
given electron density p. The procedure is simple and is applicable to both atoms and molecules
and to systems with an arbitrary number of electrons. This procedure is used to generate exact
Kohn-Sham potentials from very accurate (highly correlated) densities of Be and Ne. This affords
detailed insight in the strengths and weaknesses of existing approximations. As a first step towards
improved potentials, we propose in section 5.5 a model Kohn-Sham potential which exhibits the
correct asymptotic behaviour and also displays atomic shell structure. This potential gives a large
improvement over the LDA eigenvalues and is in fact capable of yielding good ionisation energies as
determined from the highest occupied Kohn-Sham orbital energy. It also improves the asymptotic
decay of the electron density. In section 5.6 we present a summary and conclusions.

5.2 Nonlocal exchange-correlation potentials : requirements

In this section we will discuss some of the requirements that approximate exchange-correlation
potentials have to satisfy. In connection with this we shall demonstrate in the next section which
of these requirements are lacking with some of the presently used nonlocal potentials.
Scaling. The exchange energy within density functional theory may be defined as [23]:

Erlp) = [ ple)es (v)dr (5.1)
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in which the the potential of the exchange-hole €,(r) or equivalently the exchange energy density
per electron is defined as:

o) 1 |f)/s(r,r,)|2 X
€x(r) = 2o ] =7 d (5.2)

Here ~; is the Kohn-Sham one-particle density matrix, constructed from a determinant of Kohn-
Sham orbitals. The exchange functional of eq. 5.1 is a functional of the density as the Kohn-Sham
orbitals of which the one-particle density matrix -, is composed are uniquely determined by the
density (an explicit scheme for doing this is presented in section 5.4). The exchange functional
satisfies the following scaling relation [22]:

Ey[pA] = AEq[p] (5.3)

in which p) is the following scaled density:

pA(r) = X’p(Ar) (5.4)

The exchange potential which is defined as the functional derivative of the exchange functional
satisfies the following scaling relation [23, 22]:

vz(lpal; ) = Avz([p]; Ar) (5.5)

Using the scaling relation 5.3 one can prove the Levy-Perdew relation [22]:

Exlp) =~ [ ple)r - Vo (x)dr (5.6)

Any approximate exchange potential should satisfy equation 5.5. It is then possible to define an
approximate exchange energy using the Levy-Perdew relation 5.6. We will return to this relation
between potential and energy below.

There are no known scaling relations for the correlation energy functional defined as:

in which F,. is the Kohn-Sham exchange-correlation energy which can be defined for instance using
the coupling strength integration method [73, 24, 25, 26]

Asymptotic behaviour. An approximate functional or potential also has to satisfy some require-
ments with respect to asymptotic behaviour. First of all it follows from equation 5.2 using the sum
rule property of the one-particle density matrix v, that:

1
€z (r) ~ ~5 (r — 00) (5.8)
Thus the potential of the exchange hole has a Coulombic asymptotic behaviour. The exchange
potential has to fulfil a similar type of relation [35, 49]:
1
vp(r) ~—=  (r = 00) (5.9)
r
The asymptotic behaviour of the potential due to the (coupling strength integrated) Coulomb hole
is not known. We can only say that the correlation potential must decay faster than a Coulombic
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potential at infinity. This follows from the asymptotic —1/r decay of the total Kohn-Sham potential
(74, 72]:
1

Vge(T) ~ - (r = o0) (5.10)

and the similar behaviour of the exchange potential of eq. 5.9. This result is consistent with the fact
that the Coulomb hole of the coupling strength integrated two-particle density matrix integrates
to zero electrons.

Weak inhomogeneity. Further known properties of the exchange functional follow from the
gradient expansion of the weakly varying electron gas [10] or from the semi-classical expansion of
the Kohn-Sham one-particle density matrix [75]. This gives the following approximate nonlocal
correction to the exchange energy (for the spin unpolarised case):

\V4 2

Bl = [V (5.11)
p3

This is the nonlocal correction used in the Xaf-approximation [76]. For weakly varying densities

there is a known gradient expansion for the correlation energy. The nonlocal correction is (up to

second order) given by:

(V’Z)Zdr (5.12)
p?)

Bl = [ C(p)
in which C(p) is a local function of the electron density [42].

Translational and rotational invariance. Two requirements which must be fulfilled by any
density functional representing a physical quantity are translational and rotational invariance. The
question of translational invariance for instance arises naturally in the discussion of the asymptotic
—1/r behaviour of the energy densities and the exchange or exchange-correlation potentials, where
r should not refer to the distance from the arbitrary origin of the coordinate system. Denoting a
physical quantity by A, translational invariance means:

Aly) = Alp) (5.13)
with
P(r) = p(r+ R) (5.14)

in which R is an arbitrary translation vector. This means physically that A should not change
when we translate our coordinate system. If we define:

(ko) = 5750 (5.15)
then it follows that:
a([pl;r) = allpl;r + R) (5.16)

This does not hold for arbitrary a([p];r) but it does hold if a is the functional derivative of a
translational invariant functional A. This equation is easily proved if one uses:

5416 = [ spwyallplyds = [ sp(c -+ Ballplix + Bye = [ b9 (wallplr + Byde (5.17)
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Comparing this equation with:
= [ 8¢/ @)a(1o') )dr (5.18)

yields equation 5.16 as both variations should be equal for any variation dp'(r) = ép(r + R). We
will now take A = FE, and a = v,. Noting the explicit r dependence in the Levy-Perdew relation
between E, and v, one might wonder whether this relation is translationally invariant. The exact
exchange potential of course satisfies the translational invariance equation 5.16. Then it follows
from the Levy-Perdew relation 5.6, if we insert p/, that:

Eulpl) = Bulp) + B+ [ ple)Vou (ol v)ds (5.19)

Translational invariance requires the last term in this equation to be zero. As this should be true
for any vector R we obtain (after carrying out a partial integration):

/vx(r)Vp(r)dr =0 (5.20)

Translational invariance thus gives an additional condition on the potential. The above formula is
a special case of a more general result which follows directly from equation 5.13:

Alpl = Al = Alp+ B-Vp+ O(R?)] = +/ o) & Vo) + O() (5.21)

As this equation should be valid for any translation vector R it follows that:
0A
dp(r)

This equation has also been noted without proof in reference [23]. Equation 5.20 is then obtained
by taking A = E, in the last equation. In particular for A = F,. we obtain:

/ vee(£)Vp(r)dr = 0 (5.23)
For the case of rotational invariance we require equation 5.13 to be valid for:

J(x) = p(Rr) (5.24)

in which R is a rotation operation within three-dimensional coordinate space. For the functional
derivative of A we then have:

a([¢'];r) = a([p]; Rr) (5.25)

This equation is proven in the same way as equation 5.16. If we take ¢ = v, and use equation 5.25
we see that the Levy-Perdew equation 5.6 is already rotationally invariant. In general rotational
invariance gives the following constraint on the functional derivative of A:

Vp(r)dr =0 (5.22)

dA
/ 5o(r) r x Vp(r)dr =0 (5.26)

which can be proved by performing an infinitisimal rotation instead of a translation in equation
5.21. This gives :

/vxc(r)r x Vp(r)dr =0 (5.27)
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We have now summarised some properties of the exact exchange-correlation potential, which
are at the same time requirements to be fulfilled by approximate potentials. We will concentrate in
the remainder of this paper on the potential rather than on the energy. One of the reasons is that
the potential, being a unique, local function of the position 7, is more easily obtained, analysed
and modelled (see below). Of course, even if one has obtained a good model potential that very
closely approximates the exact Kohn-Sham potential, the exchange-correlation energy still has to
be determined. This problem will be adressed in a subsequent paper.

5.3 The nonlocal exchange and correlation potentials of Becke and
Perdew

Using the conditions formulated in the previous section we shall now discuss some of the currently
used exchange-correlation functionals and potentials that include nonlocal corrections. These are
the potentials derived from Becke’s nonlocal exchange functional [44] and Perdews nonlocal cor-
relation functional [45]. First we discuss Becke’s nonlocal exchange functional [44] which in spin
polarised form is given by:

Balpo) = X [ 03 0) o (w))dx (5.28)

4
in which z, = |Vp,|/pé is a dimensionless quantity and o is a spin index. The function f is given
by:

:E2

1 + 68z sinh™! () (5:29)

flz)=—p

The form of equation 5.28 is chosen such that the exchange functional satisfies the scaling relation
5.3. The function f is chosen such that the potential of the exchange hole €,(r) or equivalently
the exchange energy density per electron behaves asymptotically as—1/2r (eq. 5.8). To enforce
relation 5.8 the function f in equation 5.28 must satisfy the following asymptotic relation:

1 =z

f(x)N_EM (r = 00 =1z — 00) (5.30)

which is easily verified if exponentially decaying densities are inserted. If one also wants to obtain
the gradient expansion result of equation 5.11 for slowly varying densities f must satisfy:

f(@) ~ —pa’ (z 1 0) (5.31)

The form chosen by Becke is one of the simplest interpolations of f between these two limits and
therefore his energy functional satisfies the important requirements of correct r — oo and z — 0
behaviour as well as translational and rotational invariance. However, the potential of the Becke
energy expression decays asymptotically like [77, 49]:

UwBecke (I') ~ ’r_2

(r — o0) (5.32)

in which £ is some constant instead of the exact [35, 49]:

op(£) ~ — (5.33)

r
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In the following we will prove that any functional of the form of equation 5.28 satisfying the asymp-
totic relation 5.30 will not satisfy asymptotic relation 5.33. Such a proof has also been given by
Engel et al. [49] and is only presented here for reasons of clarity and completeness. We will however
also use the following short proof to make some statements about the behaviour of the exchange
potential near the atomic nucleus for exchange functionals of the form of equation 5.28

For simplicity we use the spin unpolarised form but everything goes exactly through for the
spin polarised case by just adding a spin index everywhere in the derivation. This is due to the
fact that the exchange energy in the spin polarised case is just a simple sum of contributions of «
and ( spins in which both contributions have the same structure.

We will take the functional of the form:

Erlp) = [ 4 (0)f (o(x)dr (5.34)
with
= VP (5.35)
103

The second derivative of the function f is assumed to exist. The functional derivative of E, of 5.34
is then given by:

() = 2ot — oY 2]
dp(r) = valr) = 3” (f i T d$2)

Zaipaiajpajp(ﬁ B d2f) V?p df

VpPB ‘dz  Tdi?)  |Vpldz (5-36)

0]
We insert for the density the exponential p(r) = Ne ®". This exponential is exact in two regions
of the atom: near the atomic nucleus where we have & = 27 with Z the nuclear charge and for the
outer asymptotic region where o = 2,/—2p with 4 the chemical potential (negative of the ionisation
energy). This gives:

4 df  Ld2f d’f  2df

vz (1) =3P (f—x%—i-x E)—om——i——— (5.37)
In order to satisfy the asymptotic behaviour of €, (equation 5.8) f must satisfy the asymptotic
relation 5.30. If we now insert the large x behaviour of f (equation 5.30) into equation 5.37 we get

retaining only the terms of lowest order in 1/ log x:

W=

~—— (r — o00) (5.38)

We thus see that the exchange potential has a —a~! /r? behaviour instead of a Coulombic behaviour.
Hence it follows that the requirements of correct asymptotic behaviour of €, (relation 5.8) and of
vy (relation 5.33) are incompatible for exchange functionals of the form 5.34.

From equation 5.37 we can also draw the following conclusion concerning the behaviour for r — 0:
If % (©) # 0 then:

|;1;:;p

)~ (L) (5.39)
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in which the constant k is given by:

dj
p=2d

This is an unphysical behaviour of the exchange potential near the nucleus. In practice however
(that is for the Becke functional) the constant & is very small compared to the nuclear charge (a
typical value for & is 0.02 for the noble gases).
We will now discuss some properties of the Perdew nonlocal correlation functional which is of the
form [45]:
2
Bdol = [ 5lous )@ g, (5.41)
p3

In this formula f is a local function of p, and pg which are spin densities and g is a local function of
the total density. The form of this functional is adapted from the correlation part of the Langreth-
Mehl functional in such a way that the functional reduces to the gradient expansion expression
of equation 5.12 for slowly varying densities. The corresponding potential decays exponentially to
infinity. This is not a bad feature as the correlation potential should decay faster than Coulombic
although maybe one should expect a correlation potential decaying like —a/r* in which « is the
polarisability of the system. This term occurs in the exact exchange-correlation potential [74] and
describes the polarisation of the system by an asymptotic electron, which is clearly a correlation
effect.
Near the nucleus the Perdew potential also has a Coulombic singular behaviour. The origin of this
unphysical singularity can be traced, like in the Becke potential, to terms in the potential that
contain the Laplacian of the density, which due to the Slater-like behaviour of the atomic density
near the nuclues leads to a Coulombic potential. These terms also occur in potentials of other
nonlocal density functionals such as the one from Langreth and Mehl [50] and in the Generalized
Gradient Approximation (GGA) of Perdew and Wang [46]. These functionals consequently also
suffer from this same deficiency.

5.4 Constructing the potential from the density

We have demonstrated that the most widely used gradient corrected exchange and correlation
potentials suffer from incorrect asymptotic behaviour at » — 0 and » — oco. In order to investigate
these potentials over the whole r range one needs the exact Kohn-Sham potential at arbitrary
position. In this section we present an iterative scheme of obtaining the Kohn-Sham potential
from a given electron density p. This scheme is different from most other schemes used thus far
[78, 74, 79] and in particular is not limited to two-electron systems but is applicable to systems
with any number of electrons. Recently during the writing of this paper we have noticed that
work along similar lines has been carried out [80]. However our procedure is somewhat simpler
and as we tested has the same convergence rate. In contrast to reference [80] in which calculations
within a basis set were performed we use a completely numerical approach obtaining a basis set
free representation of the potential.

We start from the Kohn-Sham-equations:

(~3 V% + 0 (6)di(x) = cidi(r) (5.42)
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in which v is the Kohn-Sham-potential. The Kohn-Sham-orbitals are required to satisfy:

N
2 16:()” = p(r) (5.43)

where N is the number of electrons in the system. Multiplying equation 5.42 by ¢; and summing
over i gives after dividing by p:

1 al 1 * 2 2
() = —o5 37 GA V() + il(r) (5.44)

We now define an iterative scheme using this equation. We want to calculate the potential corre-
sponding to the density p. Suppose that at some stage in the iteration we have calculated orbitals
@7 with eigenvalues €7 and density p® and potential v°. In the next step we define the new potential:

1 N
)= o 25 (1) V27 (r) + €] 7 (r)”

L\Dl’—‘

_ P oy (5.45)

Using this potential we calculate new orbitals and a new density and define in the same way a new
potential. This procedure is continued until the density calculated from the orbitals is the same as
the given density. In practice until:

()

r

max|1—p()|<e (5.46)
r p(r)

with € a given threshold. To achieve convergence one should take care to keep the prefactor in the

last term of equation 5.45 in each iteration within an acceptable range:

p°(r)
p(r)

for example with § = 0.05. We noticed in the application of this procedure that one has to make
sure that the potential is set to zero in infinity otherwise one might fail to converge.This is due
to the fact that one can add an arbitrary constant to both the potential and the one electron
eigenvalues without changing the density. This may also play a role in the practical application
of the procedure of reference [80] where explicit use is made of the one electron eigenvalues in the
potential construction procedure. The fixing of the potential in infinity is however easily carried
out in our program in which differential equations are solved numerically. In that case boundary
conditions at infinity and at the nucleus immediately fix the solution.

The scheme is not guaranteed to converge as there are densities which are not non-interacting
v-representable (however many densities which are not v-representable by one determinant are
v-representable by a linear combination of determinants [81] which can be accomplished in our
scheme by using fractional occupation numbers). However if the procedure converges then its limit
is unique as guaranteed by the Hohenberg-Kohn theorem applied to a non-interacting electron sys-
tem [10].

1-6<

<1494 (5.47)
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We have calculated exact potentials for the beryllium and the neon atoms as for these atoms
accurate densities from configuration interaction calculations are available. Both densities have
been published by Bunge and Esquivel [82, 83] in a large basis of Slater functions. The use of
Slater functions is advantageous because they give a much better representation of the density tail
in the outer regions of the atom than for instance Gaussian functions. For the calculation of the
potentials from these densities we used a modification of the Herman-Skilman atomic program [84]
based on numerical integration. For the results of table 1 we have used our atomic and molecular
density functional package based on Slater Type Orbitals (STO’s) with which it is possible to
carry out self-consistent calculations using the Becke-Perdew potential. In the local density
approximation we use for the correlation potential the VWN-parametrisation of the electron gas
data [85]. For the open shell atoms discussed in this article we performed spherically averaged
spinpolarised calculations. The exact exchange-correlation potentials are displayed in figure 5.1a
and figure 5.2a for Be and Ne respectively and r times these potentials in figs.5.1c and 5.2c. Both
potentials have the same structure, a characteristic peak between the atomic shells (in our case
between the K and the L-shell) and a Coulombic asymptotic behaviour. These features are most
clearly displayed in the plots of V. The appearance of the intershell peak has been observed before
[74, 79] and can be understood from the work of Buijse et al. [86]. In ref. [86] it has been observed
that an important contribution to the Kohn-Sham potential is the socalled kinetic potential Vi;,
defined in terms of the conditional amplitude ®:

\II(IIII,...,ZEN)
O(zg,...,N|T1) = —F——=—" (5.48)
p(z1)/N
* 1 2 1 2
Vkm(xl) = /(I) (_Evl)q)de ..dzy = +§ / |V1(I)| dzo...dry (5.49)
The conditional amplitude ®(z,,...,zx|z1) describes the system of N — 1 electrons with positions
Ta,...,xN when one electron is known to be at position x; and is the amplitude connected with

the conditional probability of finding the other electrons when one electron is known to be at x;.
Viin makes a significant (positive) contribution to the Kohn-Sham potential at those positions x;
of the reference electron where the conditional amplitude changes rapidly, so that V1 ® is large. As
discussed in ref. [86], this is the case when z; crosses the border region between two atomic shells,
since the exchange hole is localized within one atomic shell if the reference position is in that shell
but ”jumps” to the next shell when the reference position crosses the border (see refs. [87, 88, 89]).
The intershell peak of V. is therefore an exchange effect and reflects the fact that the atomic shell
structure has its origin in the antisymmetry principle. The peak in the potential helps to build the
shell structure in the total density by reducing the density in the intershell region. It is obvious
from the figures that the LDA potentials almost completely lack this important feature of the exact
potential. This is particularly clear from the pronounced appearence of peaks in the difference plots
of (Vxc — Vipa) and r(Vxc — Vipa) in figs. 5.1b,d and 5.2b,d. The LDA potential also has a
wrong asymptotic behaviour for r — oo, as is evident from the fact that rVzp4 does not go to —1
but to 0. The exact potential has a much improved asymptotic behaviour. However, the quality of
the exact potential we generate depends on the quality of the correlated wavefunction and density
on which it is based. The asymptotic region is notoriously difficult to describe accurately, since
wavefunctions are almost invariably obtained from energy optimization algorithms which have a
strong bias towards improving the energetically important inner region. In the case of Neon we
observe that for large = (r > 3 bohr) there is a spurious minimum in the curve for the exact Vx¢
(fig.5.2¢c) which we ascribe to inaccuracy of the correlated density at such large r. It is nevertheless
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Figure 5.1: Exchange-correlation potentials of the beryllium atom.
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Figure 5.2: Exchange-correlation potentials of the neon atom.
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clear that the "exact” rVx¢c approaches —1 much better than the LDA potential does. For Be
it is not evident that the calculated "exact” Vx¢ suffers from poor accuracy of the asymptotic
behaviour of the CI density, but we do feel that some suspicion is warranted concerning the (too?)
slow approach by rVxe to the limiting value of —1 (fig.5.1¢). This suspicion is aggravated by the
strange minimum between 6 and 8 bohr in the curve of r(Vxc — Vipa) in fig.5.1d.

In panels ¢ and c¢ of figures 5.1 and 5.2 we have also added Beckes gradient-corrected exchange
potential [44] and Perdews correlation potential[45] to the LDA potential. The plots demonstrate
that these potentials make rather small corrections to the LDA potential. This makes it under-
standable that the one-electron energies shown in table 1, which are rather poor for LDA when
compared to the experimental ionisation energies, do not improve when the Becke-Perdew non-local
corrections are included in the SCF calculation. Panels b and d of the figures display directly the
comparison between the non-local corrections to the potential and the difference (Vxc — Vipa)
to which they should be equal. It can be seen that the nonlocal Becke-Perdew potential behaves
singularly near the atomic nucleus. This potential has in this region the Coulombic singular be-
haviour discussed earlier. At somewhat larger distances it crosses the horizontal axis and gives a
small positive peak which is located at the right spot in the intershell region. For Be this does not
lead to good agreement with (Vxc — Vi pa) in the intershell region, but for Ne Vgrpckp—prrpeEw
quite nicely approximates (Vxc — Vipa) just at the position of the intershell peak. At larger dis-
tances the Becke-Perdew potential is almost zero and there is no correction to the LDA potential,
in agreement with the failure to give improvement of the LDA eigenvalues. The large deviation in
the asymptotic region between the Becke-Perdew potential and the exact nonlocal potential is most
clearly exhibited in panels d: the exact nonlocal corrections correctly tend to a constant which ap-
proximates —1, whereas the Becke-Perdew potential tends to zero. The panels d also demonstrate
that the Becke-Perdew potential multiplied by the radial distance does not tend to zero at the
atomic nucleus but to a finite value, indicating the Coulombic behaviour of this potential in this
region.

5.5 A model potential

In this section we will make a first step towards the construction of model potentials that more
closely resemble the exact Kohn-Sham potential. The advantage in modeling potentials instead
of energy expressions is the fact that potentials are uniquely defined by the exact density. The
quality of model potentials can therefore be judged by comparing to exact potentials calculated
from accurate densities.

In modeling the potentials one should incorporate the general features of atomic shell structure
and asymptotic Coulombic behaviour. One might also wish the potential to satisfy some scaling
properties. To incorpa)rate the shell structure we use for our model potential the dimensionless
parameter z = |Vp|/p3. This parameter is proportional to the length of the gradient of the local
Wigner-Seitz radius and can be interpreted as the change in mean electronic distance (at least in
regions with slowly varying density where 75 ~ p~'/3 is meaningful, i.e. in the regions where LDA
is applicable). As an illustration of the behaviour of this parameter we display both this parameter
and r2p(r) in figure 5.3 for the krypton atom. Whereas the electron density p(r) is monotically
decreasing in an atom, 72p(r) exhibits the shell structure. We observe that x also oscillates with
the atomic shells, with maxima approximately at the inflection points of r2p(r), and thus seems a
suitable parameter to model the shell structure of the exact potential. For the asymptotic behaviour
of the potential we then have to take into account that z behaves for an exponentially decaying
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Figure 5.3: The electron density times the radial distance squared and the parameter z = |Vp|/p
for the krypton atom.

—ar 1/3

density p ~ e asymptotically as ap™'/°  i.e. increases exponentially (see fig. 5.3). We thus
choose our nonlocal correction to the LDA potential of the form

vee(r) = p3(r) f (1)) (5.50)

This form of the potential scales like an exchange potential [22, 23]:

ae([paliT) = Avge([p]; Ar) (5.51)

We do not know the scaling behaviour of the correlation part of the potential but as the major
part of the potential comes from the exchange we take the above form as an approximation. For
systems with small density variations (small values of z) we want the nonlocal correction potential
also to be small. We therefore require f(0) = 0. We further know that [31, 72]:

Vae(r) ~ —; (r — 00) (5.52)

This means that f must asymptotically satisfy:

1 =z

fw)~ "~ 3log (z)

(x — o0) (5.53)
Our problem of finding a smooth interpolation between these limiting situations is similar to the
one that Becke faced for the exchange energy density. Inspired by his solution we take:

(IIZ

1 + 3Bz sinh~! (x)

f(z)=-p (5.54)
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ATOM HF LDA | NL(BP) | MODEL | EXPT

H 0.500 | 0.234 0.280 0.440 0.500
He 0.918 | 0.571 0.585 0.851 0.903
Be 0.309 | 0.206 0.209 0.321 0.343
Ne 0.850 | 0.490 0.496 0.788 0.792
Ar 0.591 | 0.381 0.380 0.577 0.579
Kr 0.524 | 0.346 0.344 0.529 0.517
Xe 0.457 | 0.310 0.308 0.474 0.446

ION HF LDA | NL(BP) | MODEL | EXPT

F~ -0.097 | -0.099 0.128 0.125
Cl~ -0.022 -0.023 0.140 0.133
Br™ -0.008 -0.009 0.140 0.124
I +0.005 | +0.004 0.139 0.112

MOLEC | HF LDA | NL(BP) | MODEL | EXPT

No 0.622 | 0.328 0.322 0.557 0.573
Fo - 0.339 0.334 0.607 0.582
CO 0.551 | 0.334 0.336 0.529 0.515

Table 5.1: ionisation energies and electron affinities from the highest occupied Kohn-Sham orbital

This gives the final form of our model potential for the nonlocal corrections. In spin polarised form:

72

— (5.55)
1+ 3Bz sinh™ " (z4)
In order to check if with this potential we have captured the main features of the Kohn-Sham
potential which the LDA potential is lacking, i.e. shell-structure and a Coulombic asymptotic
behaviour, we compare to exact potentials in figs. 5.1 and 5.2. The parameter § in our model
potential was fitted in such a way that our model potential resembled as closely as possible the
difference between the exact and the LDA potential for the beryllium atom. For this procedure we
choose the beryllium atom instead of the neon atom because its density appears to be the most
accurate of the two. This leads to a value of 8 of 0.05. The model potential for neon in figure
5.2 uses the same parameter 8. The model potentials in figures 5.1 and 5.2 have been calculated
selfconsistently using our density functional program package.

As can be seen from figure 5.1 for the beryllium atom our potential is in reasonable agreement with
the exact potential. In particular figs. 5.1c,d show that the intershell peak is fairly well represented
and the asymptotic behaviour is essentially correct in that r(Vipa + Vamroper) approaches —1.
Concerning the remaining difference, there is obviously room for improvement, although we suspect
that part of the difference between our model potential and the exact potential in the asymptotic
region is due to the possible inaccuracy in the latter mentioned before. The model potential does
clearly improve upon the Becke-Perdew potential. For the neon atom (figure 5.2) the asymptotic
behaviour of the model potential appears to be quite good (assuming that the minimum of the
"exact” potential between 5 and 6 bohr is incorrect). However, in the inner region of the neon

02, (r) = —Bpi (r)
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atom the model potential is not so well behaved. Although it does exhibit an intershell peak,
the approximation of this feature to the true intershell peak is rather poor. As a matter of fact
the Becke-Perdew potential gives a better approximation to the exact nonlocal potential precisely
at the intershell peak. Nevertheless, considering the whole r range we can say that for both the
beryllium and the neon atom our simple model potential gives a considerable improvement of the
LDA potential, especially in the asymptotic region were the Becke-Perdew potential gives almost
no correction.

We might now ask whether these improvements are reflected in the quality of the eigenvalues. In
order to investigate this question we calculated for several atoms and molecules the eigenvalue
of the highest occupied Kohn-Sham orbital. This eigenvalue should be equal to the ionisation
energy of the system (or electron affinity for negative ions). We have done this for both LDA,
LDA with the Becke-Perdew potential added and for LDA with our model potential (5 = 0.05)
added. The results for H and a number of atoms with noble gas configurations are presented in
table 5.1. In this table we also compare with the self-interaction free eigenvalues of the Hartree-
Fock approximation. From the table we can see that the LDA eigenvalues have a large discrepancy
with experiment, with a mean absolute error of 5.40 eV. We can also see that these values are
not improved by inclusion of the Becke-Perdew potential. The model potential on the other hand
gives a considerable improvement compared to the LDA eigenvalues, with a mean absolute error
of 0.56 eV. A nice feature of the model potential is also that it yields bound state solutions for
the negative ions. We see that the improvements are not restricted to atoms but also occur for
molecules. Table 5.2 shows results for the alkali and alkaline earth atoms and ions. The same
quality is obtained as for the noble gas atoms and ions.

Does the improvement of the asymptotic behaviour achieved by the model potential, apart from

showing up clearly in the one-electron energies, also have observable consequences for the density?
In tables 5.2,5.3 and 5.4 we investigate a number of moments of orbital and total densities. Table 5.2
demonstrates that the radial extent of the highest occupied orbital in the alkali and alkaline earth
atoms is significantly affected by the asymptotic correction introduced by the model potential.
Maximum errors of the LDA potential amount to 9% and 18% for (r) and (r?) respectively of
the alkalis and 6% and 13% for the alkaline earths. The first members of the two series, Li and
Be, show comparitively small errors of 0.2% and 0.3% for Li and 1% and 2% for Be. The errors
are much smaller for the ions, probably since they possess very tight closed shells. Although the
effects are rather small for Be, making this atom perhaps not a good test case, we happen to have
a very accurate CI density available for this atom and therefore we compare in table 5.3 for Be
the moments of the total density as obtained from various calculations. Also the Hartree-Fock
data are shown in this table, in order to see how much of the effect of correlation is taken into
account by the LDA or model potential. Judging by this example, for (rP) with p positive the
LDA potential corrects the Hartree-Fock result in spite of the wrong asymptotic behaviour of this
potential, the model potential gives improvement over LDA but in general only something like 50%
of the difference between Hartree-Fock and exact is covered by the model potential. For (r—!) and
(r=2) there is no improvement over the Hartree-Fock results.
For Neon (table 5.4) it is seen that for (rP) with p positive the model potential considerably improves
the LDA result. With respect to the difference with Hartree-Fock the picture is different from that
for Be: the LDA potential does not correct the Hartree-Fock results but gives as expected a too
diffuse density. For (r—') and (r—?2) there is again no improvement over the Hartree-Fock results.
The LDA potential appears to give a too diffuse, the model potential a too contracted density in
the inner region.
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ATOM LDA MODEL EXPT
<r>|<r’> € <r>|<r’> € €
Li < 25> 3.822 | 17.345 | 0.12 | 3.815 | 17.410 | 0.19 0.20
Na < 3s > 3.995 | 18.753 | 0.11 | 3.703 | 16.256 | 0.21 | 0.19
K <4s > 4.839 | 26.962 | 0.10 | 4.428 | 22.739 | 0.18 0.16
Rb < 5s > 5.125 | 30.041 | 0.09 | 4.664 | 25.036 | 0.18 0.15
Cs < 6s > 5.674 | 36.481 | 0.08 | 5.170 | 30.475 | 0.16 0.14
Be < 25 > 2.621 8.263 | 0.20 | 2.595 8.118 | 0.32 0.34
Mg < 3s> | 3.137 | 11.572 | 0.17 | 2.985 | 10.528 | 0.29 | 0.28
Ca < 4s > 3.991 | 18.304 | 0.14 | 3.771 | 16.437 | 0.24 0.22
Sr < bs > 4.339 | 21.468 | 0.13 | 4.079 | 19.066 | 0.23 | 0.21
Ba < 65 > 4.880 | 26.909 | 0.12 | 4.588 | 23.897 | 0.21 | 0.19

ION LDA MODEL EXPT
<r>|<r>| e [<r>|<r>]| € €
Lit <1s> | 0.585 | 0.468 | 2.19 | 0.576 | 0.453 | 2.65 | 2.78
Nat <2p> 1 0.803 | 0.839 | 1.34 | 0.795 | 0.821 | 1.70 | 1.74
Kt <3p> | 1.428 | 2421 |0.92 ] 1.430 | 2428 | 1.15| 1.16
Rbt <4p > | 1.720 | 3.428 | 0.80 | 1.713 | 3.404 | 1.01 | 1.00
Cst <bp> | 2.087 | 4959 [ 0.69 | 2.078 | 4.920 [ 0.88 | 0.85
Be’t<1s> | 0.421 | 0.240 | 4.81 | 0.417 | 0.235 | 5.45 | b5.66
Mg?t<2p> | 0.684 | 0599 | 246 | 0.681 | 0.592 | 2.88 | 2.95
Ca’T<3p> | 1260 | 1.866 | 1.58 | 1.263 | 1.879 | 1.85 | 1.87
Sr’t<dp > | 1.555 | 2.775 | 1.34 | 1.553 | 2.772 | 1.58 | 1.60
Ba?T<bp> | 1.912 | 4129 [ 1.14 | 1.909 | 4.123 [ 1.35| 1.35

Table 5.2: expectation values of < r > and < r? > for the highest occupied orbitals with corre-
sponding eigenvalue

<r2>|l<rils|<r>|<r>|<m>] <rt> ] <r®>

HF 07.618 8.409 6.129 | 17.319 | 63.151 | 270.656 | 1325.49
LDA 56.766 8.339 6.091 | 17.019 | 61.475 | 261.641 | 1276.385
MODEL | 57.837 8.446 6.022 | 16.704 | 59.796 | 250.937 | 1198.763
EXACT | 57.597 8.427 5.975 | 16.284 | 56.946 | 233.167 | 1085.87

Table 5.3: density moments for the beryllium atom

<rZ2>|<ril>s|<r>|<r>|<m><ri>|<r>

HF 414.890 | 31.113 | 7.891 | 9.372
LDA 411.916 | 30.998 | 8.016 | 9.853 | 15.967 | 32.500 | 80.692
MODEL | 416.406 | 31.275 | 7.895 | 9.477 | 14.799 | 28.576 | 66.239
EXACT | 414.967 | 31.110 | 7.935 | 9.545 | 14.941 | 29.006 | 67.904

Table 5.4: density moments for the neon atom
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5.6 Summary and conclusions

In this work we have formulated a number of conditions for approximate exchange-correlation po-
tentials. Potentials of gradient-corrected density functionals that are currently used with much
success to calculate atomic exchange and correlation energies as well as bond energies of molecules
do not obey some of these conditions. In order to make comparisons over all space to (almost)
exact Kohn-Sham potentials we devised an iterative scheme to obtain the corresponding Kohn-
Sham potential from a given density. The scheme is applicable to both atoms and molecules and
is not limited to systems with few electrons. In this paper highly accurate CI densities for Be and
Ne have been used to generate accurate Kohn-Sham potentials. Comparison to potentials derived
from existing gradient-corrected functionals demonstrated that these potentials cover only a small
part of the difference between the LDA potential and the exact one. This is at first sight a little
surprising: how can we have large improvements in energies and almost no improvement in the
potential? Several explanations may be advanced. First of all the approximate nonlocal functional
might ”oscillate” around the exact functional giving a good approximation of the energies but a
bad approximation of its functional derivative. Other deficiencies are inherent to the derivation of
the functionals. For instance both the nonlocal exchange-correlation functional of Langreth and
Mehl [50] and the Perdew-Wang generalised gradient expansion [46] use a long-range cut-off of the
exchange-correlation energy density. Langreth and Mehl use a low-k (large distance) cut-off in
the momentum distribution of the exchange-correlation energy and Perdew and Wang perform a
real-space cut-off in the exchange-correlation hole. This neglect of this asymptotic region reflects
itself in the potential which thereby loses its asymptotic Coulombic behaviour. However the Becke
functional shows that even a correct behaviour of the exchange hole potential does not garantee a
good behaviour of the exchange potential.

A model potential has been presented which corrects some of the deficiencies of the current
potentials, notably the asymptotic behaviour. The improved asymptotic behaviour shows up very
clearly in the one-electron energies. The error in the highest occupied LDA eigenvalue (which should
represent in the exact case the ionisation energy) is reduced by almost an order of magnitude by
using the model potential. The model potential also corrects significantly the higher moments of
the density, notably for diffuse outer orbitals. Because of this correction of the highest occupied
orbitals, the model potential may be useful in the calculation of highly excited diffuse states and in
general for density dependent properties such as dipole and quadrupole moments and derivatives
thereof (infrared intensities).

In spite of some success, the present model potential is clearly deficient in some respects, notably
the behaviour in the atomic intershell region. It will therefore require further improvement. This
problem will be addressed in a subsequent paper of this series. We feel that the most significant
success of the nonlocal corrections to LDA apply to bond energies of molecules. In particular the
potential derived from the Becke gradient correction to the exchange energy density displays very
interesting structure in molecules [90] that may explain the success of the Becke energy expression
for bond energies. We feel that further modeling of exchange-correlation potentials should not only
try to optimize the potential for atoms but should take into account the special effects of chemical
bonding.

Acknowledgements: We would like to thank Gijsbert Wiesenekker for his help in the program-
ming of the iterative scheme of section 5.4.



Chapter 6

Structure of the optimized effective
Kohn-Sham exchange potential and
its gradient approximations

An analysis of the structure of the optimized effective Kohn-Sham exchange potential v, and its
gradient approximations is presented. The potential is decomposed into the Slater potential vg
and the response of vg to the density variations v,.sp, the latter exhibits the distinct atomic shell
structure. The peaks of v,.s, are interpreted as a consequence of the Fermi hole localization. It is
the approximation of v,.g, that raises the main problem for the gradient approaches. A direct fit of
v, 18 made with the gradient-dependent Padé approximant form that possesses proper asymptotic
and scaling properties and reproduces its shell structure.

6.1 Introduction

The optimized potential model (OPM) [34, 33, 91, 35] provides a direct way to calculate local
potential v(r) of the Kohn-Sham equations (Hartree atomic units will be used throughout the

paper)
5V ()] i) = itio) (6.1

Within the OPM the optimized effective potential (OEP) v(r) is defined as a potential of (6.1) with
the eigenfunctions ¢;(r), whose Slater determinant ) minimizes the expectation value of the total
Hamiltonian H of a many-electron system

(bl H[h) (6.2)

v(r) can be subdivided in the usual way
0(r) = Vet (r) + vE(r) 4+ vy (r) (6.3)

where vz (r) is the external potential, vy (r) is the Hartree potential of electrons

v (r) :/ p(t’) dr’ (6.4)

v — |
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with the electron density p(r) built from the occupied orbitals ¢;(r)

N
p(r) =3 |¢i(r)? (6.5)
=1

and v, (r) is called the exchange optimized effective potential. The important features of atomic v,
such as its asymptotic behaviour at short and long distances from a nucleus [33, 57, 31, 35, 92, 49]
and the shell structure [33, 50, 93, 35, 94] were established in the OPM.

The correct long-distance asymptotics was proved for the v, of the OPM in the pioneer work
of Talman and Shadwick [33]. On the other hand, an interpretation of the shell structure, the
"peaks” of v, in the atomic intershell regions remained an open problem. Another problem is
finding approximations to v;. Even for atomic systems the rigorous OPM calculations are rather
involved [93, 35, 36], because they require the simultaneous self-consistent solution of the one-
electron Kohn-Sham equations and an integral equation for v,. Owing to this, it is desirable
to develop an effective approximation to v, within the density functional theory (DFT). Recent
progress of the DFT is due to the generalized gradient approximation (GGA) [50, 51, 45, 95, 44,
43, 47, 96] that gives a remarkable improvement to the exchange-correlation energies of the local
density approximation (LDA) [10, 11, 97, 98, 99]. It was shown [92, 49, 36, 94, 32], however, that
the standard GGA exchange potentials do not possess the proper asymptotic behaviour and shell
structure. The corresponding gradient corrections add little to the LDA exchange potential.

In this paper we analyze a structure of the exchange OEP v, and its gradient approximations.
In Section 6.2 properties of v, are discussed. w, is decomposed into the Fermi hole or Slater
potential vg and the response of vg to the density variation v,es, and the peaks of atomic v, are
interpreted as a consequence of the Fermi hole localization. In Section 6.3 the atomic OEP and
its components vg and v,.s, are compared with those of the LDA, GGA and the pioneer gradient
expansion approximation (GEA) of Herman et al. [76, 100]. In Section 6.4 a gradient fit to v, is
presented, which possesses the proper asymptotic and scaling properties and reproduces the shell
structure of the OEP. The results of atomic calculations with the fitted potentials are compared
with those of the OPM, LDA, GGA and GEA. The comparison is made for the form of potentials,
orbital eigenvalues and also for the exchange energies, the latter have been calculated for the fitted
potential via the Levy-Perdew relation [22].

6.2 Properties of the exchange optimized effective potential

The exchange OEP v,(r) possesses the following scaling property [22, 23]

vz([pAl; ) = Avg([p]; Ar) (6.6)
where p)(r) = A3p(Ar). For finite systems it has the asymptotic form [33, 57, 31, 35]
1
vz (r) — Tl (Jr] = o0) (6.7)

Using 6.1,6.2 the OPM provides a radial integral equation [33, 91] for the atomic OEP v(r) (r is
the radial coordinate), which can be solved numerically. Figure 1 illustrates the typical features of
the OEP exchange part v, for Kr extracted from [91]. One can see from this Figure the finiteness
of v, at the nucleus

ve(r) = const (r=0) (6.8)
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Figure 6.1: Exchange optimized effective potential for Kr

and its shell structure, i.e. the non-monotonous dependence of v; on r with the local maxima
("peaks”) in the regions between the atomic shells.

In order to trace the origin of the intershell peaks of v,, we use its definition as the functional
derivative of the exchange energy E,[p]

_ 0By[p]
dp(r)

that holds true in the OPM and express the exchange part of 6.2 as an integral of the Fermi hole
or Slater potential vg [101]

g (1) (6.9)

E, = % /p(r)vg(r)dr (6.10)
vg(r) = — ﬁ(i ’:,)| dr’ (6.11)

In equation 6.11 f(r,r’) is the Fermi hole density [101, 102] built from the occupied Kohn-Sham
orbitals ¢;(r)

N N
flr,x) = p(r)™1 Y0 ¢ilr)g; ()b (r) s (r') (6.12)

i=1 j=1

The expression 6.10 formally looks like an energy of the electronic interaction with an external
potential. In reality, being an internal potential of the electronic system, vg has the non-zero
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response Upqsp to density variations and, according to equations 6.9-6.11, v, can be expressed as
the arithmetical mean of vg and its response v;gp

%[Us(r) + 0pesp(r)] (6.13)

5 s( af (r' r dr"
Uresp /P . /:0 d / f f (6'14)

p(r) |r —r"

vg(r) =

with 5;;((:;) and 2/ é;’(:) ) being the linear response functions [6].

In Figure 2 OEP v, [91] and its components %US and %vresp are plotted for Ca, Kr and Cd. The
relative contribution of v,.s, to v, ranges from 0.5, its asymptotic value at long distances r, and
from ~ 0.35 within the shell regions to the near zero values in the intershell regions. In all cases
vg is a monotonous function of r, while v,.,, possesses the distinct peaks in the intershell regions
and, hence, the shell structure of v, originates mainly from vygp.

From Figures 2a-c and eq.6.14 the shell structure can be interpreted in terms of the different
response of the Fermi hole density f(ro,r”) to the perturbations dp(r) of the electron density in
the shell and intershell regions. At the intershell points v, is closer to %vs and vg looks in fact
like an external potential which has, by definition, zero response to the density perturbations. In
the sense of integral contribution to 6.14, intershell points appear as the points outside the area
of the Fermi hole 6.12, which determines v;.s,. But this is true, because, owing to an exchange
effect, the Fermi repulsion of electrons with like spins, for various pairs r’ and r" the Fermi hole
f(r',r") is mainly localized within the shell regions [102, 103]. One can expect (and we can see
it from Figure 2) the smaller response of f(r’,r") when p(r) is perturbed somewhere outside its
localization region, in particular, at the intershell points. To sum up, the intershell peaks of v, can
be interpreted as a consequence of localization of the Fermi hole and successful approximations to
v, should reflect this feature.

It is interesting to note, that the shell structure of the exchange potential is only the secondary
effect of the Fermi repulsion. The main effect is contained in the Pauli potential [104], which
appears as a kinetic contribution to the total potential of the Euler equation for p%(r) and has
much more pronounced intershell peaks [105, 106, 107]. The analysis of the shell structures in the
Euler equation will be given elsewhere [108].

6.3 Comparison of the OPM, LDA, GGA and GEA exchange po-
tentials

In the recent papers [92, 49, 35, 94] OEP v, has already been compared with various DFT approx-
imations. In this paper the comparison is made not only for v, but also for its components vg and
Uresp- All the standard DFT schemes approximate the exchange energy density e, (p;r)

EZPPTp] = / e’ ([p);r)dr (6.15)

and, according to equations 6.10 and 6.15, the corresponding approximation to vg can be simply
related to e2PPro?

P PPTOT (1Y QGgpprox([p];r)
(x) o)

S (6.16)
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Figure 6.2: Exchange optimized effective potential and its components for a) Ca, b) Kr and ¢) Cd
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Figure 6.3: Exchange potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and c¢) Cd
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approx

while v can be obtained by the functional differentiation of equation 6.16.

resp
In the LDA all the potentials v2P4, vLP4 and vfe[s)lf‘ have the same form
3.1 1 3.1 1
vEPA(r) = —2(Z)3pH(r); 0P () = —3(2) o (o)
3.1 1
vy (1) = =(5 )7 p3(r) (6.17)

In the GEA [76, 100] v&P4 is modified with the density gradient correction

11 .
g (r) = v§"(r) - 0.015(— )3 3(0)¢ = vg"(r) + 5§74 (x) (6.18)
v
¢ =23 ( f(r))2 (6.19)
p3(r)
and in vﬁff the additional Laplacian term appears
11 .
Urey (1) = v (r) — 0.005(— )3 3(r)(€ — 6n) = vegy (r) + By (r) (6.20)
2 V2p(r)
n =23 5 (6.21)
p3(r)
3 .11 3 -
oEBA ) = vEPA(r) — 0.01() TR (1) (€ — Sn) = vEPA(r) + 595 () (622)

All the gradient corrections in eqs.6.18,6.20,6.22 contain the empirical parameter determined in
[76, 100].
In the GGA [44] v§F4 is further modified with the correction function f(¢) in order to provide the

correct long—dlstance asymptotics of ’UGGA
v§ A (r) = vg" (x) + £ () (6.23)
0.56(4)3
= T T 6.24
Fe) 1+ 0.0252¢2 sinh™! ¢2 (624
and in vf’;f]f‘ the function f(&) appears together with its first and second derivatives
3.1 1 d
G0 = BN + 1 ) — 008D e+ 27) - TLer (6.25)
3.1 1. 3df d*f
vy A (r) = vgPA(r) + £ (x )—0-015(5)393(1“)[5(1—5(5 + )_Qd—52€ 7] (6.26)
+ — 92 Vp(r)VE(r) (6.27)

Eq. 6.24 contains an empirical parameter determined in [44]. Being the functional derivatives of
the corresponding exchange energy functionals, vLDA, fEA, GGA and also their components have

the proper scaling property 6.6.
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Figure 6.4: Slater potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and ¢) Cd
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Figure 6.5: Response potentials of OPM, LDA, GEA and GGA for a) Ca, b) Kr and ¢) Cd
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In Figures 3-5 OEP v, [91] and its components vs and v,¢s, are compared for Ca, Kr and Cd
with the corresponding potentials of LDA, GEA and GGA. The potentials were calculated with
the OPM densities p. All the approximate total exchange potentials fail to reproduce the correct
asymptotics 6.7 of the OEP. At long distances vZP4 falls off exponentially, vGF4 diverges (See
Figure 3b where the potentials for Kr are represented in logarithmic scale for larger distances),
v¢ GA decreases similarly to vEP 4 and only at very long distances it is proportional to —r% [49]. At
the nucleus v2P4 is finite, while the gradient potentials v$¥4 and v&¢4 diverge, being proportional
to —1 [92, 32].

Both LDA and GGA potentials do not possess the distinct shell structure. v2”4 is an everywhere
monotonous function of r and vG¥%4 exhibits a peak only for the outermost intershell regions of
Ca and Cd, being a monotonous function of r for the rest of the space. Contrary to this, vGF4
possesses clear shell structure. Amplitudes of the peaks obtained within the GEA differ from those
of the OPM, but the locations of the peaks are nearly the same as in the OPM (See Figure 3a-c).
The abovementioned discrepancies between v, and v3PP"°" originate mainly from those between
Vresp and vggg’; °% while the correspondence between vg and vgp PrO% is definitely better. All consid-
ered approximations to vg are finite at the nucleus and approximate rather closely vg at short and
intermediate distances r (See Figure 4). In particular, the GGA provides especially good approxi-
mation for vg. By the construction [44], v§%4 has the correct asymptotics 6.7 for r — oo and it is
very close to vg for all distances. Hence, the well-known success of the GGA in calculation of the
integral characteristics, such as F,, can be attributed to its locally very good approximation to vg
and, which is the same, to the exchange energy density €. vé’D 4 and ngA are not so good: vLP A
falls of exponentially and ngA diverges at long distances and both potentials exhibit appreciable
discrepancies with vg at r ~ 2a.u.

However, all the approaches show more pronounced deficiencies in approximating vy, (See Figure
5). Due to the presence of the unbalanced Laplacian contributions to v;287°%, both GEA and GGA
diverge at the nucleus, which causes the abovementioned divergence of the corresponding total
exchange potentials. All the approaches fail to reproduce the correct asymptotics vyeep(r) — —%

for r — oo: v,ﬂLels)I;“ decreases exponentially, vﬁpr diverges and vffngl yields the positive asymptotics,
GGA
v

resp (r) — %, that cancels the correct asymptotics of USQGA and produces the incorrect asymptotics
of the total exchange GGA potential v&¢4. In the intershell regions U1~Lels);§4 is a monotonous function
of r, vf’;g’;;q has the peaks, but for all intershell regions, with the exception of the outermost one,
they are much smaller than those of the OPM. Contrary to the LDA and GGA, GEA reproduces
the peaks of vygp, but with substantial deviations of amplitudes for vﬁff and vpesp peaks.
One can see from the above analysis and discussion, that the methods to obtain v, as functional
derivative of the current approximate expressions for F, do not meet the high demand to provide
satisfactory approximation not only for vg, but also for its functional derivative. The alternative
way of a direct fitting of v, to a gradient function with a due account of the accurate asymptotic

and scaling properties is presented in the next section.

6.4 A gradient fit to v,

To fit v, we use the Padé approximant approach, which has been used previously for the fitting of

€2 [49, 109, 85, 110, 94]. The following Padé approximant form is considered as a fitting potential
/

,UCE

vl(r) = vEPA(r) — 253 (r) [P19) (63 sinh ™ €2)¢ — P (|n))n) (6.28)
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where Plk(y) (z) is a [k/l]-Padé function of degrees k and [ [111]

af +afz + ... +alzk
1+ b{z + ...+ bzt

PfV(z) = (6.29)

The simpliest Padé function P:J(fl) (fé sinhflf’%) with n = 0 is the Becke’s f(£) (eq.6.24), which
has also been used in [32] as a model of the exchange-correlation potential. The whole expression
6.28 can be considered as the Padé approximant modification of the GEA exchange potential 6.22.
It appears that with the following restriction for the coefficients af, and bf; 11

be_l — 3a% (6.30)
the Padé approximant form eqn.6.28 of arbitrary orders n and m possesses the scaling property
6.6, accurate long-distance asymptotics 6.7 and finiteness 6.8 at the nucleus.
The forms 6.28 with n,m = 0 — 2 have been used to fit v, with the coefficients determined from

the least squares minimization of the weighted difference [v,(r) — v/ (r)] for the closed-shell atoms
Be, Ne, Mg, Ar, Ca, Zn, Kr, Cd

Z Z{wA(ri)[vx(ri) — v:{j(ri)]}Q = min (6.31)
A i

In equation 6.31 the inner summation is over the radial mesh points r;, the outer one is over atoms
and weighting functions w* (r;) of the following form have been chosen

2 A (..
wil(r;) = ng A(n) (6.32)
T
219 A dp?
i3 )+ ==,
wf(ri) _ pir; [3p7 (i) + 7 dr |r=r;] (6.33)

B

where p; are the weighting parameters. The radial densities are inserted in equation 6.32 to provide
weights to the points r; according to their contributions to the sum of the orbital energies of the
Kohn-Sham equations. The weights in eqn.6.33 represent the corresponding contributions to the
atomic exchange energy Ef, which can be calculated for a given v, via the Levy-Perdew relation [22]

B, = / 3p(r) + £V p(r)]vg (r)dr (6.34)

Energies E;;‘ are inserted in equations 6.32, 6.33 in order to make an uniformly representative
functional for both light and heavy atoms.
The minimized value of the functional (eqn. 6.31) decreases considerably with increasing of degrees
n and m of the fit of eqn. 6.28 from the least n = 0, m = 0 to n = 0, m = 1, but higher degrees
appear to produce little effect. As a result, the following simple particular case of the form of eqn.
6.28 has been chosen as a fitting potential

(r) agf . (ag + a71777)77]

1+3a5¢sinhtez 14052

W=

vl (r) = vEPA(r) — 25p

(6.35)

A(r)
T )
chosen. To illustrate this, in Figure 6 the non-local potential correction v,; of the OPM (a difference

between v, and vZP4) is compared for Ca, Kr and Cd with the corresponding corrections for

The optimized form of v/, naturally, depends essentially on the actual weighting function w
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ORBITAL | OPM | /! v]? vl. | GGA | LDA
Is 144.50 | 144.60 | 145.11 | 146.32 | 144.38 | 143.85
25 1526 | 1520 | 15.36 | 15.68 | 15.05 | 14.98
2p 12.43 | 12.37 | 12.54 | 12.89 | 12.26 | 12.22
3s L77 | 173 | 177 | 185 | 1.67 | 1.66
3p .08 | 1.05 | 1.09 | 1.18 | 0.99 | 0.98
4s 0.195 | 0.144 | 0.165 | 0.206 | 0.116 | 0.111

Table 6.1: Orbital energies for Ca (with the opposite sign and in a.u.) calculated within OPM,
LDA, GGA and with the fitting potentials v/!, v/? and v/,

the GEA, GGA and for two fits v/' and v/? of the form of eqn. 6.35 with the different sets of
the optimized coefficients: agl = 0.0123, agl = 0.0087, arlll = 0.0004, b7171 = 0.0011 for v{' and
a§? = 0.0204, af® = 0.0086, a7* = 0.0005, b"* = 0.0022 for v/2. For both fits the radial mesh {r;} of
Numerov method [112] with the adaptive step size has been used. v/ has been optimized for the
weighting function w{ (r;) (eqn. 6.32) with all the weighting parameters p; set equal, i.e. p; = I,
while v/ has been optimized for the weighting function ws'(r;) (eqn. 6.33) with the mesh weights
of the Numerov quadrature being used as weighting parameters p;. Due to a large concentration
of the mesh points near the nucleus, the function w{'(r;) provides the greater contribution of the
inner radial points in equation 6.31 as compared to wé“(ri). As a result, vT{ll reproduces the shell
structure of the OPM potential better than any other potential presented (See Figure 4) and is
close to v, in the core region, while vﬁ goes closer to v,; in the valence region.

It is interesting to note that, as regards to ag value, v/? is placed in between v/! and the model
exchange-correlation potential v/, of [32]. The latter is a particular case of eqn.6.35 with a] = a =
by =0 and with ag = 0.05 chosen to reproduce the first ionisation potential of Be atom. As it was
shown in [32], vf, yields a good estimate of ionisation energies for various atomic and molecular
systems and it goes close to the accurate Kohn-Sham potential in the outer valence regions.

The abovementioned features of the potentials are reflected in Tables 1-3 where the orbital energies
€; of eq.6.1 calculated with various exchange potentials are presented for Ca, Kr and Cd. LDA
underestimates electron exchange and its orbital energies are smaller (in absolute magnitude) than
those of the OPM. GGA yields energies, which are close to the LDA ones for valence and outer
core orbitals, and only for the deep core orbitals the GGA energies grow definitely greater. In all
cases (with the only exceptions of 2s- and 2p- orbitals of Cd) vi,cl provides an improvement to the
GGA orbital energies. Typical ¢; errors vary within 0.05 — 0.15 a.u. for v:{jl, which means small
relative errors for the core orbital energies and quite appreciable errors for the valence ones. v£2
provides further improvement for the valence and outer core energies, though its deep core orbital
energies are worse than those of v:{fl. v{:c gives the best energies of the highest occupied orbitals for
Ca and Kr, while the deep core energies are definitely overestimated. For C'd the highest orbital
energy for v/, deviates more from OPM than v/? does, but it is quite close to its accurate ionisation
energy 0.330 a.u. vf., being an approximation to the exchange-correlation rather than exchange-
only potential, should indeed yield the ionisation energy. Note that, by the construction (eqn.6.35),
all fitted potentials have the accurate long-distance asymptotics (eqn.6.7). One can see, that this
property by itself cannot guarantee high quality of the calculated energies of the highest occupied
orbitals that depends critically on the v/ behaviour at shorter distances in the outer valence region.

In Table 6.4 the non-local corrections E? of the OPM to the LDA exchange energies are compared
for the closed-shell atoms Be, Ne, Mg, Ar, Ca, Zn, Kr, Cd with those of the approximate schemes.
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Figure 6.6: Non-local corrections of OPM, GEA, GGA and of the fitting potentials to the LDA
exchange potential for a) Ca, b) Kr and ¢) Cd



MAe VD4 VALY V4L 4L 4d4ld JAL L LAAVALAAdLdLS e

i L

Figure 6.7: Dimensionless arguments ¢ and 7 for Kr

ORBITAL | OPM | wof! vl? vl, | GGA | LDA
1s 511.09 | 511.21 | 512.08 | 514.22 | 510.87 | 509.89
2s 66.64 | 66.52 | 66.76 | 67.32 | 66.35 | 66.21
2p 60.27 | 60.17 | 60.42 | 61.05 | 60.02 | 59.94
3s 9.65 | 9.41 | 950 | 9.68 | 9.30 | 9.25
3p 737 | 715 | 724 | 744 | 7.05 | 7.02
3d 3.30 | 3.10 | 320 | 3.41 | 3.02 | 3.01
4s 097 | 0.83 | 0.87 | 096 | 0.78 | 0.77
4p 0.501 | 0.358 | 0.399 | 0.480 | 0.305 | 0.300

Table 6.2: Orbital energies for Kr (with the opposite sign and in a.u.) calculated within OPM,
LDA, GGA and with the fitting potentials v/!, v/? and v,
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ORBITAL | OPM | /! v]? vl. | GGA | LDA
Is 943.01 | 943.10 | 944.24 | 947.13 | 942.70 | 941.38
25 137.00 | 137.12 | 137.41 | 138.18 | 136.94 | 136.76
2p 127.68 | 127.82 | 128.14 | 129.00 | 127.67 | 127.56
3s 25.56 | 25.49 | 25.65 | 25.98 | 25.35 | 25.31
3p 21.76 | 21.71 | 21.86 | 22.21 | 21.61 | 21.57
3d 14.75 | 14.71 | 14.86 | 15.21 | 14.64 | 14.62
4s 3.70 | 361 | 3.65 | 3.74 | 3.56 | 3.54
4p 250 | 240 | 244 | 254 | 235 | 234
4d 056 | 0.47 | 052 | 0.63 | 043 | 0.42
5s 0.267 | 0.208 | 0.250 | 0.321 | 0.170 | 0.168

Table 6.3: Orbital energies for C'd (with the opposite sign and in a.u.) calculated within OPM,
LDA, GGA and with the fitting potentials v/!, vf? and v/,

ATOM | OPM | GGA | of! v]? vl. | GEA
Be [ 0.360 | 0.345 [ 0.175 | 0.193 | 0.367 | 0.826
Ne | 1.121 | 1.102 | 0.908 | 1.183 | 2.147 | 2.275
Mg | 1.402 | 1.387 | 1.233 | 1.611 | 2.921 | 2.766
Ar | 2339 | 2.287 [ 2.023 | 2.663 | 5.034 | 4.409
Ca | 2614 | 2.597 | 2.457 | 3.238 | 6.047 | 4.915
Zn | 4.112 | 4.215 | 4.651 | 6.464 | 12.193 | 7.611
Kr | 5274 | 5.241 | 5.649 | 8.024 | 15.760 | 9.351
Cd | 7.419 | 7.376 | 8.400 | 11.776 | 22.758 | 12.859

Table 6.4: Non-local corrections to the LDA exchange energies (with the opposite sign and in a.u.)
calculated within OPM, GGA, GEA and via the Levy-Perdew relation with the fitting potentials
vft, v]? and v

T x xTrc

For the fitted potentials E™ are calculated from the Levy-Perdew relation (eqn.6.34) and for GGA
and GEA they are calculated directly from the corresponding energy expressions (eqn.6.15).
Though non-variational, v/ yields a reasonable estimation of E? for the atoms considered. Tts
quality is worse, than the highly superior quality of the GGA [44] energies, but better than that of
GEA [76, 100]. v/? also yields somewhat better E?! values than the GEA, though in this case for
all atoms heavier than Ne the calculated E? values are substantially overestimated. v/, provides
the largest overestimation of E™ for Mg and heavier atoms. A comparison of the results for fitted
potentials shows, not unexpectedly, that, in order to provide a reasonable estimate for the total
exchange energy, it is more important to have a better fit for the inner region than for the outer
one.

A natural question arises whether it possible to construct a potential that would combine the
advantages of v/, vJ? and vf. and would provide a close fit to v, at all distances. Our experience
gives a negative answer to this question for the case of the Padé approximant form (eqn. 6.28). The
reason for this is the concerted oscillatory behaviour of the dimensionless arguments ¢ (eq. 6.19)
and 7 (eq. 6.21) as functions of r (See Figure 7 for Kr as a typical example). £ and 7 are the natural
parameters of the gradient expansion for ¢, and v, and their utilization ensures the accurate scaling
property (eqn. 6.6) for various gradient approximations. However, because of their oscillations,
there always exist core and valence regions where both ¢ and n have a similar behaviour, so that
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the gradient approximations always produce concerted, related to each other non-local corrections
for these regions. Due to this, the local flexibility of the fit (eqn. 6.28) is substantially restricted
and better fitting for the inner part of v, produces at the same time worse fitting for the outer part
and vice versa. As a result, the increase of ag and removal of the n-dependent part of (eqn.6.35),
when passing on from vf! through vf? to v/, brings better energies of the highest occupied orbitals
but worse E™ values.

From the above discussion v/! seems to be the more optimal fit to v, as compared with v/2.
The former provides systematical improvement for the orbital energies of the GGA, while keeping
reasonable estimation of the exchange energies and it can be used in the Kohn-Sham equations as a
simple approximation to v, and also as a starting point for more refined approximations. For such
a refinement one can consider (in addition to the standard £ and 1) other gradient parameters that
should have distinctly different behaviour in the core and valence regions. Using these parameters
for the interpolation between v/! in inner regions and vf, in the outer ones, one can hope to
construct uniformly close fit to v,, or indeed to vy, if required. The corresponding work is in
progress.

6.5 Conclusions

In this paper an analysis of the structure of the optimized effective Kohn-Sham exchange potential
and its gradient approximations has been presented. The potential has been decomposed into the
Slater potential and its response to the density variations, the latter exhibits the distinct atomic
shell structure. The intershell peaks of the potential originate from the smaller response of the
Fermi hole density, which is localized in the shell regions, to the density perturbations at the in-
tershell points. It has been shown, that the approximation of the response potential is a major
problem for the gradient approach. A direct fit of the potential has been made with the the Padé
approximant form that possesses proper asymptotic and scaling properties and reproduces shell
structure of the OEP.

Acknowledgements: This investigation was supported in part by the Netherlands Foundation
for Scientific Research (NWO).



Chapter 7

Analysis of electron interaction and
atomic shell structure in terms of
local potentials

The Kohn-Sham potential vs of an N-electron system and the potential v.s; of the Euler-Lagrange
equation for the square root of the electron density are expressed as the sum of the external potential
plus potentials related to the electronic structure, such as the potential of the electron Coulomb
repulsion, including the Hartree potential and the screening due to exchange and correlation, a
potential representing the effect of Fermi-Dirac statistics and Coulomb correlation on the kinetic
functional, and additional potentials representing "response” effects on these potentials. For atoms
several of these potentials have distinct atomic shell structure: one of them has peaks between
the shells, while two others are step functions. In one of those step functions the steps represent
characteristic shell energies. Examples of the potentials extracted from the optimized potential
model (OPM) are presented for Kr and Cd. Correlation potentials, obtained by subtracting the
exchange potential of the OPM from (nearly) exact Kohn-Sham potentials, are discussed for Be
and Ne.

7.1 Introduction

Local one-electron potentials are key ingredients of density functional theory (DFT) [5] The poten-
tial vs(r) of the familiar Kohn-Sham one-electron equations [11] (Hartree atomic units will be used
throughout the paper)

(—5 V2 + (2 0)s(r) = s (71)

and the effective potential vefs([p];r) of the Euler-Lagrange equation for the square root of the
electron density [113, 114, 115, 116, 107]

(5 V2 + s ([ D) oe) = o) (72)

accumulate various effects of the electron interaction in many-electron systems. They provide an
informative picture of the electron interaction in terms of potential barriers and wells in physical

115
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space. Evidently, the complete effect of electron correlation has been folded into these local poten-
tials. In this paper we will analyze the relationship between the potentials and electron correlation.
This analysis leads to a decomposition of the potentials in various components, which have been
calculated within the (exchange only) optimized potential model [33] for the atoms Kr and Cd.
For Be and Ne the correlation part of the exchange-correlation potential has been obtained from
nearly exact vs; corresponding to the electron density as given by highly correlated wavefunctions.
A distinct structure (peaks, steps) is observed in the various potentials, that can be rationalized
in terms of aspects of the electron correlation. The observed structure will be very helpful when
one tries to model the potentials accurately and efficiently by judiciously chosen functionals of the
density and its derivatives.

7.2 Definition of local potentials

To analyze the structure of vy and v.rr, we begin with the electronic energy expression of the
constrained-search DFT [18] for a trial density p

Bolpl = [ plc)oar(x)d + min (417 + 1) (7.3)

where vy is the external (usually, Coulombic) potential, T and W are operators of the kinetic
energy and electron repulsion and the minimum is searched over all antisymmetric normalized
wavefunctions 1), which yield p. One can express E in terms of local potentials

Folp) = Tirlp] + (Tlo] = T (o) + Veualg) + Wil = =3 [ /o) /ptr)r+

[ o ninelse)ie + [ plw)veas(w)ie + 5 [ pe)veana(lpl e (7.4)

Here Ty [p] is the von Weizsécker kinetic energy functional which is N times the kinetic energy of
the normalized ”density orbital” \/p/N, and the explicit effect of the Fermi statistics and electron
interaction on the true kinetic functional T'[p], i.e. the difference T'[p] — Tw[p], is represented with
the local potential vy;,. According to [86], the latter potential can be defined via the conditional
probability amplitude ® [113]

$p(T1, ., TN)
p(r1)/N

of the (non-degenerate) function 1),, which minimizes the energy functional (7.3) for the prescribed
density p ({Z;} = {7}, si}, {ri} are the space and {s;} are the spin variables)

®(s1,42,..., Tn|r1) = (7.5)

1 o " S o
vgin([pl; 1) = 5/|V1(1)(31,$2,---a$N|r1)|2d81dI2---dIN- (7.6)

®(s1,Z,...,Zn|r1) embodies all effects of electron correlation (exchange as well as Coulomb) in
that its square is the probability distribution of the remaining N — 1 electrons associated with
positions Zs...Z y when one electron is known to be at ri. vy, can be interpreted as a measure of
how strongly the motion of the reference electron at r; is correlated with the other electrons in the
system, in the sense that it reflects the magnitude of change in ® with changing r;.
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Veond describes the effective Coulomb repulsion of the reference electron by the other electrons. It
is expressed through the conditional density [86]

pcond([p];rlarQ) = g([p];rlarQ)p(rQ) =

— (N - 1)/(I)*(sl,:ﬁg,...,a‘c’N|r1)<I>(31,:Ez,...,fN|r1)d31d32d:E'3...d:E'N (7.7)
I'l,I'Q)
Veond p] I'1 ,0 WdTQ (78)

and can be considered as the potential of a interparticle Coulomb interaction screened due to
exchange-correlation effects, with the pair-correlation function g(ri,rs) being the screening fac-
tor. Evidently, veong can be broken up into the Hartree potential and a screening potential due
to the exchange-correlation hole density p(r2)(g(r1,rs) —1) surrounding the reference electron at ry:

Veona([p); 1) /|r1—r2|d +/p r)glphrirs) = 1) b ol + vser (o] 1) (7.9)

|r1 — 1y

The potentials vy and vs., are long-ranged, having asymptotic N/r resp. —1/r behaviour.
Minimization of (7.4) with respect to p leads to the Euler-Lagrange equation (7.2) with the following
expression for v,y

Ueff([p]ar) = Vegt + UH([ﬁ]; I') + Uscr([ﬁ]? I') + Ukin([p]; I')

+vger ([l 1) + v (o) ) (7.10)

Here the potential v75P is an integral of the linear "response” of g, %
resp :0 I'2 59([ ] rlarZ)d d 711
Uscr 2 / |I'1 — 1] 3p(rs) rjars (7.11)

This potential is a measure of the sensitivity of the pair-correlation function g to density variations.
These density variations are to be understood in the following way. If we change the ground state
density p to p + dp (v-representable), then of course Ey[p + dp] will be higher than E,[p] as we do
not change the external potential vez. By the Hohenberg-Kohn theorem a wavefunction [p + dp]
can be obtained as the ground state wavefunction corresponding to a unique external potential
v + év ( which will minimize E, 5, ). For this system we of course also have a corresponding
Kohn-Sham system and a pair-correlation function g([p + dp];r1,r2). So the derivative of ¢ in the
above potential v7%P may be regarded as linear response in the above sense of g to density changes

scr

0p caused by potential changes dv.

v,’;fflp is the response of the potential vy;;, to density variation

res 5U r
(o) = [ ole) ™ P, (7.12)

Like vg¢r and vg;p, the potentials v5? and v;;fflp can be related directly to the electron correlation
in the ground state. Their sum can according to ref. [86] be expressed in terms of the conditional

amplitude:

Tesp

uEEP([pli ) + vpal ([l re) = o™~ ([pl; 1)
- /@*(sl,fg,...,£N|r1)HN_1<I>(31,aE2,...,£N|r1)d31d:32d5c’3...d:§1v _ gV (7.13)
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where HV~! is the hamiltonian of electrons 2 — N (interacting) in the given external potential.
The value of vV~ at position r is the energy expectation value of the system of N — 1 electrons
described by the conditional amplitude ®(s1,Zs,...,Zy|r) minus the ground state energy of the
N — 1 electron system.

An expression for the Kohn-Sham potential v, can be derived from equation (7.10) for v.f; and
a suitable expression for the Pauli potential vp [117, 115, 116, 107] , the difference between v, s
and vg. The formula of [115] for the Pauli potential is useful. It may be interpreted with the
help of the relation derived in [86] between the Pauli potential and the Kohn-Sham determinantal
wavefunction 15, which may be built from the Kohn-Sham orbitals ¢;(r) of eq.(7.1):

vp([pl;r) = verr([plir) — vs([plir) = vspin(lplir) + v ' ([p];x) (7.14)

where vg i, and v)Y 7! are the analogues of (7.6) and (7.13) but now constructed with the conditional

amplitude @, of the determinant ;. Due to the simple one-determinantal nature of v, v, i, can
be expressed straightforwardly in terms of the Kohn-Sham orbitals (cf. [115]):

1 & 2

1 . . . . i (r
Us,km([p];l‘l) = 5 / |V1(I)5(81,(L‘2, ...,:EN|I‘1)|2d81d(L‘2...d(I,‘N = — Z ¢l( 1)

p3(ry)

Vi (7.15)

2 =1

It has been argued [86] that from the relation between vy, resp. vs i and the conditional
amplitude @ resp. @4, one may expect large peaks in the kinetic potentials at shell boundaries due
to the special behaviour of the exchange hole, a point to which we will return below.

The second contribution to vp can also be obtained easily from the one-electron nature of HN~!
and the one-determinantal ®:

oM Nplir) = /@;‘(31,52,...,5N|r1)H;V—1q>s(sl,fz,...,fN|r1)dsldf2d53...di—Eﬁo—l
N 2
|pi(r1)]

= pu— Y i (7.16)
2 o)

Here Egofl is the energy of the N — 1 Kohn-Sham system in the following sense:
BN = /ngvfl(@, L EN)HN Y@, BN (B, EN)dEs . .. dEN (7.17)

where 1 1 is the N — 1-particle Kohn-Sham determinant with one electron removed and where
HN=1is the Kohn-Sham Hamiltonian H, with one electron removed ( the Kohn-Sham potential
vs([p];r) is however still determined by the N-electron density p so this is not strictly the Kohn-
Sham Hamiltonian of the ion):

N
C1ia - 1 ,
HY YZy,...,88) =) j—§v§ + vy ([p]; 7). (7.18)
=2

W= Eé\fo — Egofl is equal to the highest occupied one-electron Kohn-Sham energy, €js, which in
turn is equal to the negative of the exact first ionisation energy, ey = EJ’ — Eév -1

The components of vp are the Kohn-Sham analogues of the components vg;, and vgflp of vesy
(eq.7.10), defined in terms of the exact wavefunction in egs. (7.6) and (7.12). To demonstrate this
we note that

Ty00) = Twlpl + [ pr)vs ([l 1) = Tovlp] + Tl (7.19)
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and since vp = §Tp/dp [115]

vp([pl;t) = vs kin([liv) + vk (o] T) (7.20)

where

5vk ([p; r2)
v ekm) = [ ptes) o B ar,

Comparison to eq. 7.14 identifies vreks’; with v =1 and indeed v ~! will not have a response term

corresponding to the term v};? in N1 (eq.7.13) since the Kohn-Sham system of electrons is non-
interacting.
Combining now equation 7.20 with equation 7.10 for v,;s one obtains for v,

vs([p); ) = veat(r) + va ([pl;v) + vser ([Pl v) + 03 ([p]; 7)
+(kin([], 1) — Vs kin([p], ¥)) + (viz" (], ¥) = Ve (2] T))- (7.21)

It is to be expected that the potentials vy, and vg i, and the potentials v, ;" and v, %? .

be rather similar in atoms with predominantly exchange effects and only dynamical (no near-
degeneracy) correlation, in which case the exchange-correlation potential vy, = vs — Veyr — v
would be dominated by v, + vie?. As a matter of fact, since the exchange-correlation energy
E,c|p] can be written as the sum of a kinetic part

Tuelpl = Tlol = Tl = [ ple) wrin([2) 1) — vspin (o) ) (7.22)

and an interparticle part

will

Waelp] = /dr drs? . plr)plrz) |)(g([p];r1,r2)—1), (7.23)
ry—ry

the exchange-correlation potential can be split into a kinetic part that corresponds to the second
line of equation 7.21 and a two-particle interaction part that corresponds to vser + Vi P
0. 0T OWae
vaellplimn) = £t = I
BT = 506y = Suten) ol

= tae([pl; 1) + wae([pl; 1) (7.24)

tacpim) = vin (91 m1) — vspin(plim) + [ despey) (P PEEE) _ Ovesin (PliLa),

dp(r1) dp(r1)
= vkin([pl; 1) — Vs kin([p]; 1) + 057 ([p); 1) — 0] km([p] r) (7.25)
) = ¢ p(ra2)(g([p]; r1,T2) p )p(rs) 0g([p]; ra,rs)
weeplim) = [ e, PGP oy 2 [ desdey R (7.26)
= vser([pl; 1) + v ([pl; 1) (7.27)

If the Kohn-Sham wavefunction 1), is regarded as a good approximation to the exact ground state
wavefunction 1), then it follows from the above formula that ;. is very small and the major part
of the exchange-correlation potential then originates from the second term wg.. In systems with
strong near-degeneracy correlation, however, such as dissociating molecules, a one-determinantal
wavefunction cannot be close to the exact wavefunction and in fact there are then regions (such as
the bond-midpoint region [86]) where vy, deviates strongly from v ki,
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Figure 7.1: Radial density p(r) = 4nr2p(r) for Kr and Cd.

7.3 Structure of local potentials

We now proceed to investigate the relation between certain characteristics of the various local
potentials defined above, and therefore of v, and v.fs, and the atomic shell structure. The latter
is described in a compact form with the radial Euler-Lagrange equation

1 d?
(_EW + verp(r)y/p(r) = py/p(r) (7.28)

where p(r) = 4nr?p(r) is the radial density. Owing to (7.28), the atomic problem is effectively
reduced to the one-dimensional problem of a single particle in the state p% (r) bound to the potential
verf(r) with the energy p. vefr — veqr represents the repulsive barrier of the electron potential,
which prevents localization of the electron density in the inner region and produces the true atomic
density distribution p(r). Figure 1 displays the functions p(r) for Kr and C'd with the characteristic
peaks in the shell regions.

In Figures 2,3 the components of our partitioning of the potentials v.s; and v, are presented for
Kr and Cd. All local potentials are extracted from the optimized potential model (OPM) [33, 91].
The solution of the OPM is equivalent to that obtained by the minimization of (7.3) with respect
to p with the restriction on the functions ¢ to be Slater determinants. As a result, v.f; in the

Euler-Lagrange equation for p% is approximated as

Ve f(7) R Veat (1) + vo M cond(r) + voPukin(T) + Vo PV kin(T) + V0P ser(T) 5 (7:29)

where all local potentials are constructed as defined above with 9o ps being the optimal wavefunc-
tion of the OPM. The one-determinantal approach is well justified for atoms, so that in this case
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Figure 7.2: v.ff — ez and its components veong, Vkin and v,’;fflp . All potentials are derived from

the optimized potential model, OPM [33]. a) Kr and b) Cd and ¢) Be
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Figure 7.3: Demonstration of the step character of the screening-response potential v&P. a) Kr
and b) Cd

(7.29) should be close to the exact expression (7.10). One can see from the Figures that partitioning
(7.29) represents v, ff — Vext as a sum of the monotonous potential of Coulomb repulsion vopas,cond
and three additional potentials. It is remarkable, and also pleasing in view of the desirability of
accurate modelling, that the potential v.,,q is so smooth. The other potentials have distinct shell
structure and have a very similar form for both represented atoms. Specifically, vopar kin has the
peaks in the intershell regions that we anticipated, while UTOef;’]’V[ rin 15 @ step function, with the steps
representing the energetical characteristics of the individual shells (see below). It is a quite intrigu-
ing observation that the potential v, ..., which is particularly important for v, also exhibits
very clear step function behaviour (see fig. 3).

The shell structure of the potentials finds its interpretation in the formulas for the local potentials
presented in this paper. Considering first vopas kin, it follows from eq. (7.15) that this potential is
a measure of the change of the conditional probability amplitude as a function of position of the
reference electron. The structure of the kinetic potential can readily be determined from physical
considerations using the interpretation of the conditional probability amplitude. If the reference
electron at r is positioned well within one atomic shell then as a consequence of the Pauli principle
the probability will be large that the other electrons will have positions within the other atomic
shells. If the position of the reference electron crosses an atomic shell boundary and moves into
another atomic shell then the electrons in this new shell have to switch to another shell and the
conditional probability amplitude will have to describe a large probability for a different distribu-
tion of the electrons over the atomic shells. So the changes in ®; as a function of the position r
of the reference electron will be the largest at the atomic shell boundaries and we therefore expect
Vs kin t0 have local maxima at the atomic shell boundaries which is indeed what we find. This
explanation fits in with what is known about the behaviour of the exchange hole [87, 118, 119].
The exchange hole can be described by the Fermi amplitude or orbital, the square of which gives
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Figure 7.4: The local exchange potential of the OPM as the sum of the screening or Slater (Fermi

hole) potential v and its response v.5P. a) Kr and b) Cd
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in a closed shell system the hole density [87]:

=

bi (1'1)

f(ri,r2) =

i

¢i(ra) gs([pl;r1,12) =1 — (7.30)

)
SN—
N | =
)
—~
&
N
N

1

1 R o . . 1
Vs kin([p);T1) = 5/|V1<I>s(81,$2,---,$N|r1)|2d81d$2---d$N = §/|V1f(r1,r2)|2dr2 (7.31)

As was described in [87], for various positions r within an atomic shell, or generally within a
localized orbital, f(rq,rs), as a function of ry, is localized within the shell (localized orbital) region
and insensitive to the reference electron position ry, but changing the reference position r; through
the small intershell interval produces a sharp change of f(ry,rs), its ”jump” from one localization
region to another. This may already be seen from the fact that orbitals ¢;(re) will get a large
weight in the expansion of f(ry,r2), when the reference position r; is such that the coefficients
|pi(r1)|/+/p(r1) are large, i.e. when r; is in the region where ¢; has a large amplitude (see [119]).
Since the form of vopas kin is determined by the rate Vi f(r,ry) of the change of the Fermi orbital
f(ri,re) with changing ry, the characteristic peaks of vopas kin in the intershell regions (See Figure
2) reflect the maximal mobility of f(ri,r2) in these regions [86].

We now turn to the behaviour of v, 1;, near the atomic nucleus. Some properties in this region can
be deduced from equation 7.15. The electron density has the following behaviour near the atomic
nucleus [120]:

p(r) = p(0)(1 = 22Zr + O(r*)) (r10) (7.32)

where Z is the nuclear charge. The behaviour of the Kohn-Sham orbitals in the nuclear region can
be deduced from the fact that close to the nucleus the only important potentials in the radial Kohn-
Sham equations are the nuclear potential —Z/r and the centrifugal potential [(I 4+ 1)/2r? where [
is the orbital angular momentum quantum number of the orbital. Inserting a series expansion of
the orbitals ¢; in the Kohn-Sham equation then yields:

¢i(r) = ar' + O (r10) (7.33)
and in particlar for s-orbitals:
¢i(r) = $i(0)(1 — Zr + O(r?)) (r 1 0) (7.34)

By inserting the above expansions for the density of equation 7.32 and for the orbitals of equa-
tions 7.33 and 7.34 into equation 7.15 for vy, it follows that the only terms which give a finite
contribution to vs,kin(ﬁ) are the terms containing orbitals with angular momentum quantum num-
ber [ = 1,i.e. terms containing p-orbitals. So we can conclude that vy, is in general not zero at the
atomic nucleus except for the case that no p-orbitals are occupied in the Kohn-Sham wavefunction
in which case vs,kin(ﬁ) = 0. This has been illustrated in figure 2 where we find that v, 1, (0) is
zero for the case of the beryllium atom (no p-orbitals occupied) whereas it is nonzero for the case
of cadmium and krypton. For comparison we have drawn the plot for the beryllium atom on the
same scale as the one given in reference [107].

We further note that the proof given in reference [86] that the kinetic potential vy, of the exact
ground state wave function is zero at the atomic nucleus is incorrect. The error is in the step from
equation (A1) to (A2) in ref.[86]. The correct treatment of this step is given by Bingel [120].

For atoms vopskin (cf. eq. 7.15) represents the dominant part of vy, so that going beyond the
OPM, one can expect analogous intershell peaks of vy, due to the specially large mobility of the
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conditional amplitude @ in these regions. It should however be remembered that in systems with
strong nondynamical correlation, such as dissociating molecules, vy;;, will show additional struc-
ture, not present in v y;,, notably in the bond region [86].

Turning now to the kinetic response potential v, 1., (See Figure 2), we note that its stepped
form follows from its expression (7.16). Writing this in the form

N (p 2
Vo kin(t) = X (1 — &) |¢/Z>Er;| (7.35)
i=1

it is clear that for r within shell 4, |¢;(r)|?> (or the sum over |¢;(r)|> with the same ¢;) dominates
over all other contributions, i.e. is approximately equal to p(r), so eq.(7.35) is expected to describe
a step function with step height in shell 7 equal to © — €;, which is the energy needed to excite an
electron to the ”Fermi” level p.

The sum vopus kin + vroeff;\/nkm, the Pauli potential vp, may be interpreted as a contribution to
the barrier v.;r due to the effect of the Fermi-Dirac statistics on the kinetic functional and its
functional derivative [106]. v}5*? also brings a repulsive contribution to the barrier v. sy, but being
of the order of a few a.u. for r < 1, this contribution is small as compared to those from vy;",
Ukin, though not negligible. There is a clear correlation between the maxima in v.rs due to the
peaks and steps of vy, and v,;" and the minima in the radial density, cf. [117]. As is immediately
evident from equations (7.15) and (7.16), for all distances vp is a non-negative function [115]. One
can see from Figure 2 that veyg is long-ranged (veong has an asymptotic (N — 1)/r behaviour),
whereas both the kinetic potential and the kinetic response potential are short-ranged. At short

radial distances vp(r) brings the dominant contribution to veyy.

We now focus on the Kohn-Sham potential and its constituents (figures 3 and 4). In the OPM we
are dealing with the situation that the Kohn-Sham potential does not have a kinetic contribution
(cf. discussion following eq.(7.21)). If we subtract out from vopy; the Hartree potential, the
exchange potential of the OPM is obtained

_ _ resp
VOPM,z = VOPM — Vext — VOPM,H = VOPM,scr + VO p s ser (7.36)

The two contributions are displayed in figure 4. It is interesting to observe that the screening
potential is quite smooth. In this case vg is purely due to the Fermi hole, there is of course no
Coulomb hole in ©¥opps. vser is then equal to the Slater potential [101], the average Hartree-Fock
exchange potential (using the OPM orbitals). The small intershell peaks [33] that are present in
vy are evidently built in by the superposition of the stepped form of v.5P on the smooth vs.-. This
observation may be expected to considerably facilitate accurate modelling of v,. The stepped form
of vi&P (figure 3) does not follow immediately from the expressions given in this paper. A detailed
analysis of the response of the screening factor, dgs(r1,r2)/dp(rs3), is called for but will clearly be
more involved than the treatment of the other potentials and is outside the scope of the present
paper.

Since we have restricted ourselves sofar to the OPM one-determinantal wavefunction, no informa-
tion has been obtained on the effect of dynamical (Coulomb) correlation. For some light atoms such
as Be and Ne extensive configuration interaction calculations [82, 83] have yielded highly accurate
electron densities, from which corresponding Kohn-Sham potentials have been generated [79, 80, 32].

The difference vy — vegr — v is the exchange-correlation potential vy, = dFy./dp. The exchange
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Figure 7.5: The correlation potential as the difference between the exchange-correlation potential
and the local exchange potential of the OPM. (a) Be and (b) Ne



Mo LUVUVU VAL VALY UVUiL VU V4 4 LAY L AL AT L&y

part may be defined as vopp ., but an alternative and perhaps more consistent definition of the
exchange part of v; would be in terms of the exchange hole of the Kohn-Sham determinant ),

() = 5% = ver () + 0752 (ol (7.37)

so that the correlation part of vg would be

Veorr([P);1) = s([p;T) = Veut(r) —vu([p]iT) — v ([p); T)

= User([Pli 1) + 0567 ([ v) + vkin ([0]; ) + Vg (0] 7)
— (s,ser([pli 1) + VS ([Pl T) + Vs kin ([Pl 1) + v, i () 7)) (7.38)

This may also be written as a sum of the kinetic part of v,. plus the correlation part w., defined
as:

we([pliv) = wee([pl; 1) = ve ([l T) (7.39)

Thus we have:

Ucorr([p]§ I') = wc([ﬁ]? I') + t:vc([p]; I‘) (7-40)

Probably v, is very close to vopar. Figure 5 shows the correlation part of v, as vy — vVegt — vy —
vopm, for Be and Ne. Although we used a slightly different definition of the correlation part of
v, than Aryasetiawan and Stott [79], who took v, ([p7F];r) = vs([pF]; ) — vert(r) — vu ([pPF];T)
where pH " is the Hartree-Fock density, for the exchange part of v, rather than vopys ., our curves
of veorr are very similar to those of ref. [79]. It is notable that ve, is quite small relative to
vz. This may be due to a cancellation of the contributions from different terms in veo, (7.38).
For instance, to the extent that the OPM determinantal wavefunction may be identified with the
Hartree-Fock determinantal wavefunction, the correlation contribution to the kinetic energy will
be [ p(Vkin — vopP kin)dr. This is known to be positive and equal to the absolute value of the
total correlation energy on account of the virial theorem, so the difference vgi, — voparkin must be
predominantly positive. On the other hand, (1/2) | p(vser — vOPM,scr)dT is the contribution to the
correlation energy due to the electron-electron interaction. For a system like Ne this is negative and
close to twice the (negative) correlation energy [119], so vs., will be predominantly more negative
than vopar,ser- This is an expected effect of the Coulomb hole that affects v, but not voparser. At
the border region between the K and L shells, where the exchange hole is not so strongly localized
around the reference position as when the latter is within a shell, the effect of the Coulomb hole
is probably particularly noticable. This may explain the negative minimum in vgy, at the K/L
shell boundary. It should be kept in mind that there are several contributions to v¢e.r, not only
the negative Coulomb hole contribution vge, — vs sor. Ref. [86] demonstrates that in the outer part
of the (1s)? shell of He the positive contributions of the response potentials (v ~1) and the kinetic
potential outweigh the negative Coulomb hole contribution veenq — LR p— Vs ser- Only at the
inner part of the shell the Coulomb hole is so strongly negative that it causes vcorr to turn negative.
This pattern is repeated in the K and L shells of Be and Ne, although in Be the total v never
becomes positive. This may be related to the well-known strong near-degeneracy correlation and
therefore more significant Coulomb hole contribution in Be.

The present paper analyzes the relationship between electron correlation and local one-electron
potentials featuring in DFT, and establishes the connection with the atomic shell structure. The
results of this analysis are also useful for the accurate and efficient approximation of v, and v.s in
DFT [121, 32]. In this respect, the stepped shell structure found for v is of special interest in

scr
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our opinion. Further elucidation of the origin of this special structure will be undertaken, but it is
clear that, now that it has been recognized, this simple step behaviour considerably facilitates the
accurate modelling of the exchange-correlation Kohn-Sham potential. The corresponding work is
in progress.

Acknowledgements: This investigation was supported in part by the Netherlands Foundation
for Scientific Research (NWO).



Chapter 8

Step structure in the atomic
Kohn-Sham potential

In this work we analyze the exchange-correlation potential v,. within the Kohn-Sham approach
to density functional theory for the case of atomic systems. The exchange-correlation potential is
written as the sum of two potentials. One of these potentials v sc- is the long-range Coulombic
potential of the coupling constant integrated exchange-correlation hole which represents the screen-
ing of the two-particle interactions due to exchange-correlation effects. The other potential vzc®h,
contains the functional derivative with respect to the electron density of the coupling constant inte-
grated pair-correlation function representing the sensitivity of this exchange-correlation screening
to density variations. An explicit expression of the exchange-part of this functional derivative is
derived using an approximation for the Greens function of the Kohn-Sham system and is shown to
display a distinct atomic shell structure. The corresponding potential v;%E. has a clear step struc-
ture and is constant within the atomic shells and changes rapidly at the atomic shell boundaries.
Numerical examples are presented for the Be and Kr atoms using the Optimized Potential Model

(OPM).

8.1 Introduction

The Kohn-Sham approach to density functional theory (DFT) [5] is an exact scheme to obtain
the ground state properties of electronic many-particle systems by solving the problem of a sys-
tem of noninteracting particles moving in the field of an effective Kohn-Sham potential v,([p]; )
which is a functional of the electron density p. An important constituent of this potential is
the exchange-correlation potential v,.([p];r) which is defined as the functional derivative of the
exchange-correlation functional E,.[p]. With the appearance of so-called generalized gradient ap-
proximations (GGA’s) [44, 45, 43, 49] increasingly accurate approximations for this exchange-
correlation functional have been applied with considerable succes in the calculations of properties
of electronic systems ranging from atoms and molecules [71, 70, 122] to solids and surfaces [47].
However the corresponding exchange-correlation potential still has some deficiencies [49, 32].

In this paper we will perform an analysis of the exchange-correlation potential and in particular the
exchange potential of the Kohn-Sham system. These potentials have two important characteristics.
First of all the exchange potential v, and the exchange-correlation potential v, have an asymptotic
Coulombic —1/r behaviour in finite systems such as atoms and molecules [31, 49, 32, 35]. Secondly,
they display the atomic shell structure in atoms which is characterized by peaks at the atomic shell

129
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boundaries [49, 35, 32]. In this paper we show that v, and vy, can be written as the sum of two
potentials. One of these potentials is monotonous and has a long range Coulombic behaviour. The
other is short range and displays a clear step structure being constant within atomic shells and
changing rapidly at the atomic shell boundaries [108]. The step structure of the latter potential
can be derived using an approximation of the Greens function of the Kohn-Sham system as we will
demonstrate in the remainder of this paper.

The required features of v,. and vy, i.e. the the Coulombic asymptotics and the atomic shell
structure are not well-presented by most of the approximate exchange and exchange-correlation
potentials. The required asymptotic Coulombic —1/r behaviour in finite systems such as atoms
and molecules is not reproduced with the current local density (LDA) and generalized gradient
approximations. As a result of this a too low absolute value for the highest occupied Kohn-Sham
orbital, which should be equal to the ionisation energy of the system [31], is obtained. Furthermore
also the required atomic shell structure is not correctly reproduced with the LDA and GGA ap-
proximations [121]. The GGA potentials even have a wrong Coulombic behaviour near the atomic
nucleus [92, 32].

An other approach leading to better exchange-correlation potentials is the so-called weighted den-
sity approximation (WDA) [123, 124, 125] which is based on approximate pair-correlation functions.
In this approach the exchange-correlation potential is split up as the sum of two potentials, one
containing the coupling constant integrated pair-correlation function which we will call the screen-
ing potential v, s.r and one containing the functional derivative of this function with respect to
the electron density, which we will call the screening response potential v;¢°F.,.. The exchange part
of this last potential is the main subject of this paper. Due to the fact that the approximate
pair-correlation function is required to satisfy the sum rule and must integrate to one electron
the corresponding exchange-correlation potential has a Coulombic asymptotic behaviour. However
as all current approximate pair-correlation functions are not symmetric under interchange of the
electron coordinates the Coulombic behaviour is in general not —1/r as required but —c/r with ¢
some constant.

Most of the approximate exchange and exchange-correlation potentials do not exhibit the atomic
shell structure. Only a few attempts have been made to incorporate atomic shell structure in
a WDA scheme [126, 127] employing the idea that electron interactions within one shell can be
treated within a local density type of approximation but not the interaction between electrons in
different atomic shells. This physical picture is reflected in the step potential, exchange and corre-
lation effects do not change over regions which lie well within an atomic shell but they do change
considerably when we move from one atomic shell to another.

A very good approximation to the exchange part v, of v, has recently been proposed by Krieger
et al. [35]. This approximation displays the atomic shell structure, has the correct asymptotics
and also satisfies the requirement of integer preference. This approximation was derived using an
approximation for the Green’s function of the Kohn-Sham system [34, 35]. In this paper we will use
a similar approximation to derive an explicit expression of the functional derivative with respect to
the electron density pair-correlation function of the Kohn-Sham system. Using this approximation
one can derive an expression for the screening response part v;%. of the exchange potential. This
response part is shown to display a clear atomic step structure, being constant within the atomic
shells and changing rapidly at the atomic shell boundaries.

The paper is divided as follows. In section IT we will give a short account of the potentials we
want to analyze. In section III we will derive the expression for the functional derivative of the
Kohn-Sham pair-correlation function using an approximation for the Green’s function of the Kohn-

Sham system. In section IV we derive how the step structure in v;%%. arises from this functional
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derivative. In section V we will present some numerical results for some atoms and in section VI
we present our conclusions and discuss implications for future approximations.

8.2 The exchange-correlation potential: separation into a long
range and a short range part

Within the constrained search approach to spinpolarized density functional theory the energy func-
tional is defined as [5, 128, 67]

Byl{ps}] / p(r)o(r)dr + Fy[{ps)] (8.1)

where the total electron density p = >, ps is the sum of the spin densities and the universal
functional F7, is defined as:
Frl{psY] = inf tr{D(T+ W)} (8.2)
D—{ps}
In this functional the infimum of the expectation value of the kinetic energy operator T and the in-

terparticle interaction operator W is searched over all N-particle density matrices D which integrate
to the prescribed spin densities {p,}. The functional F7, is usually split up as:

)p(r2)

FyllpoYl = Tullo)] + 5 | %dd T Buel{po)] (8.3)
where T7, is defined as:
Tulpe)] = inf tr{DT} (8.4

—{ps

As all functionals except the exchange-correlation functional E,. now are defined equation 8.3
actually defines E;.. Minimalization of the energy functional E, leads to the well-known Kohn-
Sham equations:

(5 V2 + 0o [{00 ;)i ) = cio i () (5.5

where the spin density is given by:

No
=3 furld @I (8.6)
and the Kohn-Sham potential vs, is split up as:
N p(r1) '
v ([ ) = 00) & [ (5 v (e ) (87)

where the exchange-correlation potential vz, is defined as:

sneol[{pr ) = 2zt (8.9

The exchange-correlation potential can be further analyzed in terms of the coupling constant inte-
grated pair-correlation function g, ,, [127, 129] defined as:

s {lpo}r1m2) = [ Gy ([{po Y m1,w2)an (8.9)
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where g(’}l o, 18 defined as:

3.0 ({po}sr1, 12)

A
950 PoysliT1,Y2) = o
o (lpodlirre) = = ) .
with:
o—wz([{Pa ;T1,T2) Z /D{ﬂ } (rio1,1909,...,ryoN)drs...dry (8.11)
03,...,0N

Here D} o1 is the diagonal part of the density matrix which minimizes the functional F7, for the

prescribed spin densities {p,} and in which the interparticle operator W is multiplied by the
constant A\. The case A = 1 corresponds to the ground state density matrix of the fully interacting
system and the case A = 0 corresponds to the density matrix of the Kohn-Sham system. A useful
relation relating the paircorrelation function at coupling strength A to the pair correlation function
of the fully interacting system is proven by Levy [27]:

gf)r\lfm ([{,0(7}13 r,ry) = Joi02 ([{pa,l/)\}]a Ary, Ar) (8.12)

where:

Pa,i/A(r) = A7 ps(A7r) (8.13)

The exchange-correlation energy in terms of g is given by:

Bultpol = 3 3 [ 2000 g (4, irr,v2) — 1) (.14

2 ;5 [r1 — 1o
By functional differentiation it follows that v;., can be split up into two terms:

Vaeo ({0 }];11) = Vee,sero ({0 3] T) + 0355000 ([{P0 15 T) (8.15)

where the screening potential is defined as:
,00'2 r2 —
tnsseros (o e0) = 32 [ L5 G (o v2) = D (5.16)

and the screening response potential as:

VTesp ([{,0(7}] rl /902 ro ,0(73 1‘3) 690203([{:00}] ro, 3)d1‘2d1‘3 (8.17)

VUge ,8Cro 0203 |I'2 _ I'3| 6p01 (rl)

The screening potential is equal to the potential of the coupling constant integrated exchange-
correlation hole and represents the screening of the interparticle Coulomb potential between elec-
trons at r; and ro with spin o; and oy by exchange-correlation effects with screening factor equal
t0 Goy 05 ([{Ps}]; 1, r2). Due to the fact that the exchange-correlation hole integrates to one electron
the screening potential has a long-range Coulombic behaviour:

veeser ({prdir) ~ =2 (r = ) (8.18)

Physically this means that if we move one electron away from a finite system such as an atom it
just experiences the potential of the ion it leaves behind.
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We will carry out an analysis of the exchange part of vy ser and vyc’h. ;. We split up g into an
exchange and a correlation part:

Joi0» ([{:00}]; r, r2) = Gso1 ([{:00}]; r, r2)60102 + Georo2 ([{pa}]; ry, r2) (8'19)

where g, is the pair correlation of the Kohn-Sham system:

S Te) = _|’7sa(r17r2)|2
gso(({po}]sr1,m2) =1 PREAPRCS) (8.20)
where
N
Vso (£1,72) = D fioio (r1) iy (r2) (8.21)

2

the one-particle density matrix for the Kohn-Sham system. The pair correlation function g, is
unaffected by the coupling strength integration as it satisfies the following scaling property:

gso ([({po});r1,12) = gso ([{Ps,1/0 }]; A1, Ara) (8.22)

This is also apparent from the fact that the coupling constant integration keeps the density constant
and therefore does not influence the Kohn-Sham noninteracting system. The exchange-correlation
potential v,. = v;+v, can now be written as an exchange and a correlation part with corresponding
screening and screening response potentials:

Vao ([{Po 31 1) = Ve sera ([{Po 15 1) + 0355800 ({oo s 1) (8.23)

and

ver ([{Po}]iT) = vesero([{po 3] T) + 0o ({po 3] 1) (8.24)

where the potentials v ser and v ser and their responses are defined as in equations 8.16 and 8.17
with g replaced by g, and g.. The potential v, s has a Coulombic asymptotic behaviour due to
the fact that the exchange hole integrates to one electron. There is no Coulombic term in v, s as
coupling constant integrated Coulomb hole integrates to zero electrons.

In figure 1 we plot some of the described potentials for the case of the beryllium atom. The
exact exchange-correlation potential v, is calculated from an accurate CI (Configuration Interac-
tion) density using the procedure described in reference [32]. The potentials v,y ser and vk,
are calculated within the optimized potential model (OPM) [33, 35, 36] and are probably very
close to their exact values which can be obtained from the solution for v, of the OPM integral
equation [33, 35, 36] by insertion of the exact Kohn-Sham orbitals instead of the OPM orbitals.
We further plotted vy, — vg PM which can be regarded as an approximation to Vgerber T Ve,ser- Note
the very clear step structure in u;f;g’,:op M This potential is almost constant within the 1s-shell
and drops rapidly to zero at the atomic shell boundary between the 1s and the 2s shell at a radial
distance of about 1 bohr. As can be seen from the graph of v,. — vgfcjy this step structure is
somewhat smoothed by correlation effects but as these effects are less important than the exchange
effects the step structure is still clearly visible.

The atomic structure of the potential v;%7. is the main subject of this paper. This requires an anal-
ysis of the functional derivative dgs, (r1,r2)/dps(r3) of the Kohn-Sham pair-correlation function.

Such an analysis will be carried out in the next section.
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Figure 8.1: The exchange-correlation potential and the OPM exchange potential with corresponding
screening and screening response parts for the beryllium atom

8.3 Functional derivative of the Kohn-Sham pair-correlation func-
tion

In order to understand the structure of the vy’ , potential we must calculate the functional
derivative of the Kohn-Sham pair-correlation function. This function describes the sensitivity of
the exchange screening between two electrons at r; and ry to density changes at point r3. One
property of this function is readily derived. As gs,(r1,r1) = 0 for any electron density it immediately

follows that:

0o (1‘1, 1"1)
2T - 8.25
690 (1‘3) ( )

This puts a constraint on approximate functional derivatives of g,. In general from the definition
of gso it follows that:

0gso’ (T1, T2)

07, (r1,12) 1
s 02 4
(5[)0(1‘3)

= (1} (e, 72 TR )

. (5(1‘1 - I'3) (5(1‘2 - I'3)
po(r1) po(r2)

)(gsa(rlarQ) - 1)600’ (826)

From constraint 8.25 it follows that the functional derivatives of -,, must contain deltafunctions
in order to cancel the deltafunctions in the second part of the above equation for ry equal to rs.
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We now must calculate:

5750 (rl’r2 - 5¢w( ) . 6¢2<a’ (1‘2)
 Opo(rs) wa 6ps(r3) Spa(ra) Vi D)+ Pier (1) dps(r3) ) (8.27)

We therefore have to calculate the functional derivative of the Kohn-Sham orbitals with respect to
the density. This can be done using:

5¢w I'1 Z/ 5¢w 1‘1 5” ”(r4)
6{)0— I'3 H 1'4 6100'(1‘3)

dry (8.28)

where vy, is the Kohn-Sham potential. The derivative of ¢;, with respect to the Kohn-Sham
potential is known in terms of the Kohn-Sham orbitals and one-electron energies:

d¢pior (r1)

(51)5(7(1'4) = _Gi(r(rla r4)¢i(r(r4)5aa’ (829)

where G, is the following Greens function:

Gig(r1,1e) = Z M

(8.30)

i €jo — €io

The other functional derivative is equal to the inverse density response function which we only need
to know for equal spins:

5”50(1'4) -1
_ 31
Sonry) oo (T T3) (8.31)
So:
5(r1 — r2) = / Xoo (F1, 14) x50 (x4, 12)dry (8.32)

where x;, is the density response function:

590(1'2
5’050 (I'4

Z fw¢7,0 1'2 i (1'2, r4)¢ia(r4) + c.c. (833)

Xso (rZa I'4)

However as a density variation dp, (r) determines the potential variation dvs,(r) only up to constant
the derivative dv,,/0p, and hence x,,' is only defined up to constant. This arbitrariness can be lifted
for instance by specifying x;, as an integral operator acting in the space of functions orthogonal
to the constant function. The constant function is an eigenfunction of the integral operator s,
with zero eigenvalue. This follows from the relation:

dpso(r1) = /ng(rl,rg)évsg(rg)drg (8.34)

and from the fact that a constant potential variation dvs,(r) = C does not produce a density
variation. Thus we have:

/ng(rl, I'2)dI'2 = 0 (835)

This also immediately follows from equation 8.33 using the fact that G;, projects on the space
orthogonal to ¢;,. From the above relation 8.35 it clearly follows that equation 8.32 has no unique
solution for x;,! as adding a constant to x,, gives another solution for equation 8.32. However
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choosing a specific constant (which amounts to choosing a gauge for the potential) cannot influence
the calculations. Keeping this in mind, we may write:

dig )

(?;’7(5'?)) = 0o /Gia(rl’r4)¢i0(r4)Xsal(r4’r3)dr4 (8.36)
and it follows that:

0750 (T1,T2) _ ik * G -1 d 1 2)* 8.37

TR Z —fictiy(r2) | Gig(r1,T4)dis(Ta) X5y (TasT3)drs + (1 4> 2) (8.37)

As one can readily verify the left hand sides of the above equations indeed do not change when
adding a constant to x5, . To find an explicit expression for the above functional derivatives we
must find an expression for the inverse density response function x,, . In order to do this we make
the following approximation to the Greens function (see Sharp and Horton [34], Krieger et al. [35]

)

Gig(r1,12) = 7=—(0(r1 — r2) — Pig(r1)di, (r2)) (8.38)
where Aé;, is some mean energy difference. Just as the exact Greens function of equation 8.30
the above approximate Greens function projects orbital ¢;, to zero which garantees condition 8.35.
This approximate Greens function yields the following expression for the density response function

Xso*

Xso(r1,T2) = o (r1)d(ry — ra) — be(r1, 1) (8.39)
where
s (e1) = N 2 g )P (5.40)
and
bole1,5) = 37~ 22 g 01) Pl 1) (5.41)
Aéiq

The inverse of this function is derived in the appendix using an approximation which fixes the
arbitrary constant (i.e. the gauge of potential vs, ) so that vs, — 0 in infinity. It is given by:

-1 5( r2 —r3 |¢w r2 | |¢ka(r3)|
Xso (£2,75) = = = &) T Z o (e (e (8.42)

where the . are given by:

- 2fic ;3 o\
Mik = NG (I—-N )ikl (8.43)

fori,k =1,..., Ny — 1 and matrix N is given by:

0'_
k_

2 g 10 g 2
Ai'; / — | |¢k D g, (8.44)
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fori,k=1,..., N, — 1. With the above equation for the inverse density response function and the
approximate equation for the Greens function we find using equation 8.36 that:
6¢i(r’ (rl) 500’

i = = 202 [ 01 ) = o e (00) )5 (.52

22 1o 0) (o 1. 53) = [ 1 (e0) P e, ) (5.49

The last integral can be worked out as:

|¢w + Z ]k/ |¢w rq | |¢]tr(r4)| dr4|¢k(r3)|2

a(,(rg)

[ 110 05 (e1, ) e =

- Z e Beetral (5.46)

where
&= (I = N°)! (8.47)
We now define:

1 5
Agw

Kw(rl,rg) _ Zfzkkbka ) +Z ]k|¢]0(r1)| |¢ka(r3)| ) (848)

ag(rl)a(,(rg)

where we for notational convenience define £, and 17, to be zero for ¢ or k equal to N,. This is a
real function ( K, = K;; ). We then have:

i (r1)

= =y K; / 4

(500(1'3) ¢w(r1) za(rlar3)6aa (8 9)
and similarly:

5¢;k /(rl)

— =L = 7 (r1)Kig(r1,13) 0507 8.50

590—(1'3) ¢ ( 1) ( 1 3) ( )

This formula can be used to calculate the functional derivative of all explicitly orbital dependent
functionals. Using the above expressions we find:

5780" (rl ) r2)

No
Spe(rs) O zi:fi0¢ia(r1)(Kia(r1,r3) + Kig (r2,r3)) bi, (r2) (8.51)

We thus have:

8|75 (r1,12)]?

No
Spelrs) 2050 > fioFio®ie (r1)bio (r1) (Kis (r1,13) + Kig(r2, r3)) b}, (r2)djo (r2)(8.52)
o ij

Due to the d,, term we have:

5930’ (1'1, r2) _ 5950(1'17 r2) S
dpg (r3) dpg(r3)

oo’ (853)
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where

0gso(rirs) _ ooa ., bie(r1) e, (1) (Kio(r1,13) + Kio(r2, 13)) dic (r2) ¢, (r2)
polva) ok polE1)pr (x2)
SR R ) 1) (8.54

Po(r1) po(r2)
If we insert the expression 8.48 for the function Kj;, in the above equations we obtain:

0gs0 (T1,T2)

(5,0(7(1'3) = Sg(rl,rz,l‘g) + Dg(rl,rz,rg) (855)

where S, is a part we will call, for reasons to be explained in the next section, the steplike part
and D, the deltafunction part given by:

S I‘1, ro, I‘3 Z fwfyg 2 ¢Ja(pazf1) (1'1) ¢w Z 2€zk |¢k0’ ;|

2 2 bio(r) gl (r1) $io(r2) B (r2) S5 (1o (x)? | [ro(r2)?] It (rs)?
+%:fwf]0A€ig po(r1) Po(r2) %nkl [ . + ]

and:
SO 9 - 1 SO 9 - 1
D,(ry,re,r3) = §(r1—r3) (hg(rl,rg) _ Gsoil112) 7 2 (;l r2) >—|—6(r2—r3) (hg(rg,rg) _ Gsoel1,12) 7 2 (r1, 1) >(8.57)

where h, is defined as:

2 NZ FioFio Bjo(T1) % (r1) bio (r2) B, (r2)

hy(ri,r9) = -
(F1,72) ag(r1) 5 Aéig po(r1) po(r2)

(8.58)

As we made an approximation for the Greens function in the derivation of dgs. (r1,r2)/dps(r3) one
might ask whether this function satisfies constraint 8.25. One can easily verify that S,(ry,ry,r3) is
not equal to zero unless one uses the additional approximation of Krieger et al. [35] that Aé;, = Aé,
independent of 7. In this approximation the expressions for the functions h, and S, simplify to:

1 |’7sa(r17r2)|2 gsa(rlarZ) -1

he(r1,r9) = T oo (r) pe(t)pa(ta)  po(r1) (8.59)
and
So(ry,ro r3)—MZ¢ (r1)dis(r2) Z2§ [ ()
o y 12, ,00(1'1)00 r2 o o kT P (r3)
[so(r1, ) <= ko ()2 b (€2) 2] |10 (x3)[2
Pg(rl)Pg ry) ZCM po(r1) * po(r2) po(r3) (8.60)
where:

g = (T —M)™" (8.61)
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fori,k=1,..., N, — 1 and zero otherwise. Matrix M? is defined as:
2
f / |¢w | |¢ka( )| dr (862)

fori,k =1,..., N, —1. The deltafunction part in this approximation D, unlike S, does not satisfy
D,(ry,r1,r3) = 0, however it satisfies this constraint in an integral sense:

/Dg(rl,l‘l, I'3)d1‘1 =0 (863)

Some properties of the function S, are readily derived from equation 8.60. Suppose that electrons
at ry and ro are well-separated in different atomic shells with small overlap. In that case the
one-particle density matrix s, (ri,re) will be small and consequently the function S, will also be
small. If on the other hand the two electrons are close together within the same atomic shell then,
because S, is exactly zero for r; = ro, the function S, will also be very small. We can therefore
expect that the largest contribution to S,(ry,ry,r3) for a fixed position r3 is obtained if one of the
electrons is well within one atomic shell and the other electron is at an atomic shell boundary. The
behaviour of S, as a function of rj is determined by factors of the form |@gy (r3)|?/ps (r3) which is
approximately constant if rg is within atomic shell k. The contribution of this factor to the total
function S, is determined by the constants () describing the coupling of the density perturbation
in shell £ with an electron in shell 7. These constants are the largest if - = k. Plots of the function
S, will be presented in section V for the case of the beryllium atom.

8.4 The step structure in the exchange potential

We now will derive an expression for the potential v;°%., using the expression for the functional

dervative of g derived in the previous section. We will for generality not yet make the additional
approximation A¢;, = Aé,. We have:

resp po(r1)po(rs 5950(1'1,1'2)(1 d 8.64
Um,scrrf / |I'1 —I'2| (59(;(1'3) riary ( . )

Inserting the expression for the functional derivative of gs we find:

U;?ssg"a /:0(7 i :0(7 r2 So (rlvrQar3)dr1dr2+ /MDU(I'Mr2ar3)dr1dr2(8.65)
1 — o r1 — 12

The part containing S, yields:

/,00' r1)po(r2) Sy(r1,ro,r3)dridry = §7w1a|¢la(r3)|2 (8.66)
|I‘1 — I'2| 1,12,13 1ars — l 0,0-(1‘3) .
where
N, * * N,
_ = fz'trf'(f ¢j0(r1)¢i(r(r1)¢ia(r2)¢'a(rQ) o = o |¢Im(r1)|2 |¢Im(r2)|2
e = %: Agzir |ty — 13 : [_%il 2 ( aq(ry) * aq(r2) )] dr1dr2(8.67)

So the S, term leads to a steplike function given by equation 8.66. Within shell [ this function is
almost constant and equal to the value w; given by equation 8.67. If we now denote:

1 6E:v . ¢7,0’ I ¢k0'(r2) *
R o ) RT3 R oA Z/ fie SIS (5%
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which is equal to the orbital dependent potential within the Hartree-Fock approximation (except
for the fact that we do not use Hartree-Fock orbitals) and further define

N, 2 Ny
2fic Vie(r io (T El z Uw(rl)pztr(rl)
W) = 3 — 2o LieT)ldiw ) _ ]AV : (8.69)
i Aé;q aa(rl) Ez 7 Fiapitr(rl)
which is similar to the Slater potential [101] except for the energies A¢€;, and where
pio (r1) = fig|$i(r1)[? (8.70)
then we can write:
N, Ny—1
22 10 _ 0 2 10 T N0\ — T ~
Wi f le ic + Zn Ww - Z A{ - N )ill(Wi(r - Uia) (8'71)
10
where
i = [ i 00l 1) P (5.72)
and
Wio = [ Wole1)|io (1) P (5.73)
Now the deltafunction part of vz, gives:
a r g r
/'0 |I‘11—pr2|2 o (r1, 1o, r3)dridry = Wy (r3) — vg sere(rs) (8.74)

This is the difference of two long range potentials both having a Coulombic —1/7 behaviour and it
therefore decays faster than Coulombic. In the approximation Aé€;, = Aé, this difference is exactly
zero. So we find:
Ns—1 2
Wig | ig (T
U;?ssgra(rl) = Z wc|l¢z((fr(1)1)| + Wa (1‘1) - vx,scra(rl) (8.75)
i g

This gives for the exchange potential:

resp s ww|¢w I'1)|2
Uﬂw(rl) = UCE,SCT(rl) + Ux,scra( ) + Z (8'76)
ag 1‘1
So we find from this equation:
Ny—1
- " 1 A¢
Vzoi — / 2 | |¢“’(r1)| dr) = o ZwlgNh (8.77)
2 fi

On the other hand it follows from equation 8.71 that

Ny—1

o 2 _
Y Njw, = —Jikg (Whko — Uko) + Wio (8.78)
A€y

So we obtain:

Ugoi — Wirf - _(Wirf - @ia) - =3 (879)
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and we have:

2fic _
Wig = _%(vxai - vio) (880)
€io

So our final exchange potential is:
27]:\70——1 Aéio’ (61:02' - 62'0),0730(1'1)
No
S S i (1)

The first term in this equation is the term derived by Sharp and Horton [34]. The second term
was derived by Krieger et al. [35] in the additional approximation Aé€;, = Aé,. This additional
approximation then leads to the exchange potential of Krieger, Li and Iafrate [35]:

Uw(rl) = Wg(rl) +

(8.81)

N, Ny—1 ,— _
KLI o = 'Uz'(r(rl)pirf (1'1) a ('Um(rz' - Uia)pi(r(rl)
Vpe (r1) = Xi:—pg ) XZ: ) (8.82)

If we multiply equation 8.81 by va ?(A&;y) ' pis(r1) and integrate over ry one can easily show that
our approximate v, satisfies:

Ugom = Umo (8.83)

where m = N, corresponds to the highest occupied Kohn-Sham orbital ¢,,,. This equation is
exactly valid within the so-called optimized potential model (OPM) [33, 36] exchange potential and
also for the approximate exchange potential vX*! [35] which follows directly from our derivation
by putting Aé€;, = Aé,.

8.5 Results

In this section we present some numerical results obtained from the optimized potential model
(OPM) [33, 35, 36]. The OPM-orbitals and exchange potential v& M ([{py}]; 1) = veo ([{p9TM}]; 1)
are obtained by putting the correlation functional equal to zero and minimizing the exchange-only
Kohn-Sham energy functional. This leads to an integral equation for the exchange potential which
is equal to the functional derivative of the exact exchange functional evaluated at the OPM electron
density pdFM.

In figure 2 we plot the function g2FM(ry,ry) — 1 for the case of the beryllium atom. As in the
Be atom only s-shells are occupied this function only depends on the radial distance 71 = |r;| and
r9 = |re| of electrons 1 and 2 from the atomic nucleus and not on the angle between vectors ry and
ro. This is a convenient feature for analysis. As Be is a closed shell atom g, is equal for up and
down spin gs+ = gs. From figure 2 we can see that g, (r1,72) — 1 is close to —1 if 7 are 7 within
the same atomic shell. This is an effect of the Pauli-principle, the probability that two electrons
of the same spin are close together is small. If the two electrons are in different atomic shells (
the boundary between the 1s-shell and 2s-shell is at a radial distance of about one bohr ) then
gso(r1,72) — 1 is close to zero.

In figure 3 we plot the S, part of equation 8.60 of the functional derivative dgsy(r1,72)/dps(73)
as a function of ro and r3 = |r3| for the Be atom where r; = 0.1 bohr which is well within the
1s-shell. As we can see from this figure S, is small when the other electron at radial distance ry is
either situated in the 1s-shell or in the 2s-shell. This function only becomes large when electron 2
crosses the boundary between the 1s- and the 2s-shell at a radial distance from the atomic nucleus
of about 1 bohr. However this function is then only large when rj is also located within the 1s-shell
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Figure 8.2: The screening factor gs,(r1,72) — 1 as a function of the radial distance r1 and ry to the
atomic nucleus of electron 1 and 2 for the beryllium atom

Figure 8.3: The functional derivative dgss(r1,72)/0ps(r3) as a function of the radial distance ry
and r3 to the atomic nucleus. Electron 1 is located at a distance r; = 0.1 bohr from the atomic
nucleus
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Figure 8.4: The exchange potential with corresponding screening and screening response parts as
calculated within the optimized potential model (OPM) and within the Krieger-Li-Iafrate (KLI)
approximation for the beryllium atom

Figure 8.5: The exchange potential with corresponding screening and screening response parts as
calculated within the optimized potential model (OPM) and within the Krieger-Li-Iafrate (KLI)
approximation for the krypton atom
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and within this shell S, is almost constant as a function of r3 clearly displaying the step structure.
We now turn to the exchange potential. In figure 4 we plot v?FM and v"¢P.OPM and their

T,5cr0o T,sCro

sum and the corresponding ones vistC{ng and v;?ng LI from selfconsistent solution of equation 8.82
for the beryllium atom. The terms vistC{ng and v;?ng LI are defined as the first and the second

term of equation 8.82. In figure 5 we present the same quantities for the krypton atom. As we

can see from these figures the vg PM and vf, LI are so close that they can not be distinguised on
the scale presented. Also the step potentials v;’fjg’,:gp M and vgfjg’,:fu are very close, the largest

difference being constant within the 1s-shell. The most striking difference between the OPM and
KLI exchange potential is the smoothing of the intershell peak at the atomic shell boundaries in the
KLI exchange potential. This difference is not the most important difference from an energetical
point of view, as for the energy the atomic core region is the most important. This is most easily
seen from the Levy-Perdew relation [22]:

Ey[{po}] = Z/Umtr(r) (3po(r) + 1+ Vpg(r))dr (8.84)

which relates the exchange potential to the exchange energy. This relation is not exactly satisfied
by the KLI exchange potential as an approximation is made to the functional derivative of E, but
the error is within 1% [35]. For approximate exchange potentials based on separate approximations
for the vy s¢ro and the v[%P — part it is therefore important to obtain accurate values for the steps

T,scro
resp - . .
in v;%L., in the atomic core region.

8.6 Conclusions

In this paper we analyzed the structure of the atomic Kohn-Sham potential. The exchange-
correlation potential was written as the sum of two terms, one term containing the coupling con-
stant integrated pair-correlation function which represents the long-range potential of the exchange-
correlation hole, and one term, containing the functional derivative of the coupling constant inte-
grated pair-correlation function, which is short ranged and displays a distinct atomic shell structure.
An explicit expression for the exchange part of this functional derivative was derived using an ap-
proximation for the Greens function of the Kohn-Sham system. Properties of this function are
analyzed and plots are presented for some atomic systems. It is shown that dgs,(r1,r2)/dp,(r3) is
small when electrons at r; and ry are close together or when they are in the middle of the same
or different atomic shells. This function is the largest when one of the electrons at r; or ry crosses
an atomic shell boundary and as a function of r3 it is proportional to p;,(r3)/ps(rs) which is the
electron density of atomic shell ¢ in which point r3 is located divided by the total electron density.
As a function of r3 we therefore see a steplike behaviour, dgs,/dps(r3) is constant within the atomic
shells and changes rapidly at the shell boundaries. This behaviour is induced in the short range
part of the exchange potential. The other part of the exchange potential is monotonous, has a
Coulombic long range behaviour and does not show any distinct atomic shell structure [108]. The
natural splitting of the exchange and exchange-correlation potential in these two parts has impor-
tant implications for obtaining accurate approximations for the Kohn-Sham potential. Different
strategies can be developed to approximate the long and the short range part separately. This
can improve one-electron energies, the ionisation energy and density dependent quantities such as
dipole moments. A full discussion of the this is deferred to a subsequent paper [130].
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8.7 Appendix:The inverse density response function

We will derive the expression for the inverse density response function x,!. We first split up x,,.
as:

(5(1’2 — 1'3)

a0 (12) + ¢y (ro, r3) (8.85)

Xso (T2,T3) =

where ¢, is a function to be determined. For this function we find using equation 8.39 the following
equation:

d(r; —r3) = /Xsa(rlarQ)X;(fl(r%r?))er =

bs(r1,r
5(1‘1 — I'3) — % + ag(rl)cg(rl, I'3) — /bg(rl,rg)cg(rg, I'3)d1'2 (886)
So we find:
bo’ (1'1, I'3) 1 /
a 9 = bo’ ] (2 [} d 8.87
¢y (r1,13) 20 (1) (1) ) (r1,r2)cy(ra, r3)drs ( )
If we further define:
dg(rl, 1'3) = Qy (rl)ao— (rg)cg(rl, 1'3) (888)
we have
dg (T2,
dy(r1,13) = by(r1,r3) +/ oty T2)do(r2,13) (8.89)
aa(rZ)
If we insert the expression 8.41 for b, we find:
N, N,
o 2 o o 2 o
da(rlar?)) = fl |¢w(1‘1)| |¢w 1'3 |2 +Z fl. |¢w(r1)| aw(r?)) (890)
where
o dy(r2,
aix(r3) [ ic (x2) s (r2 I‘?’)cllc'z (8.91)

ag 1'2
If we insert into the above formula the expression 8.90 for the function d, we obtain a system of
N, equations for the functions «a;,:

N

Uig 1'3 ZN |¢ka(r3)| + aka(r?))) (892)
k

where

o 2k / [Bio (r2) Plbeo (r2) 2 ) (8.93)

kT Ay aq(r2)

A general solution to the equations 8.92 can now be found. As the functions |¢;,|? are only finite
in number the most general expression for the «;, is a linear combination of N, of these functions:

(0773 1'3 Zﬂzk|¢ka I'3)| (894)



4LV MaiedJL W A4LAAVUVU V4L VAL 44V L 44l 444 JAVAL Y A a Al WJiar4adve 4 L AN L A4 dd

This immediately gives an equation for the matrix 37 :

Bir = Z it Bk (8.95)

or if we denote the matrices by 4% and N7 :
B =N (T-N°)'=(T=N°)'N° = (F—N°) ' — T (8.96)

The above equations assume that the inverse of I — N7 exists. This is necessary to find a unique
solution for the coefficients 5. However as discussed the inverse X5 is only defined up to a
constant and, as discussed below (I — N7) ! does not exist, we cannot specify x;, uniquely unless
we make a special choice for this arbitrary constant. We return to this point after we have obtained

our final expression for x,,'. So we find:

d I'1,I‘3 Z"?zk|¢w I'1)| |¢ktr(r3)| (8'97)

where the ), are given by:

o 2f'0 o
Nik = _Aézw (dix + Bik) (8.98)

where 37, is one of the solutions of equation 8.95. We then have our final expression for the inverse
density response function which is however still not unique:

-1 6 1'2 - I'3 |¢w | |¢ka(r3)|
Xso (I‘Q, I'3) aa r2 + Z Nik Ga(rz)aa(r3) (8'99)

Now we adress the question of the invertability of I — N?. From equation 8.93 it follows that:

No
Y N =1 (8.100)
k
SO:
No _ _
ST -N)yp=0 (8.101)
k

From this equation it follows that the columns of matrix I — N are linearly dependent and so
this matrix has no inverse. Consequently the approximate density response function s, has no
unique inverse. As discussed this is due to the fact that inverse is only determined up to an
arbitrary constant. From the equation of the inverse density response function 8.99 one can see
that x,, (r1,r2) goes to a constant if ry or ry goes to infinity. This constant is determined by the
orbital density of the highest occupied Kohn-Sham orbital |¢x, |? as it has the slowest exponential
decay of all orbital densities. We can therefore fix this constant by requiring that:

lim . (r;,ry) =0 (8.102)

‘I‘ﬂ—)OO

This property can be satisfied by restricting the sum over the orbital densities in the equation 8.41
for the function b, to the first N, — 1 orbitals. In this approximation x,, has an inverse and the
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derivation of this appendix can be carried out in a similar way. One finds for x;,' expression 8.99
in which N, is replaced with N, — 1 with matrix nj, given by:

2fioc 17 ov—1

9 =———(I —N?); 8.103
which is a matrix of dimension N, — 1. Note that the approximation used here is equivalent to
the approximation used by Krieger for the second part of the exchange potential in equation 8.82
where the summation is restricted to N, — 1 orbitals. This then leads to the fulfilment of the exact
constraint 8.83 by the approximate exchange potential.
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Chapter 9

A self-consistent approximation to the
Kohn-Sham exchange potential

A scheme of approximation of the Kohn-Sham exchange potential v, has been proposed, making use
of a partitioning of v, into the long-range Slater vg and the short-range response v;..s, components.
The model v,’,’é‘;g has been derived from the dimensional arguments, which possesses the proper
short-range behaviour and the characteristic atomic-shell stepped structure. When combined with
the accurate vg, v,’,’é‘;g provides an excellent approximation to v?7M. With the GGA approximation
to vg, v,’?é‘s’g provides an efficient DFT approach which, for the first time, fits closely the form of the
accurate exchange potential and yields reasonably accurate exchange and total energies as well as

the energies of the highest occupied orbital.

9.1 Introduction

Efficient approximation of the Kohn-Sham exchange potential v, remains one of the important
problems of the density functional theory (DFT) [35, 49, 131, 32, 121]. v, is defined in the DFT
as a functional derivative of the exchange energy F,[p] with respect to the density p(r)

_ 0B, p]
Ux(I') - (5p(1‘)

In the one-electron Kohn-Sham equations (Hartree atomic units will be used throughout the paper)

(9.1)

—%VQ + Veat (r) + vn (r) + vz (r) + ve(r) | dir) = €ihi(r) (9.2)

v, represents the local effect of exchange, the dominant part of the electron correlation, while the
external v.,; and the Hartree vy potentials represent the electrostatic interaction and v, is the
effective potential of the electron Coulomb correlation.

Figure 1 illustrates the typical behaviour of v, with the exchange potential of the optimized potential
model (OPM) [33, 91, 37] for Mg. v, is finite at the nucleus position

vz (r) = const (r=0) (9.3)
it has the Coulombic asymptotics [33, 35, 57, 31]
1
vg(r) — T (Jr| = o0) (9.4)

149
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Figure 9.1: The OPM exchange potential and its components for Mg

and it possesses the shell structure, i.e. a non-monotonous dependence on r with the small peaks in
the regions between the atomic shells [35, 33, 50, 93]. Taken together, these features of v, present
considerable difficulties for its efficient approximation.
Recent progress of the DFT is due to the generalized gradient approximation (GGA) [50, 95, 44,
43, 47, 96] that gives a remarkable improvement to the exchange-correlation energies of the local
density approximation (LDA) [11, 97, 98, 99]. It was shown [49, 32, 121, 92, 94|, however, that
the standard GGA exchange potentials do not possess the proper asymptotic behaviour and shell
structure. The corresponding gradient corrections add little to the LDA exchange potential.

For the analysis [108] and approximation [35, 121] of v, it appears very useful to separate the
Slater potential vg [101]

A
p Ir2 g:v p] 7'1,7'2) ]dFQ (95)
|71 — 72

as an individual part of v;. In equation 9.5 g, is the exchange pair-correlation function, which can
be expressed in terms of the occupied Kohn-Sham orbitals ¢;(r)

gz([pl;r1,1r0) =1 — = ZZ ¢i(r1) ¢y r2)¢*(r1)¢](r2)

G 00
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The separation of vg follows naturally from the expression of F, in terms of vg

By =5 [ ployos(rydr (9.7)

Differentiation of equation 9.7 with a proper account of 9.5 represents v, as a sum of vg and the

additional potential v;4p, an integral of the linear "response” of g, % [6]

g(r) = v5(r) + Vresp(T) (9.8)

The potentials vg and v,es, have rather distinct, characteristic behaviour [121, 108] and Figure
1 clearly illustrates this with the v$"™ and v,%pr components of the OPM exchange potential
IOP M [33, 91, 37]. wvg is an attractive potential, which accumulates the Coulombic asymptotics

(eqn. 9.4) of the total potential v,

vg(r) — —m (Jr] = o0) (9.9)
It is rather smooth and does not display the pronounced shell structure.
Contrary to this, vyesp is repulsive and short-range. Remarkably enough, it exhibits very clear step
function behaviour [108]. As it has been shown in [132], the steps of v, originate from the corre-
sponding stepped structure of the ”response” 695%,’;)2) as a function of r3. One can see from Figure
1 that the abovementioned small intershell peaks of v, are evidently built in by the superposition
of the stepped form of v,¢s, on the smooth vg.
This specialized behaviour makes desirable the modelling of v, with the direct individual approx-

imation of vg and vyes. In this paper a model vmod ig derived from the dimensional arguments,

resp
which represents vy, as the statistical average of the orbital energy contributions. v,’?’é’;g possesses
the properties and closely reproduces the behaviour of the accurate potential. When combined with

the accurate functional vg, v,’?;‘s’g provides an excellent approximation to vf PM A more practical

approximation is obtained with v,’,’é‘;g and the GGA [44] approximation to vg. Contrary to the
standard GGA schemes, the latter combination provides both the proper form and eigenvalues of

the one-electron potential and the reasonable estimate of atomic F, and the total energies Ej;.

mod
resp

9.2 A model potential v

As a starting point for our model we use an approximate equation of Krieger, Li and Iafrate
(KLI) [35] for the OPM exchange potential v9FM. OPM neglects the electron Coulomb correlation
and its Kohn-Sham equations have the form [33, 35]

—%V2 + Vert(r) +vp(r) + vp(r)| di(r) = €ii(r) (9.10)

The ground-state OPM wavefunction is the Slater determinant of the eigenfunctions ¢; of 9.10,

so that the components UOPM and vOPM of UOPM have the form 9.5 and 9.8 with g, built from

resp
these functions. In [35] the very accurate approximation to vOP M

equation

was defined with the following

KLI |¢z r
v (r) ) + Z ) (9.11)
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In equation 9.11 vg is the exact functional 9.5,9.6 and the second term is the statistical average of
the orbital contributions w;, the latter being the difference between the expectation values of the
potential 9.11 and the Hartree-Fock exchange operator v,; for the orbital ¢;

w; = / 16 (1) P[00 M (x) — i (r)]dr (9.12)
Vgi (1) = — F1 Z¢] /¢*|7“12_¢12| 7 (9.13)

Note, that for the highest occupied orbital ¢ the expectation values of vdFM

thus providing the zero value of the corresponging parameter wy

and vy; are equal [35],

wy =0 (9.14)

The second term of equation 9.11 offers a promising form for the model v,frégg. Because of the

integral kernel 9.13, straightforward evaluation of 9.12 requires laborious calculation of the two-
electron integrals with the orbitals ¢;. However, with the suitable approximation for w; one can
develop an efficient model

N (1 2
o) = 3wl (9.15)
=1

w; can be calculated, for example, as the orbital expectation values of some local potential vy,

w; = /|¢z v (r (9.16)

chosen as the best local approximation of the difference [v,(r) —vzi(r)]. In this paper an alternative
approach is presented. We propose to use the model 9.15 with the orbital contributions w; being
approximated by a function of the orbital energies of eq.2. The form of this function is chosen to
provide the gauge invariance, the proper scaling and the short-range behaviour of v;’é‘s’g.

According to the gauge invariance requirement, addition of a constant to the eigenvalues ¢; should

not alter w; values. To satisfy this requirement, we choose w; to be a function of the difference
(n — &)

w; = f(p—€) (9.17)

where p is the Fermi level of a given system, which is equal to the one-electron energy of the highest
occupied orbital, u = ey.
The exchange potential 9.1 and its components vg and v,¢sp have the following scaling property

vz([pAl; T) = Avg([p]; Ar) (9.18)
where

pA(x) = Ap(Ar) (9.19)
while ¢; has the scaling property

eiloa] = Neilp(r)] (9.20)

To provide 9.18, the function f from eq.24 should scale as follows
FO (=€) = Af (1 =€) (9.21)
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and so we find the square root of (u — €;) to be the proper scaling function f

w; = f(p—€) = K[p]vVi— € (9.22)
By the definition, 9.22 satisfies the condition 9.14. Owing to this, the highest occupied orbital ¢y

does not contribute to the numerator of 9.15, thus providing the short-range behaviour of v,’,’é‘;g

d |¢( )2
Uresp(r) = K[p ]Z\/ Z( ) (9.23)
i=1
As a result, our model potential 9.23 possesses the gauge invariance, the proper scaling and the
short-range behaviour.
K|[p] in equation 9.23 is a numerical coefficient, which can be determined from the homogeneous
electron gas model. For the gas of a density p the exact vy, of €q.9 has the form

k
Uresp = i (9'24)
where kg is the Fermi wavevector
kr = (3n2p)3 (9.25)

Putting v,’?;‘s’g of eq.30 to be equal to 9.24, one can calculate K,. For the homogeneous electron gas

the Kohn-Sham orbitals and eigenvalues of eq.2 are given by

L ik
~(r) = —=e"" 9.26
i (r) N (9.26)
where V' is a volume of the system and
]{72
6= o+ valo] + velo (9.27)
The Fermi level is given by
k%
p=—-+vz[p] + vclp] (9.28)

2

Inserting the above expression in equation 9.23, we obtain

Vyeoy = \fpv > kR (9.29)

|k|<kp

A replacement of the sum in equation 9.29 by an integral yields
K kr
mod _ g 2 1.2 2 _
Uresp(r) - \/i(—?fr)?’p/o VkF k*dnk*dk =

Kk /\/— ) 31K,
1 — 2222%dg = 9 koo 9.30
2f 2(27)2 e = 16v2 ¢ (9:30)

From equations 9.24 and 9.30 the K value is defined by
8v2

9 372

~ 0.382 (9.31)

which is valid for the homogeneous electron gas of an arbitrary density.
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9.3 A self-consistent scheme with vﬁgg

We propose to use the model 9.23 within the self-consistent scheme, in which the Kohn-Sahm
equations 9.10 are solved with the following approximate exchange potential

v (r) = vg(r) + ™K, 1) (9.32)

T resp

where vg is the Slater potential 9.5 or its suitable approximation. The resulting Kohn-Sham orbitals
are used to calculate the total energy, with the exchange energy being calculated from equation 9.7
with the self-consistent potential vg. The electron-gas value K, of equation 9.31 can be chosen as
the universal parameter of v,’?é’;g for all systems. Another option is to determine K self-consistently
from the requirement, that the Levy-Perdew relation [22]

B, = [ Bp(x) + rVp(e))op ! (x)dr (9.33)
should yield the same value of E, as eq. 7 with the potential vg
Be = [ 1360) + 190l (1) + Kool R@)e = 5 [ plryos(e (9.34)

i)
R(r)=> Vi—« o) (9.35)
=1

From the requirement 9.34 it follows the expression for K|p]

Kudld) = 7 (9:36)
1= [ Gt +r9p()Jusdr (9.37)
= / 3p(r) + rVp(r)|R(r)]dr (9.38)

In order to develop an efficient DFT scheme with 9.32, an appropriate approximation to vg of eq.9.5
is needed. One can use, for example, the weighted-density approximation (WDA) [125, 133, 123,
126] for the pair-correlation function g, which guarantees the correct asymptotics 9.9 of vg. In
this paper we use a more practical model of vg, which is obtained from the GGA of Becke [44, 121].
In [44] the exchange energy density €;(p;r)

E, = /ex(p; r)dr (9.39)
of the second order of gradient expansion
4,3 301
e’ " (pir) = —p3(r)[5 ()% + aof] (9.40)
= 2%(Vp(r) )2 (9.41)

is modified with the correction function f of the argument ¢ 3 sinh™! £ >

G prr) = A5+ aof (€ s~ € (9.42)
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ATOM Be Ne Mg Ar Ca Zn Kr Sr Cd Xe
o) 10305 | 0.342 | 0.384 | 0.365 | 0.389 | 0.381 | 0.381 | 0.397 | 0.388 | 0.386
MGG 10803 [ 0.518 | 0.536 | 0.463 | 0.478 | 0.440 | 0.440 | 0.453 | 0.432 | 0.428

Table 9.1: Values of the parameter K. obtained within the self-consistent scheme for potentials

A
v;nod(S’) and U;nod(GG )

1
1 + 6ao3 sinh™' €3

F(¢2sinh1e7) = (9.43)
Using equations 9.7 and 9.39, one can derive from relation 9.42 the corresponding approximation
for vg
2eGGA (s 1) A 3

GGA _ Ps — _ 3 3(—=
() = T =l mi3( )
This potential has the proper scaling 9.18, the correct asymptotics 9.9 and for the fitted value
ap = 0.0042 it yields rather accurate estimate of F, via the integral 9.7. The results of the self-
consistent calculations within the proposed scheme will be discussed in the next sections.

+ 2a0 f(£2 sinh ! £2)¢] (9.44)

wl=

9.4 A comparison of the self-consistent potentials

In order to test the proposed self-consistent scheme, the comparative exchange-only atomic calcu-
lations have been performed for the closed-shell atoms Be, Ne, Mg, Ar, Ca, Zn, Kr, Sr, Cd, Xe.
The exchange potentials v, compared can be subdivided into two groups, depending on whether

the accurate functional vg 9.5 or its GGA approximation U?GA 9.44 is used as the Slater potential

in 9.32. The first group includes the single vg (i.e. in this case vy, is neglected in 9.32), v 0d($)

which is a sum of vg and v°?% calculated in both variants with K. and K g, and vfg) PM The second

resp
GGA , mod(GGA) GGA
S Uz S

b

group includes the single v v , which is a sum of v and v,’,’é‘;g calculated with either

K. or K4, and the total exchange potential 0G4 of the standard GGA approximation [92, 44].
The results are also compared with those obtained with the KLI potential 9.11.

To investigate a quality of the GGA approximation 9.44 to vg, in Figure 2 ngA calculated self-
consistently as a part of UfGA and U?GA obtained with the neglect of v,.s, are compared with
vgp M and vg obtained with the neglect of v,.g, for Ne and Mg. It is

calculated as a part of v9FM
OPM does not influence on the Slater part of the exchange

T
interesting to note, that the neglect of vy,

gp M and vg are hardly distinguished from each other on the scale presented.

potential, so that v

Contrary to this, the neglect of vffgz;“ makes ngA visibly more attractive than the corresponding
part v§G4 of 9G4,

One can also see from Figure 2 the appreciable local deviations of ngA from vg. For both Ne and
Mg the former is more attractive than the latter within the regions of 1s— and 2s— shells and less
attractive in the intershell region. At longer distances (not shown here) all the potentials presented
have the same Coulombic asymptotics 9.9.

The local deviations of ngA from vg clearly manifest themselves in Table 1 where the atomic K,
values for vy °d(5) and Vg od(GGA) are presented. For all atoms (with the exception of the lightest Be
and Ne) K. values obtained with the accurate functional 9.5 are rather close to the electron-gas

constant K, = 0.382. However, substitution of vg for ngA leads to a great overestimation of the
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Figure 9.2: Slater potentials calculated self-consistently as the parts of the OPM and GGA exchange
potentials and also obtained with the neglect of v,¢s,. a) Ne and b) Mg
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ATOM | —EQIM | viflh | vl (Kye) | vyl (Ky) | neglect of vyegp
Be 14.572 0 0 0 11
Ne 128.545 0 1 0 44
Mg 199.612 1 2 2 79
Ar 526.812 2 3 4 109
Ca 676.752 2 4 4 146
7n 1777.834 4 6 6 258
Kr 2752.043 4 5 5 288
Sr 3131.533 4 7 7 324
Cd 5465.114 6 6 6 419
Xe 7232.121 7 12 11 450

Table 9.2: Comparison of overestimates (in mHartrees) of the OPM total energies EoF ™M [40, 36]
(the latter are given in Ha calculated self-consistently with the exact functional vg and various
approximations to vresp

integral I1 of 9.37. As a result, K. value for Be calculated with ngA is 2.6 times as large as that

calculated with vg. The overestimation decreases rapidly with the increasing atomic number. Still,
even for Xe K. for U?GA is about 1.1 times as large as that for vg.
The analysis of the contributions to I; shows, that the major part of the abovementioned overesti-
mation comes from the region close to the nucleus where U?GA exhibits the largest deviations from
vg (See Figure 2). The success of the GGA approximation is due to the fact, that the exchange en-
ergy integrals 9.7 with ngA are very close to those with vg, the typical error is only about 0.1show
that not a high local quality of GGA approximation, but an incredibly precise cancellation of local
errors for the integral 9.7 provides this success. For the integrals of the type 9.37 associated with
the Levy-Perdew relation this balance is destroyed, which leads to the overestimated K. values
(See Table 1).

mod(S)

To analyse a local quality of the proposed model 9.23, vresp ~ with the parameter K. and

mod(GGA) OPM | KLI

Uresp with K, are compared for Ne and Mg in Figure 3 with v;p.,", ves, with the param-

eters w; from 9.12 and also with the corresponding potential vﬁpr, the latter has been obtained
from the total exchange potential v$¢4 of the GGA [92, 44] by the subtraction of its Slater part
ngA (eq.9.44). In this case GGA gives considerably worse approximation than in the case of the

Slater potentials discussed above. Due to the inclusion of the uncompensated Laplacian terms,

vﬁg]f has incorrect Coulombic divergence at nucleus, being proportional to —% (32, 92]. At large
distances it has incorrect Coulombic decay, being proportional to % Furthermore, vfeg’;;q does not

display the shell structure at intermediate distances, thus exhibiting large local deviations from
OPM
v

resp *
Contrary to this, the simple model 9.23 provides a good fit to vﬂpr and to a more complicated

. mod(S mod(GGA
f(eSLpI Both potentials v,«esp( ) and v,«esp( )

and they reproduce well a height and a width of the individual shell steps of v
differences being constants within 1s-shell.

In Figure 4 various self-consistent approximate exchange potentials are compared with vgp M The
Slater potential vg is everywhere more attractive than v9M and the former can be considered as

a satisfactory approximation to the latter only at larger distances where both potentials have the
same Coulombic asymptotics. At r < 1 a.u. the neglect of the repulsive potential v,¢s, leads to the

have the proper short-range behaviour

OPM
resp

approximation v
the largest
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OPM

resp. With various approximate response potentials. a) Ne and b) Mg

Figure 9.3: Comparison of v



Sl MLAJd VAL A L LAY V4L L 44 L ALJ JAV VUV VLWAL LY V4 AL LJAVv 4 S LAY L L4 A4d LU

substantial overestimation of the exchange effect.
The GGA [44] offers a more balanced approximation to v, though the abovementioned defects

of its components U?GA and v&G¢4 clearly manifest themselves in the total potential vl,GGA. In

resp
particular, it has incorrect long-range asymptotics —r% and it is not attractive enough in the outer

region. However, due to the divergence of its component vG%4 at the nucleus and the overattrac-

resp
tive character of ngA in the region close to the nucleus, v&¢4

. strongly overestimates the exchange

effect in this region. At intermediate distances v¥%4 smooths away the clear shell structure of
OPM
vy M

The self-consistent scheme of Section produces potentials with a higher local quality of approxi-
mation to UQQPM. One can see from Figure 4 that U?Od(s) with the components vg and v

. . d(S) . . .
an excellent approximation to v¢"M. ;" ) is very close to v?FM at any distance and in the

major intervals they are even hardly distinguished from each other. The main difference is that
the approximation 9.23 smooths away the small peaks of vOM. However, this difference does not
seem the very important one, since these peaks appears to be a minor detail of the stepped shell
structure of v9FM (See Figures 1,4).

xr
d(GGA) .
v’ ( ) with the components ngA

mod
resp 15

mod
resp

mainly due to the defects of v$¢“4 discussed above. Nevertheless, the replacement of UﬁgpA for v;’;‘s’g

improves the short- and long-range asymptotics of the approximate potential and makes more clear
its shell structure. As a result, vy 0d(GGA) i finite at the nucleus and has the proper Coulombic

asymptotics at longer distances (See Figure 4).

and v shows a worse local quality of approximation,

9.5 Calculations with the accurate Slater potential

Tables 2,3 present the total E;,; and exchange F, atomic energies calculated self-consistently with
vg and various potentials vyegp, namely, with vﬂpr , vf(estl , v,’?égg, the latter has been calculated
in both variants with K,. and K,, and also with the neglect of v;.s,. In all these approaches
the energies are calculated with the same functional 9.5-9.7, so that the corresponding energy dif-
ferences are caused exclusively by the differences in orbitals and densities generated with various
exchange potentials. It is of no surprise, that the OPM E;, values [40, 36, 94] are always the
least ones presented in Table 2. The OPM potential is defined within the variational method and
so it provides the true minimum of Fy, calculated within the one-determinantal approach with
the exchange functional 9.5-9.7. The inclusion of the proper v, is of importance for a quality
of calculated Ej,;. The neglect of v,.4, leads to the considerable errors, the error of Ey,; obtained
with the single vg increases with the increasing atomic number and reaches 0.45 a.u. for Xe.
One can see from the Table, that the model 9.23 provides an excellent approximation to v,(,)e}s)pM as
regards the total energy. It is not too sensitive to variations of the parameter K and calculations
with either K. or K, yield the same energies as a more complicated KLI approximation. E;
values obtained with vg and v,’?é’;g are only by a few milliHartrees higher than those of the OPM.
The corresponding error increases (though non-monotonously) with the increasing atomic number,
but even for Xe it is about 0.01 a.u. It means that the addition of 9.23 considerably improves a
quality of the Kohn-Sham orbitals and density, which becomes very close to those of the rigorous
OPM.

Because of the overattractive character of vg, calculations with the neglect of v,¢s, yield too nega-
tive E, (See Table 3). Addition of the approximate repulsive potentials v,.s, overcompensates this

error and makes the self-consistent E, values more positive than EQPM [37] (the only exception is



e 44 MViJL/L VLYWL L 4JA Yy 4L 4448 4 AV LALLVAL AL AR S L N e

OPM

= with various approximate exchange potentials. a) Ne and b) Mg

Figure 9.4: Comparison of v
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ATOM | —EQPM | 320 [ v (K.) | vl (K,) | neglect of vyesp
Be 2.666 -1 2 14 -49
Ne 12.107 9 ) 30 -200
Mg 15.992 10 11 9 -305
Ar 30.182 8 41 63 -436
Ca 35.209 ) 40 30 -525
Zn 69.647 78 95 60 -1030
Kr 93.875 65 88 90 -1101
Sr 101.974 58 59 14 -1177
Cd 148.963 | 123 150 123 -1536
Xe 179.173 119 218 199 -1591

Table 9.3: Comparison of differences (in mHartrees) of the OPM exchange energies ESTM [37]
(the latter are given in Hartrees) an self-consistently with the exact functional vg and various

approximations to vy.esp

ATOM | —QFM Vi iy | Uil (Kse) | vab (Ky) | neglect of vyesp
Be 309 0 1 6 -17
Ne 851 2 21 30 -61
Mg 253 1 5 5 31
Ar 591 2 18 21 -47
Ca 196 1 10 10 -29
Zn 293 1 -14 -14 -64
Kr 523 1 20 20 -44
Sr 179 1 12 10 -30
Cd 265 0 2 1 -65
Xe 456 1 23 22 -40

Table 9.4: Comparison of differences of the OPM energies of the highest occupied orbital e

OPM (
N

n

mHartrees) [40, 36] and those, calculated self-consistently with the exact functional vg and various

approximations to vresp
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E, for Be obtained with v,{(eSLpI ) and much more close to the latter. A comparison of Tables 2 and
3 reveals another type of compensation. In all cases the errors of E, are compensated with those
of the opposite sign in other parts of the total energy, so that Ey, errors are much smaller than
those of E,. In most cases the E, errors of the model 9.23 are somewhat larger (though of the
same magnitude) than those of KLI.

The most important one-electron energetical characteristic of the Kohn-Sham theory is the energy
en of the highest occupied orbital ¢x. For the exact Kohn-Sham potential €y is equal to minus
the ionisation energy I, of the system [134, 31], and in the exchange-only case ey has the same
meaning through the Koopmans’s theorem [135, 35]. Table 4 represents ey values obtained with
vs and various vpesp. It follows from the Table, that in the case of the orbital energies ex the
qualitative trends are the same as in the case of the exchange energies discussed above. In spite of
its correct asymptotics 9.9, the single vg always has too negative ey values.
Addition of vy.s, compensates this error. By the construction, both vf,(estI and v,’?;‘s’g

tially in the region of ¢ location, because ¢ does not contribute into the numerators of 9.23 and
the second term of 9.11, while contributing into the density p in the denominators. The resulting

decay exponen-

exponential tails of v,’,’é‘;g and v,{(estI produce the compensating repulsive contribution to ey. Ad-
dition of v,’?é’;g even has an overcompensating effect, because the approximation 9.23 always (with

the only exception of Zn) overestimates a value of the parameter wy_1 for ¢n_1, the next to the
highest occupied orbital. As a result, v,’?é‘s’g becomes more positive than vf(estl in the outer valence
region (See Figure 3) and yields more positive ey values than those of KLI (the only exception is
en of Zn), the latter are virtually the same as the OPM ey. However, the corresponding errors
are not large and in both variants with K. and K, vary within 0.01 - 0.03 a.u.

The present results show, that the self-consistent scheme with vg and v;’;‘s’g can be used as a very
good approach to the OPM. The variants with K,. and K yield results of the same quality, so
one can use a more simple variant with the universal electron-gas parameter K, for all systems.
Because of the exact functional vg, the scheme requires calculation of the two-electron integrals
with the orbitals ¢; and the required computational time per iteration is approximately the same as
in the case of KLI. However, the replacement of vf(estl for v,’?é‘s’g greatly accelerates the convergence
of the self-consistent procedure. The ratio of iterations before the convergence in KLI and in the
present scheme varies within 6-12 for the noble-gas atoms from Ar to Xe and within 12-18 for the
alkaline-earth atoms from Mg to sr. As a result, the proposed scheme takes about an order of
magnitude of the computational time as small as KLI.

Still, to develop a practical DFT scheme, one should approximate not only v,.s,, but also vs. The

results of calculations with the GGA approximation to vg will be presented in the next section.

9.6 Calculations with the GGA approximation to vg

Tables 5,6 represent F;,; and E, values obtained with the GGA approximation 9.44 to vg with and
without the response potentials vf’;g’;;q and v,’?}z‘s’g. All these energies are calculated with the same
standard GGA energy functional, for which the variationally derived vf’;f]f‘ yields the minimal Fyg;.
However, because of the approximate nature of this functional, ES¢4 are not bound to EQFM
from below and in the most cases the former are too negative (See Table 5). On the other hand,
similarly to Table 2, calculations with the neglect of v, yield too positive Ey, values. In the
latter case the corresponding error increases monotonously with the increasing atomic number, the

only exception is Zn.
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ATOM | —EQFM [ wiih | v (Kye) | vl 5F(K,) | neglect of vyesp
Be 14.572 6 34 12 21
Ne 128.545 -45 -30 -29 35
Mg 199.612 -21 3 -5 78
Ar 526.812 11 33 26 141
Ca 676.752 -2 27 15 149
Zn 1777.834 | -287 -272 -268 33
Kr 2752.043 -60 -39 -41 269
Sr 3131.533 -48 -19 -23 298
Cd 5465.114 | -79 57 60 364
Xe 7232.121 2 35 25 463

Table 9.5: Comparison of differences (in mHartrees) between the OPM total energies E2FM [40, 36]

and those, calculated self- v and various approximations to vyesp

GGA
S

ATOM | —EQPM | o 7P | vl F(Ky.) | v F(K,) | neglect of vyesy
Be 2.666 14 44 -10 -73
Ne 12.107 20 -36 -122 -359
Mg 15.992 20 25 -92 -406
Ar 30.182 59 93 -13 -520
Ca 35.209 27 97 -39 -606
7n 69.646 -76 -138 -303 -1375
Kr 93.876 76 95 -83 -1277
Sr 101.974 61 91 -128 -1332
Cd 148.963 126 189 =27 -1688
Xe 179.174 167 314 100 -1714

Table 9.6: Comparison of differences (in mHartrees) between the OPM total energies EQTM [37]
and those, calculated self-consistent v¢

GGA

and various approximations to vyesp
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ATOM | —{FM Viorn | Vel (Kse) | vob(Kg) | neglect of vpegp
Be 309 128 29 8 -15
Ne 851 396 128 98 9
Mg 253 104 19 6 -30
Ar 591 249 57 43 -23
Ca 196 80 15 6 -34
7n 293 102 -19 -25 -74
Kr 523 218 42 33 -31
Sr 179 72 12 5 -38
Cd 265 95 -6 -13 -82
Xe 456 187 35 28 -34

Table 9.7: Comparison of differences of the OPM energies of the highest occupied orbital QM (in

mHartrees) [40, 36] and those, calculated self-consistently with ngA and various approximations

t0 Vpesp

Addition of v,’?é‘s’g considerably reduces the error, the only exceptions are Zn in both variants with
K. and K, and Be in the variant with K,.. Ej, for Be obtained with K is much closer to ng M
than that obtained with K., because of the overestimation of K. in the GGA discussed above. In
general, however, both variants yield the very similar E,;, values, which are of the same accuracy
as those of the standard GGA. The absolute error, induced mainly by the GGA approximation to
vg, vary largely for different atoms, the typical value is of a few centiHartrees and the maximal
(and the exceptionally large) one is 0.3 a.u. for Zn.

In the complete analogy with the case of vg, calculations with the single ngA yield too negative
E, values (See Table 6). Addition of the approximate vz, considerably compensates the corre-
sponding error. In the case of v,?g;‘ and v,’,’é‘;g with K. this leads even to overcompensation and
for the most atoms FE, are too positive, while in the case of v,’?é’;g with K, the compensation is not
enough, thus producing too negative E, (the only exception in the latter case is Xe). In general,
all the schemes with the approximate v,.,, yield E, values of a comparable accuracy.

The self-consistent scheme with ngA and v,’?;‘s’g shows a definite advantage over the standard
GGA in calculation of ey (See Table 7). As it was indicated in [36, 32] and one can see this from
the Table, the GGA greatly underestimates the absolute magnitude of ex. Due to the incorrect
asymptotics of its response part (See Figure 3), |ex| values of vG¢4
compared with the OPM values and are very close to the LDA ones. On the other hand, the single
0§94 overestimates |ex| (the only exception is Ne), though the corresponding errors are consider-
ably smaller.

Addition of U,f’égg with K. to vg overcompensates this effect and produces comparable errors of the

are about twice as small as

GA + ,Umod

opposite sign. The ey values of the potential (v§ resp

the best approximate ones and the closest to E%P M

It follows from the above analysis that the self-consistent scheme with v§¢4 and v,’,’é‘;g provides
the same accuracy for the total and exchange energies as the standard GGA scheme [44] and con-
siderably improves the form and the eigenvalue ey of the one-electron potential. Bearing in mind
high quality of the presented results, we propose U;’wd with the components ngA ;’;‘s’g
efficient approximation to v;. The variant with K, provides a better fit to the accurate v;s, and
it is also simpler than that with K., so the electron-gas value K, can be recommended as the

universal parameter for the many-electron calculations.

) obtained with K, are in most cases

and v as an
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9.7 Conclusions

In this paper a scheme of approximation of the Kohn-Sham exchange potential v, has been pro-
posed, making use of a partitioning of v, into the Slater and response potentials. The model v,’?é’;g
has been derived from the dimensional arguments, which possesses the proper short-range behaviour

and the characteristic atomic-shell stepped structure. When combined with the accurate vg, v;’;‘s’g

provides an excellent approximation to vf PM With the GGA approximation to vg, v,’?’é’;g provides
an efficient DFT approach which, for the first time, fits closely the form of the accurate exchange
potential and yields reasonably accurate exchange and total energies as well as the energies of the
highest occupied orbital.

Still, we have to mention appreciable errors, which are introduced with the GGA approximation to
vg. For example, the typical error of the calculated total energies is increased from milliHartrees to
santiHartrees with the replacement of vg for ngA. So, in order to provide a better practical DFT
scheme, one should improve, first of all, a quality of vg approximation. In particular, the present
GGA approximation shows considerable deviations from the accurate vg in the region close to the
nucleus. A promising way of vgwd refinement is to construct it not as a function of p and Vp, but
as some function of the orbital densities |¢;|> and their gradients.

To test a quality of the developed v;’wd approximation, the exchange-only atomic calculations
have been performed in this work. Our main goal, however,is to apply this approximation for
the exchange-correlation molecular calculations. For this purpose one can use v;’wd either as an
independent exchange part of the approximate exchange-correlation Kohn-Sham potential vP" or
as the basic functional form for approximation of the total vy.. Within the former approach v7°?
is inserted in the Kohn-Sham equations 9.2 together with some approximation for the Coulomb
correlation potential v., the latter is to be constructed independently. Then, the exchange energy
is calculated via 9.7 with the self-consistent density and vgm’d, while the correlation energy is cal-
culated with the independent functional, which corresponds to v..

An alternative approach is based on the fact, that v, is the dominant part of v, and the exchange
energy density €, is the dominant part of €;.. To approximate the total v,. and €,., one can use the
same models v7°? and v,’?’é’;g with other parameters chosen to fit the available accurate exchange-
correlation Kohn-Sham potentials [32, 74, 78, 79, 80]. The work along both abovementioned lines
is in progress.

Acknowledgements: This investigation was supported in part by the Netherlands Institution
Fundamenteel Onderzoek der Materie (FOM).
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Chapter 10

An analysis of nonlocal density
functionals in chemical bonding

In this work we carry out an analysis of the gradient corrected density functionals in molecules that
are used in the Kohn-Sham density functional approach. We concentrate on the special features of
the exchange and correlation energy densities and exchange and correlation potentials in the bond
region. By comparing to the exact Kohn-Sham potential it is shown that the gradient corrected
potentials build in the required peak in the bond midplane, but not completely correctly. The
gradient corrected potentials also exhibit wrong asymptotic behaviour. Contributions from different
regions of space (notably bond and outer regions) to nonlocal bonding energy contributions are
investigated by integrating the exchange and correlation energy densities in various spatial regions.
This provides an explanation why the gradient corrections reduce the LDA overbinding of molecules.
It explains the success of the presently used nonlocal corrections, although it is possible that there
is a cancellation of errors, too much repulsion being derived from the bond region and too little
from the outer region.

10.1 Introduction

In the last few years considerable progress has been achieved within density functional theory [5]
in the calculation of molecular [70, 71, 122] and solid state [47, 136, 137] properties by the use of
nonlocal density functionals. The use of these nonlocal corrections gives an overall improvement of
the results obtained by the local density approximation (LDA). This is especially true for energy
quantities such as bonding energies in molecules. The successes are not restricted to simple covalent
molecules (cf. the G1 and G2 sets [70, 122]) but also occur for more complicated cases where the
conventional ab-initio Hartree-Fock method fails notoriously such as in multiply bonded molecules
and particularly in the field of transition metal chemistry [71]. Although numerical calculations
clearly show that the nonlocal corrections do work, not much understanding has been gained in
why and how they work. There are several questions left unanswered. Why do the nonlocal correc-
tions always reduce the bonding energies of molecules? What do molecular Kohn-Sham potentials
look like and do the nonlocal corrections give a good representation of these potentials? How can
the correlation effects (left-right correlation) in dissociating molecules be incorporated in gradient
corrected density functionals and their potentials? Why does the Becke correction for exchange,
that has been devised to yield good (Hartree-Fock) exchange energies in atoms, change LDA bond
energies not towards Hartree-Fock but (close) to exact bond energies? An understanding of such

167
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questions might lead to the construction of still more improved density functionals which is not
only of theoretical but also of practical importance.

In the literature little attention has been paid to the question why the nonlocal corrections

improve the energies. It has been argued [70, 138] that the improved bond energies due to the Becke
functional [44] are due to the improvement of the asymptotic behaviour of the exchange energy
density. However in a clear paper by Engel et al. [49] it was shown for the case of atoms that
the correct behaviour of the Becke exchange energy density is only reached at very large distances
where it has almost no effect on the energy. Moreover these authors constructed a functional which
did not satisfy the correct asymptotic property but which yielded even better atomic exchange
energies. Whether the correct asymptotic behaviour of the Becke functional is responsible for the
improved bond energies is therefore an open problem which we will investigate more closely in this
paper.
The paper is divided in the following way. In section 10.2 we discuss the properties of the exact
molecular Kohn-Sham potential based on calculations of the hydrogen molecule. We then discuss
how the left-right correlation shows up in the potential. In section 10.3 we discuss the properties
of the potentials of two widely used nonlocal functionals namely those of Becke [44, 139] and of
Perdew [45]. It is shown that these potentials are characterised by a peak in the bond midpoint
region. In section 10.4 we analyse the exchange and correlation energy densities of the Becke and
the Perdew functionals and give an explanation for the fact that the nonlocal corrections reduce
the bonding energy in molecules. In section 10.5 we then give a numerical analysis of the bonding
contributions of the nonlocal functionals. This is done by integrating the exchange and correlation
energy densities of Becke and Perdew over specific spatial regions of some diatomic molecule. We
finally present a summary and conclusions in section 10.6.

10.2 Left-right correlation and the exact Kohn-Sham potential

In order to improve on existing density functionals it is very helpful to know how molecular Kohn-
Sham potentials look like. Especially the knowledge on the correlation potential is very limited.
There is however one molecular system for which the correlation potential can be accurately calcu-
lated and in which correlation is very important. This sytem is the dissociating hydrogen molecule.
For a general molecular system with N electrons the Kohn-Sham equations are given by:

(5 72+ 055 m)a(r) = eti(r) (10.1

where the electron density p is given by the sum of orbital densities:
N
p(r) =D [ti(r)]” (10.2)
i

The Kohn-Sham potential %9 is usually split up in the following way:

/
p(r
VS lin) = o) + [ a0 (103)
The first term in this equation is the Coulomb attraction of the atomic nuclei and the second term
is the repulsion of the electronic cloud. The last term, the one we are interested in, is the exchange-
correlation potential which is the functional derivative of the exchange-correlation functional. For a
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spin restricted two-electron system such as the hydrogen molecule in its ground state the occupied
orbitals can explicitly be expressed in the electron density as ¢; = \/p/2 . Substituting this in the
Kohn-Sham equations then yields an explicit expression of the Kohn-Sham potential expressed in
the exact ground state density:
2
v (r) = (Vp) LIV (10.4)
8 0> 4 p
For a two-electron system e is the highest occupied Kohn-Sham orbital and therefore equal to
the ionisation energy of the system. The above equation gives us the possibility to calculate the
Kohn-Sham potential from a correlated electron density which can for instance be obtained from
an accurate configuration interaction (CI) calculation. This has been done by Smith et al. [140]
for the helium atom. A different approach to obtain the Kohn-Sham potential has been used
by Buijse et al. [86] who carried out a thorough investigation of this potential for the hydrogen
molecule at various distances. For comparison in the next section we stress some points of their
results. The basic quantity in the analysis of Buijse et al. is the conditional probability amplitude
®(rg,...,ry|ry). defined by:

\I/(I‘l, e ,I'N)
p(r1)/N

where WU is the ground state wavefunction of the system. The amplitude gives a description of the
(N — 1)-electron system when one of the electrons is known to be at position ri. The amplitude
squared gives the probability that the other electrons are at positions ro,...,ry if one electron
(the reference electron) is known to be at position ry. All the correlation effects of the system are
contained in this quantity. These correlation effects especially show up in the case of the hydrogen
molecule when we move the position of the reference electron along the bond axis from one atom
to the other atom. Due to the Coulomb correlation of the electrons we have that if one electron is
known to be at a given atom then the probability amplitude is large that the other electron will
be at the other atom. This changes rapidly when the reference electron crosses the bond midpoint
region because in that case the other electron has to switch quickly from one atom to the other
atom. A quantity which measures this change in conditional amplitude (the so-called left-right
correlation effect) as we move our reference electron is the so-called kinetic potential defined by:

O(rg,...,rylry) = (10.5)

1
Vpin(r1) = 5/|V1c1>|2czr2...drN (10.6)

This potential is clearly positive definite. The origin of the name of this potential stems from the
fact that it contributes to the kinetic energy of the system which is given by:

8/ Vo)l 4 -I—/p Yopin (r)dr (10.7)

This follows dlrectly from the definition of the kinetic energy and formula 10.5. Note that the first
term in the above formula is the von Weiszicker kinetic energy Tyy[p] which for a two-electron
system is equal to the Kohn-Sham kinetic energy T[p]. The term with vy, therefore contributes
to the Kohn-Sham exchange-correlation energy of the system. As has been shown in reference [86]
Ukin 18 also an important constituent term of the Kohn-Sham potential. By numerical calculation
the following properties of the kinetic potential were observed [86].

First of all this potential is peaked on the bond midpoint. As a result of this the total exchange-
correlation potential is also peaked in this region. This peak in v, is not surprising from its defi-
nition. The changes in the conditional amplitude as we move our reference electron is the largest
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in the bond midpoint region as explained before. Secondly the peak in the kinetic potential gets
higher when we dissociate the molecule. This is also what one expects since the left-right correla-
tion effects grow stronger as we dissociate. This can also be seen from the well-known Hartree-Fock
error for a dissociating system. The Hartree-Fock one-determinant wavefunction upon dissociation
no longer gives a right description of the division of the electrons over the atomic fragments by
putting too much weight on ionic terms [17].

Knowing the behaviour of the Kohn-Sham potential in the bonding region of molecules one might
wonder whether these peculiar properties are well represented by the presently used nonlocal gradi-
ent corrections. We will show in the next section that both the Becke and Perdew potentials exhibit
peaks in this region in cases of strong left-right correlation. The Becke potential exhibits a positive
peak in this region although the Becke functional is purely derived as an exchange correction and
not a correlation correction. The Perdew potential however, which is derived as a correlation cor-
rection, exhibits a negative peak although not large enough to cancel against the peak in the Becke
potential. The peaks in both potentials are also shown to grow upon dissociation of the molecule.

10.3 Analysis of Beckes and Perdews molecular potentials

In this section we will analyse the properties of both Beckes exchange potential and Perdews
correlation potential. We will start with Beckes exchange potential. The Becke gradient correc-
tion to the exchange energy which belongs to the family of Generalised Gradient Approximations
(GGA) [43, 49] is defined as:

EFp) = Z/péf(wa)dr (10.8)

4
in which o is a spin index and z, = |Vps|/ps. The function f is in the case of the Becke functional
defined as:

:E2

f@) = _ﬁl + 68z sinh~ !z

(10.9)

The constant (§ is given by 8 = 0.0042. This function is chosen so as to satisfy some scaling,
asymptotic and weak inhomogeneity properties [32]. The potential corresponding to ES%4 is given
by (for convenience we leave the spin index out, it simply can be added to the final result):

SE, 4 1 a L d2f
GGA (. _ r = _ 22 J
0ipdidipdjp df  d*f  V?pdf
GiPRGip%ip W _ LTy Y P 10.1
2 |Vp|? (dac xdx2) |Vp| dz (10.10)

i7j

We will now analyse this potential in the vicinity of the bond midpoint region. In that case the
gradients are small and our parameter z is therefore also small. We therefore have:

f(z) ~ —pz? + O(z*) (z 1 0) (10.11)

hence:

% ~ =28z + O(z?) (z 1 0) (10.12)
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and
d>f 2
5 ~ 26+ 0() (z 1 0) (10.13)
Inserting this in the potential formula 10.10 yields:
VZ
vGA (r) = 26~ + 0(1VpP) (10.14)
p3
This yields in the bond midpoint rjs, where Vp = 0, for the Becke potential:
v?
vB(rar) = 0.0106~—~ (10.15)
p3
for the spin unpolarised case (p, = 5). In this derivation we only used the property f(z) ~

z? (z | 0). This requirement originates from the gradient expansion for slowly varying densities
of the exchange energy, for which the gradient correction in the so-called Gradient Expansion
Approximation (GEA) is given by:

BP0 = —ﬁ/ (vi)er = —ﬁ/pngdr (10.16)
p3

This is the gradient correction used by Herman et al. in the Xaf-method [76]. The corresponding
potential is given by:

V2p 4 (Vp)?
oGP (r) = 26 — gﬁ—( /z)) (10.17)
p?) p?)

which is in accordance with equation 10.14. We will analyse the V2p/ p% term a bit further. In
order to do this we consider the case of a homonuclear diatomic molecule. In the dissociation limit
the molecular density can be well approximated by the sum of atomic densities p = pa + pp of
atom A and B. If we use the asymptotic relation ps p ~ Ne *"4.B (r = oo) where ra,B is the
distance to atom A, B we obtain

20 2a
Vip=a’p—"—pas— —pp=ap (rap— ) (10.18)
rA B

and for the height of the peak in the potential in the bond midpoint at large internuclear distance
R p of the atoms:

GGA K

vy " ry) ~ —+ =00 (Rap — 00) (10.19)

p3
where K is a positive constant. We thus conclude that the peak increases at large distances and
even has the unphysical behaviour of becoming infinite in the limit of infinite separation of the
atoms. However at these distances the density decreases faster (p ~ ¢~") than the peak increases
so the effect of this erroneous behaviour of the GGA exchange potential in the bond midpoint
region on the molecular density may still be very small at large bond distances.
At shorter bond distances we cannot make any definite conclusions on the behaviour of the Becke
(and Perdew) potential from the above analysis. For instance from formula 10.14 we can deduce
that the sign of the peak depends on the sign of the Laplacian. In the weak bonding limit this sign
is positive, however at smaller distances this sign depends strongly on the type of bond considered
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which has extensively been studied in reference [102].
We will next discuss the bond midpoint properties of Perdews correlation potential. The Perdew
correlation energy functional is defined by [45] :

EGGA)] :/LC(p)p%x%‘b(p’V”l)dr (10.20)
d(¢)
where ( = pa_ppf” is the spin polarisation and:
ae) =25 (A0t 4+ A=8)8ys (10.21)

2 2

The function C(p) has been obtained from the gradient expansion for slowly varying densities of

the correlation energy of the electron gas [42] and is usually expressed in the Wigner-Seitz radius
3 \ 1
rs = (m) 3 as:

0.002568 + arg + Br?

C(p) = 0.001667 10.22
(0) T+ or2 + 1015, (10-22)
The constants «, 3,7, 6 are given by 0.023266,7.389 x 10~°,8.723,0.472. We finally have:
~C \Y
&(p, [Vp|) = 1.7457 2 [Vl (10.23)

C(p) p%

where f = 0.11. The form of this function is obtained from the wavevector analysis of Langreth and
Mehl [50]. For slowly varying densities the Perdew functional reduces to the gradient expansion
result for the correlation energy (we consider the spin unpolarised case for which d(¢) =1 ):

B9 p] = [ Clp)ptatir (10.24)

Both this functional and the Perdew functional have the same values for their functional derivatives
in the bond midpoint region where Vp = 0. We have:

V2p
P

0G (2r) = ~2C(p)

Wk

In the dissociation limit where the bond midpoint densities are small we have C(p) = C(0) =
0.001667 and thus:

V2p

)

0¥ (ry) = —0.0033 (10.26)

This has the same form as Beckes potential in the bond midpoint region, however with a different
sign. We therefore find a negative peak in the Perdew potential which increases in absolute value
when the molecule dissociates. However, the total nonlocal potential which is the sum of Beckes
and Perdews potentials still has a positive peak in the bond region since the negative peak in
Perdews potential is not large enough to cancel the positive peak in Beckes potential. We have for
the total nonlocal exchange-correlation potential:

VZ
NE(ear) = 050K (1) 4 P (1) = 0.0073 (10.27)
p?)

v
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So in the bond region in the dissociation limit we have a repulsive Becke potential and an attractive
Perdew potential.

We can now ask the question how this behaviour of the Becke-Perdew potential compares with
the exact potential. Let us compare equation 10.27 in the case of a two-electron system with the
exact Kohn-Sham potential of equation 10.4 in the bond midpoint region. In the bond midpoint
we have:

vES(ry) = > L 4 € (10.28)

In contrast to the potential in equation 10.27 the bond midpoint value of the exact Kohn-Sham
potential does not go to infinity if (R4 — 00) but to the positive constant —e (see also [86]) which
can easily be derived from formula 10.18 using @ = 2y/—2¢. This shows that the Becke-Perdew
potential cannot give a good description of the bond midpoint behaviour of the exact potential at
very large bond distances. However for intermediate bond distances it can give an improvement
of the LDA potential but this improvement is only of qualitative nature as the height of the peak
in the Kohn-Sham potential in the LDA+Becke-Perdew approximation has a different functional
dependence on the density than the exact Kohn-Sham potential. In section 10.5 we will present
some numerical examples of the molecular Becke and Perdew potentials. However we will first
address the question of bond energies and analyse the exchange and correlation energy densities in
the bonding region.

10.4 Gradient corrected energy densities

The positive peak in the potential already indicates that adding the Becke-Perdew nonlocal cor-
rections to the local density calculations may in weak bonding cases reduce the bonding energy of
molecules, i.e. give a positive contribution to AFE defined as the molecular energy minus the atomic
energies. We will try to identify the origin of the positive contribution due to the nonlocal correc-
tions by considering the difference between the molecular energy density and the sum of atomic
energy densities.

The exchange and correlation energy densities can be defined as:

€a(r) = %p(r)Vx(r) (10.29)
and
ce(r) = 5p(EVe(r) (10.30)

where V, and V, are the potentials due to the coupling constant integrated Fermi and Coulomb holes
[24] which should not be confused with the potentials v, and v, which are the functional derivatives
of the exchange and correlation functionals. There are however other definitions possible of V, and
Ve. One could for instance define V; to be the potential due to the Fermi hole of the optimised
potential model (OPM) [33, 36] and define V. as the difference between this potential and the
potential due to the coupling constant integrated exchange-correlation hole. In either definition
the potential V, goes asymptotically like —% due to the fact that the Fermi hole integrates to one
electron. The exchange potential potential v, has a similar asymptotic decay. The contribution of
the nonlocal corrections to €, and €, we will in the following denote by e, and e..
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The contribution to the bonding energy AFE of a molecule of the nonlocal corrections to the exchange
and correlation functionals can be written as:

AEN = /5e$(r)dr (10.31)
and
AENL = / See(r)dr (10.32)
where
deg(r) = e (r) = el (r) (10.33)
A
and
A(r) (10.34)

deo(r) = eM Ze
A

in which e and e denote the gradlent corrections to the molecular exchange and correlation
energy den81t1es The functions e2 and e/ denote the gradient corrections to the atomic exchange
and correlation energy den51t1es where the atoms are situated at their molecular positions. In
equations 10.33 and 10.34 the sum is taken over all atoms in the molecule. We will analyse the
energy density difference functions de, and de. for the Becke and Perdew functional. In the bond
midpoint we have that the gradient of the molecular density is zero, Vp™ = 0, and in that case
the Becke and Perdew energy density functions are given by:

4 A2
_ A3 T
(5ex(rM) = EA Bpt3? T G,BmA T A >0 (10.35)

and

C A
Seo(rar) = =3 g2l < (10.36)
” d(¢
We will show in the next section for the example of Ny that de, does have a positive peak in the
bond midpoint region and de. has a negative peak in the same region. Suppose that the main
contributions to the functions de, and de. are found in the bond midpoint region of the molecule.
In that case we would have:

AENL = /6ex(r)dr >0 (10.37)
and

AEN = /6ec(r)dr <0 (10.38)

So we can infer that in the bond midpoint region the Becke functional gives a positive correction
to the bond energy and the Perdew functional gives a negative contribution. The main reason
for the improvement of the bonding energy of molecules by the nonlocal corrections is then the
replacement of a region of nonzero gradients in the sum of atomic exchange-correlation densities
by a region of zero gradients in the exchange-correlation energy density of the molecule.
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There is also another region from where we may expect a positive contribution from gradient
corrections to the LDA bond energy, namely the outer region where the density decays exponentially
to zero. It is well known that the LDA exchange-correlation energy density also decays exponentially
to zero, whereas it should behave asymptotically like —p/2r. From any gradient correction that
builds in the correct asymptotic behaviour, as does the Becke correction, one may expect a positive
contribution to the bond energy from the asymptotic region. In that region, where

en(r) ~ — L (r = o) (10.39)

2r
we have for de, that:

M

A
A )
dey(r) o + Sy =5, (r — o) (10.40)

in which dp = p™ — 3", p# is the deformation density of the molecule. If the deformation density
dp is negative in the outer regions of the molecule then:

dey(r) = % >0 (r—o0) (10.41)

This then contributes positively to AFE,. As may be inferred from elementary considerations re-
garding the relation between the exponential decay of molecular and atomic densities and the first
ionisation energies, dp is usually negative in the outer region of the molecule, but it is also quite
small in that region. On the other hand the region is very large, so it is difficult to make a quanti-
tative estimate of this effect. If the effect is significant we expect the Becke functional to provide
a positive contribution from the outer region, but maybe not large enough since it attains the
asymptotic behaviour at too large distances [49, 32].

To analyse the properties of the functions de, and de. and determine from which region in the
molecule the bonding energy correction originates (bond midpoint region or outer asymptotic re-
gion) we numerically integrated the functions de, and de. in different spatial regions. The procedure
and results will be discussed in the next section.

10.5 Numerical procedure and results

In this section we will carry out a numerical investigation of the energy density difference functions
de; and de.. In order to do this we performed several self-consistent density functional calculations
on some dissociating diatomic molecules using the Becke and Perdew nonlocal corrections. The
bonding contribution analysis is carried out using integration schemes in two different types of
grid. The first scheme uses an integration in prolate spheroidal coordinates in which we integrated
ellipsoidal regions around the molecular bond midpoint and in which the atomic positions coincide
with the foci of the ellipsoid. If the atoms A and B are situated on the z-axis at positions z = +a
then we can define the coordinates wu, v, ¢ by:

cos (¢)
sin (¢) (10.42)

x = asinh(u)sin (v)
)

z = acosh (u)cos(v)

y = asinh(u)sin (v
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As the functions de, and de. are invariant for rotations around the z-axis the ¢-integration just
yields a factor 2. We define further a variable p = cos (¢). The Jacobian in this coordinate system
is given by:

J(u,p) = a®sinh (u)(cosh? (u) — p?) (10.43)

We then want to calculate the following functions:

0l (R) =27 /OU du /11 dpJ(u,p)dek(u,p) (10.44)

where £ stands for exchange £ = z and correlation £ = ¢ and in which R = asinh (U) is the
minor axis of the ellipsoid. These functions which represent the bonding energy contribution of the
exchange and correlation energies within an ellipsoid around the bonding axis are calculated using
Gauss-Legendre integration in the variables u and p.

The second integration scheme uses a cylindrical coordinate system defined by:

x = rcos(p)
= rsin(¢) (10.45)

If the atoms are again situated at positions z = +a on the z-axis then r represents the distance
to the line through the bonding axis which is the z-axis and ¢ describes the rotation angle around
this axis. For this coordinate system we want to calculate the following functions:

5T,(Z) = /_ ZZ dz /0 7 drden(r, 2)J(r, 2) (10.46)

The subindex k again stands for exchange and correlation k¥ = x, ¢ and the Jacobian J is given by
J(r,z) = 2xwr. The functions 61 are again obtained using Gauss-Legendre integration. Using these
two integration schemes it is possible to locate the regions in the exchange- and correlation energy
density differences de; and de, which have the largest contributions to the bonding energy. Using
the elliptic integration we can compare the contribution of the region outside some ellipsoid to the
contribution of the inside and thus determine the importance of the outer asymptotic region. Using
the integration in cylindrical coordinates we can determine the importance of the bond midpoint
region.

In the following we carry out an analysis of the Becke and Perdew functionals in the nitrogen
molecule No. The nitrogen molecule is a typical case of a molecule where the Becke correction
gives a lowering of the bonding energy and where the Perdew correction gives a smaller increase
in the bonding energy. Most molecules (for instance all first and second row diatomic molecules)
exhibit this behaviour. A notable exception is the hydrogen molecule Hy for which both the Becke
and Perdew corrections have a different sign. For the nitrogen molecule an LDA calculation at the
experimental bond distance of 2.07 bohr yields a bonding energy of 11.5 eV which is to be compared
to the experimental bonding energy of 9.9 eV. A self-consistent calculation at the same bond dis-
tance using the Becke correction gives a bonding energy of 10.0 eV and a Becke-Perdew calculation
yields 10.2 eV. We therefore have AEN? = 1.5V and AENY = —0.2 eV at equilibrium distance.
In these calculations we used a triple-zeta Slater Type Orbital (STO) basis set plus polarisation
and as atomic reference we used spin unrestricted nitrogen atoms in which we occupied (according
to Hunds rule) the 2p-shell with three electrons with the same spin. The atomic exchange energy
density is then given by a sum of different contributions from o~ and (-spin electrons. Our results
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Figure 10.1: Becke and Perdew potential around the bond midpoint region for the dissociating
nitrogen molecule at bondlengths of 3.0,5.0,7.0 and 9.0 bohr
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are in substantial agreement with the completely numerical results of Becke [141].

In figures 10.1a and 10.1b we display the Becke and Perdew potential of the nitrogen molecule
along the bond axis around the bond midpoint region for several bond distances. In figures 10.1c
and 10.1d we display the same potentials along an axis perpendicular to the bond axis through the
bond midpoint. As we can see from these figures the Becke peak is larger than the Perdew peak at
each distance and the peaks are increasing in absolute value as we dissociate the molecule. We can
also see that the width of the peak in the direction perpendicular to the bond axis is much larger
than the width of the peak along the bond axis. The total potential (Becke+Perdew) therefore
builds a repulsive wall between the atoms.

In figures 10.2a an 10.2b we display the exchange and correlation energy density difference func-
tions de; and de. for the Becke and Perdew functional along the bond axis for the equilibrium
distance of 2.07 bohr and the larger distance of 3.0 bohr. In figures 10.2c and 10.2d we display the
same functions along an axis through the bond midpoint perpendicular to the bond axis. As we
can see from figures 10.2a and 10.2c the function de; is positive in the bond midpoint region as was
expected from equation 10.35. This positive region arises because the gradient of the molecular
density is zero at the bond midpoint. As the gradient of the sum of atomic densities is also zero
in the bond midpoint this positive region in de, is not the result of density changes due to bond
formation but merely a result of the topological properties of the molecular density. In general de,,
is positive whenever the gradient of the molecular density vanishes. Due to the Al-symmetry of
the molecular density this often happens in points which belong to the invariant manifold of the
molecular symmetry group. In figures 10.2a and 10.2b we can also see peaks in de, around the
nuclei. As the gradient of the sum of atomic densities in the region of one atom is close to the
gradient of the density of the atom itself in this region these peaks can only be explained by density
changes in the atomic region due to bond formation. This point is illustrated in figure 10.3a which
displays the deformation density due to bond formation along the bond axis. We can see from this
figure that the gradients of the deformation density are the largest around the nuclei. We have
therefore identified two possible contributions to the Becke correction to the bonding energy. There
is a contribution from the region around the nuclei which arises from density changes induced by
bond formation and there is a contribution from the bond midpoint region which arises from the
shape of the molecular density. The relative importance of these regions will be discussed below.
Having discussed the properties of de, it is clear that the shape of de. as displayed in figures 10.2b
and 10.2d can be explained in a similar way. The negative peak at the bond midpoint is due to
the zero gradient in the bond midpoint (see equation 10.36) and the peaks closer to the nuclei are
caused by density changes in the atomic regions.

After having discussed the local properties of de, and de,. in different regions of space we will
now investigate how much the various regions contribute to the bonding energy at equilibrium
bondlength using the integration schemes described in the beginning of this section. In figure 10.4a
we display the functions 61, and d1. of equation 10.44 as a function of the length R of the minor
axis of the ellisoid which has the atoms positioned at the foci. As we can see from this figure half
of the nonlocal correction to the bonding energy due to exchange is obtained for R =1 bohr. The
major axis then has a length of 1.44 bohr which therefore extends 0.40 bohr beyond the atoms.
More than about 80% of the bonding energy contribution is obtained at R = 1.5 bohr with major
axis of length 1.82 bohr which extends 0.79 bohr beyond the atoms. The ellipsoid is then just
enclosing the valence region of the atoms. We therefore conclude that it is mainly from the inner
region of the molecule and not from the asymptotic region that the Becke correction originates,
the precise ratio of the contributions depending of course on the admittedly somewhat arbitrary
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Figure 10.2: The exchange and correlation energy density differences of Becke and Perdew around
the bond midpoint region
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Figure 10.3: The deformation density of the nitrogen molecule at the equilibrium bondlength of
2.07 bohr

definition of these regions.

Let us first consider the asymptotic region somewhat more closely. The relatively small contribution
from the asymptotic region, where the expression of equation 10.41 for de, holds, may be related
to figure 10.3b which displays the deformation density along an axis through the bond midpoint
perpendicular to the bond axis. From this figure we see that when the deformation density dp is
negative (which is the case in the outer asymptotic region) it is very small and therefore leads to
a small asymptotic de,. However, the asymptotic contribution is not negligible and we may even
wonder whether the division of the exchange energy over the inner and outer region of the molecule
given by the Becke functional reflects the true situation as there are clear indications that the Becke
functional underestimates the importance of the outer region. It has been demonstrated by Engel
et al. [49] for the case of atoms that the exchange energy density of Becke reaches its Coulombic
behaviour much further from the atomic nucleus (beyond 10 bohr) than the exact exchange energy
density which reaches this behaviour just past the outermost orbital. Also the Becke exchange
potential has a much too small contribution in the asymptotic region [49, 32] which is reflected
in the fact that the LDA one-electron energies are not improved by the Becke potential[32]. The
consequences of the too fast decay of the Becke exchange potential for the asymptotic contribution
to the exchange energy can be inferred from the following definition of exchange energy density.
We define the Levy-Perdew exchange energy density eLengrethPerdew:wavevector 1991 in terms of the
exchange potential v, and the density p by:

ez’ (r) = vy (r)(3p(r) +r- Vp(r)) (10.47)

This exchange energy density integrates to the exchange energy, which follows from a scaling
property of the exchange functional [22].

Bulp] = / oL (r)dr (10.48)

As the LDA+Becke exchange potential is much smaller in the outer region of the molecule than
the exact exchange potential it gives a too low contribution from this region. As a corollary, the
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Figure 10.4: Contributions of the Becke and Perdew functional to the bonding energy in the elliptic
(a) and cylindrical (b) coordinate system as a function of the minor elliptic axis (a) and the Z-
coordinate (b) at the equilibrium bondlength of 2.07 bohr

roughly 20% of the total positive nonlocal contribution to the bond energy that comes from the
outer region (in spite of the small dp in that region) is certainly too low.

Let us next consider the inner region of the molecule. In this region there are two contributions
to the exchange energy, there is a contribution from the bond midpoint region and a contribution
from the atoms. To determine the relative importance of the atomic regions and the bond midpoint
region we integrated de, using the cylindrical coordinate system. In figure 10.4b the functions 61,
and 61, of equation 10.46 are plotted as a function of Z. The integration regions are thus slabs of
thickness 27 perpendicular to the bond axis centered around the bond midpoint. For Z = 1.035
bohr the slab is just touching the nuclei. We can see from figure 10.4b that at Z = 0.5 bohr
which is about halfway the distance from the bond midpoint to the nucleus about half of the Becke
correction to the exchange energy is obtained. If we denote the region Z > 0.5 bohr (somewhat
arbitrarily) as atomic region then we can conclude that about half of the Becke correction is due
to a replacement of high atomic gradients by a region of low molecular gradients (equation 10.35)
around the bond midplane and half is due to changes in the density on the atoms as a result of bond
formation. Note that the peaks in de, around the atoms in figure 10.2 are only seemingly more
important than the bond midpoint peak in de; as they are only restricted to a small area around
the nucleus whereas the bond midpoint peak also has a considerable extension in the direction
perpendicular to the bond axis as demonstrated in figure 10.2c.

About the same conclusions as for Beckes exchange correction can be drawn for Perdews correlation
correction. As can be seen from figure 10.2b the function de. has a somewhat larger extension than
de, into the outer region of the molecule. However from figures 10.4a and 10.4b we still can conclude
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that the bond midpoint region (Z < 0.5 bohr) contributes about half of the nonlocal correlation
correction to the bonding energy.

We may wonder, as we did for the asymptotic region, whether the nonlocal corrections from the
inner region are given correctly by the Becke-Perdew functional. The analysis of section 10.3
indicates that the Becke-Perdew potentials are overestimated in the bond midpoint region and
therefore probably also the positive contribution to the bond energy. This fits in with the suggestion
above that the contribution from the asymptotic region may be underestimated, since the total
Becke-Perdew correction yields quite accurate bond energies. The conclusion that the contribution
from the inner region is overestimated is supported by the fact that for solid state bulk systems
(which of course exhibit no asymptotic region) the Becke correction often overshoots and leads
instead of the overestimation by LDA to an underestimation of the cohesive energy [136, 137].

10.6 Conclusions

In this work we analysed the working of some gradient corrected density functionals in the case
of chemical bonding. From an analysis of the exact Kohn-Sham potential based on the work of
Buijse et al. [86] it follows that the exact exchange-correlation potential is peaked in the bond
midpoint region. This fact can be related to left-right correlation in the dissociating molecule.
It is shown that the Becke-Perdew potential also exhibits a peak in the bond midpoint region
but with a wrong functional dependence on the density which makes this peak go to infinity at
infinite separation of the atoms instead of going to a constant. Then we showed that one important
reason that gradient corrected density functionals reduce the bonding energy in overbinded LDA-
molecules is that these functionals replace a region of high gradients in the sum of atomic exchange-
correlation energy densities by a region of low gradients in the molecular exchange-correlation
energy density around the bond midpoint. This region of zero gradients arises purely due to
the topological properties of the molecular density and is not related to density changes upon
bond formation. We further argued that probably the relative importance of the bond midpoint
contribution as compared to the asymptotic contribution to the total nonlocal correction is not
represented completely correctly by the Becke-Perdew exchange-correlation energy densities. It
appears that the positive contribution from the bond region is overemphasised particularly in weak-
bonding (near dissociation) situations, in keeping with the overestimation of the bond midpoint
peak in the potential in weak bonding situations. On the other hand the contribution from the
asymptotic region is probably underestimated, in keeping with the too fast decay to zero of the
Becke-Perdew potentials [32].

In order to improve upon existing density functionals and to obtain further insight in the relation
between electron correlation and Kohn-Sham potentials we feel one should closely investigate the
relation between the structure of the exchange-correlation potential (shell- and bond midpoint
peaks, asymptotic Coulombic behaviour) and conditional amplitudes. The kinetic potential in
atoms for instance measures the in-out correlation effect and induces some structure in the atomic
correlation potential, just as it reflects the left-right correlation in the peak at the bond midpoint.
It will obviously be very helpful to have exact molecular Kohn-Sham potentials available not just for
the two-electron Hs system but also for general many-electron molecules. This may be feasible with
the procedure proposed in ref. [32]. From there one might endeavour to construct very accurate
exchange-correlation potentials from the density and its derivatives. Work along this line is in
progress.



Chapter 11

Exchange and correlation: a density
functional analysis of the hydrogen
molecule

In this work we analyze the exact quantities T, E, and E. from density functional theory (DFT)
for the dissociating hydrogen molecule.These quantities obtained from configuration interaction
calculations are compared with the approximate quantities within the local density approximation
(LDA) and within LDA with nonlocal corrections (LDA+NL). We also make a comparison of
the densities obtained within LDA and within the Hartree-Fock (HF) approximation. We further
analyze the atomic fragments in the dissociation limit within the LDA and Local Spin Density
(LSD) approximation. We conclude that LDA+NL gives a very good approximation to the exact
exchange and correlation energies at equilibrium distance, but a not so good approximation for
these quantities at large bond distances due to a incomplete cancelation of the Hartree potential
by the exchange-correlation potential in the atomic fragments in the limit of infinite separation.
This error can be corrected by using the LSD and LSD+NL approach. We also demonstrate
that the present correlation functionals do not give a proper account of the correlation energy in
the dissociation limit, an error which is partly compensated by an overestimation of the exchange
energy providing a good total exchange-correlation energy. We will however show that conventional
definition of correlation energy within DF'T is not a useful one in describing the physics of molecular
dissociation but one should rather consider the total exchange-correlation energy to describe the
physical situation. We analyze how several types of density changes due to bond formation affect the
various LDA and LDA+NL exchange and correlation energies, explaining the sign of the corrections
to the bond energy.

11.1 Introduction

Density functional theory [5] has become a very successful method in the calculation of electronic
properties of systems ranging from atoms to molecules [70, 122] and solids [47]. Especially in the
last few years after the the introduction of the so-called Generalized Gradient Approximations
(GGA) [44, 45, 43, 46, 50] or nonlocal (NL) corrections density functional theory has gained wide
popularity within the field of quantum chemistry through its ability to yield very good bond energies
which can compete with those obtained from other correlated quantum chemical methods. It has
for instance been widely applied to the field of transition metal chemistry [71] where many systems

183
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can not be studied by more conventional methods for practical reasons. Observing this large field
of application within chemistry it would be very desirable to investigate whether the physics of
for instance bond breaking is correctly described by the presently used density functionals. Such
an investigation would not only contribute to a better understanding of the physics behind the
phenomena in question but might also lead to the development of more accurate density functionals.
For this reason we calculated the some of the quantities which are used in DFT exactly for the case
of dissociating hydrogen molecule and compare them with the approximate ones obtained from
LDA and LDA+NL. The hydrogen molecule is one of the first molecules used as a test for the LSD
method [142, 143]. Its Kohn-Sham potential has been constructed and thorougly analyzed [86].
An analysis of the exact exchange-correlation energies has however not been presented. Bond
breaking is a specially interesting testcase for the presently used functionals as here correlation
effects (especially left-right correlation effects) are large.

We further want to analyze how the various exchange and correlation functionals (LDA and GGA)
contribute to the bond energy. In order to understand this we also studied the atomic fragments in
the infinite separation limit. A question we like to answer in this paper is why the Becke-Perdew
nonlocal exchange-correlation correction as a rule gives a positive (repulsive) contribution for the
bond energy (as in all homonuclear first and second row diatomic molecules) with the exception
of the hydrogen molecule which is the subject of this paper. In order to answer this question we
analyze how the exchange and correlation contributions to the bond energy are changed by certain
density variations resulting from bond formation.

The paper is divided as follows. In section 11.2 we give a short account of the exact quantities we
want to calculate. In section 11.3 we discuss some properties and give some numerical results for
the atomic fragments in the dissociation limit in order to understand the role of the atomic error in
bond breaking. In section 11.4 we discuss the exact results for the DF'T quantities as a function of
the bond distance obtained from accurate calculations. In section 11.5 we analyze the bond energy
contribution of several exchange and correlation functionals and analyze how they are influenced
by density variations. In section 11.6 we finally present our conclusions.

11.2 Exchange and correlation in density functional theory

In this section we define some of the quantities we will calculate in section 11.4. The energy
functional F, within density functional theory is usually defined by the constrained search approach
of Levy and Lieb [67, 68]:

Eulpl = [ pl)o(e) + Fulo (1L1)
where the functional F7, is defined as:

Filp] = min Tr{D(T + W)} (11.2)
D—p

which minimizes the trace value of the kinetic energy 7' and the interparticle interaction W with the
set of V-particle density matrices D yielding density p. The above formulation is important for the
consideration of degenerate ground states where D can be a linear combination of density matrices
corresponding to pure states within the ground state multiplet. This is of importance for instance
when a molecule dissociates into open shell atoms with degenerate ground states. Moreover E, is
also invariant under unitary transformations within the multiplet of degenerate wavefunctions. We
will return to this point again in section 11.3 when we discuss the infinite separation limit of the
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dissociating hydrogen molecule. The functional F7, is universal in the sense that it can in principle
be calculated for each density p independent of the external potential v. From its definition it is also
clear that F7, is invariant under rotations and translations of the density p, providing important
constraints for approximate exchange and correlation functionals [32]. Within the Kohn-Sham
approach to density functional theory the functional F7, is usually split up as follows:

Rl =Tifol + [ %dd T Bullpl (11.3)

in which 77, is the Kohn-Sham kinetic energy which is the kinetic energy of a noninteracting particle
system with the same density p as the interacting system ,defined by constrained search as:

Tr[p] = min Tr{DT} (11.4)
D—p

If the ground state Kohn-Sham wavefunction can be represented by a pure state density matrix
corresponding to a single Kohn-Sham determinant we will denote 77, by Ts. We will do this for
instance for the hydrogen molecule. As we now have defined all functionals except E,. equation 11.3
actually defines F,.. The Euler-Lagrange equations obtained by minimizing F, with respect to the
density can be written in the form of the well-known Kohn-Sham equations. For future reference
we give the spinpolarized equations with spin index o:

(_%V2 + Us,a(r))¢i,a (I‘) = 6i,a¢i,a(r) (11.5)
where
N
p(r) =D ps(r) =D fioldio(r)? (11.6)
o o =1

where f;, are the orbital occupation numbers (in general fractional for degerate ground states) and
the v 5 is the Kohn-Sham potential:

ry
tur) = o0) + [ Py v (e (11.7
where the exchange-correlation potential v, is the functional derivative of the exchange-correlation
functional E,. with respect to the density p,. We further define the exchange functional as:

1 s.o(r1,T 2
Eulprp) = 5 -5 [ Destoml g (11.8)

o 2 |I'1 —I'2|

where 7, , is the Kohn-Sham density matrix:

No
Ys,0(T1,T2) = Z fio®i »(r1)dio(r2) (11.9)

This is for a fixed density ensemble, i.e. for fixed occupation numbers f;, , a density functional [67,
68] as the Kohn-Sham orbitals and therefore also the Kohn-Sham one-particle density matrix are
uniquely determined by the ensemble density ( an explicit construction procedure has been given
in [32] ). The Kohn-Sham one-particle density matrices corresponding to different ground state
ensemble densities are different and therefore they lead in general to different exchange energies.
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The exchange potential v, ,(r) = dE;/dp,(r) for spherical atoms has the following long range
asymptotic behaviour [49, 35]:

Vg, (1) ~ —frz—’a (r — o0) (11.10)
where f,, » is the occupation of the highest occupied Kohn-Sham orbital. From this formula it
is clear that it depends on the occupation f,, , of the highest occupied Kohn-Sham orbital to
which amount the self-energy is being cancelled. For nondegenerate ground states one always has
fm,oc = 1 and for this case the self-energy is always being cancelled. This has important implications
for dissociating molecules which dissociate into open shell fragments that have degenerate ground
states as will be discussed in the next section.

For closed shell systems we can simplify the above exchange functional as:

1 2
Bap) = -1 [ el o (11.11)

4 |I‘1 —I‘2|

where v, = > 7s,0. Finally the correlation energy functional is defined as:

E.p] = Brelp] — Eulf) (11.12)

Note that the definition of exchange-correlation energy in other quantum chemical methods ,which
we will denote by Wy, differs from the above definition in density functional theory, the relation
being;:

Waclpl = Exclp] — Ticlp] (11.13)

where T}, is given by:

Telp] = Tlp] — Tspl (11.14)

and where T is the kinetic energy functional which for nondegenerate ground states is defined as
the expectation value of the kinetic energy operator with the wavefunction which minimises Fp,
within constrained search, which is just the ground state kinetic energy if we insert the ground
state density. Note that T'[p] is only defined for nondegenerate ground state densities as otherwise
p could be generated by two different degenerate ground state wavefunctions, corresponding to
the same total energy but having different expectation values with the kinetic energy operator [5].
For a density corresponding to a nondegerate ground state W,. is just the expectation value of
the ground state wavefunction with the interparticle interaction operator W minus the Coulomb
repulsion energy. It is readily shown using equations 11.2 and 11.4 that Ty.[p] > 0 so:

Eze[p] = Waclp] (11.15)

We have now defined all the quantities we need for our analysis of the dissociating hydrogen
molecule. In one of the following sections we will compare the above defined functionals T, £, and
E, calculated from accurate Configuration Interaction calculations with those of the Local Density
Approximation (LDA) and with the Generalized Gradient Approximation (GGA) for several bond
distances.
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11.3 The infinite separation limit

For the case of a hydrogen molecule the Kohn-Sham equations (in the spin restricted case) reduce
to the following differential equation involving only the electron density:

1
(=5 V7 + vs([pi )/ p(x) = ey/p(x) (11.16)
The Kohn-Sham kinetic energy is for a two-electron system given by:
1 [ (Vp)?
Tylp] = = / (A/2pN (11.17)
8 P
The exchange functional in this case is then given by:
p(r
= d 1d 11.18
m 4 / |I'1 — I'2| r2 ( )
and the corresponding exchange potential :
OFE 1
vi(lphit) = =5 = —5 plry) dry (11.19)

Som) ~ 2) r—r

which is just minus onehalf times the Hartree potential. So the Kohn-Sham potential becomes:

vs([pls ) 2/| ey e[l ) (11.20)

If we neglect the correlation potential ve then we just obtain the Hartree-Fock equations or the
optimized potential model [33, 35] equations for this two-electron system. This is of course a bad
approximation for cases where correlation effects are large such as in the dissociation limit where
left-right correlation effects are large. In this limit the Kohn-Sham potential can be approximated
by the sum of atomic Kohn-Sham potentials and the Kohn-Sham potential becomes:

vs([pl;r) = vs([palir = Ra) +vs([pBlir = Rp) (11.21)

where the atomic nuclei are on positions R4 and Rp. The last step in this approximation is only
valid in the regions of the atoms and not in the bond midpoint region. In this region the Kohn-Sham
potential v, is small in the dissociation limit and approximating this by the sum of atomic densities
might be a bad approximation. This is reflected by the fact that a peak structure is develops in the
Kohn-Sham potential [86, 90] indicating strong left-right correlation effects. In the region of each
atom we have :

ullp e~ Ra) = vate) + 3 [ £44

r1 +ve([p];r = Ra) (11.22)
Ir — r1|

where v, is the potential of the atomic nucleus. For the hydrogen molecule the atoms are just
the hydrogen atoms which are one electron systems for which the Kohn-Sham potential should of
course just be the nuclear potential v, .It follows that the correlation potential v. should be equal
to minus onehalf the Hartree potential and thus be equal to the exchange potential in this limit.
The Hartree-Fock approximation is obtained by neglecting this correlation potential and therefore
the potential is too repulsive making the electron too weakly bound and the density too diffuse.
This is a well-known error of the Hartree-Fock approximation which is usually solved by doing a
spin unrestricted Hartree-Fock calculation. Let us now turn this Hartree-Fock problem for a more
general homonuclear diatomic molecule. Suppose we consider dissociating closed shell diatomic
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molecule and suppose that in the dissociation limit (where we can neglect the overlap of the atomic
orbitals) we have M, bonding molecular orbitals ¢;, = (gbf}, + ¢,~'§,) /Vv/2 and their corresponding
antibonding combinations ¢;, = (¢ — ¢2)/v/2 ,where ¢Z~AU’B are the atomic orbitals of atoms A
and B, and N, — M, molecular orbitals without corresponding antibonding combinations. Then
the one-particle density matrix v, of the molecule in the region of atom A becomes:

Hri,2) Z(ﬁ (r1) i (ra) + Z —¢ (r1)¢is (r2) (11.23)

= MJ+1

and the corresponding atomic exchange energy becomes:

1 [ |y (rr,ro))?
Bl =Y —- [ 2 drid 11.24
2 |I'1 - I'2| ot ( )

The atom A in this limit has N, — M, degenerate orbitals with occupation number % in the
outermost atomic shell. The corresponding one-particle density matrix can not be represented by
a single determinant but it can be written as:

Ny
Y (r1,12) = 3 wivie(r1,1r2) (11.25)
g

where ;! is the one-particle density matrix correponding to the i-th degenerate configuration in
the N4-fold degenerate ground state multiplet and va 4 w; = 1. The Hartree-Fock solution for the
atom A in the infinite separation limit can be obtained by minimizing the energy:

1
EFHF = Z —5 / V%’yf(rl, r2)|1:2dr1dr2 + /,0(1'1)1)A(I'1)d1'1+

p(r 1 [ |y3(r1, 1) [?
d d — [ =" drid 11.26
2 / |I'1 — I'2| riars Z 2 |I'1 — I'2| riarz ( )

g
where v is given by 11.23. This procedure we will call fractional Hartree-Fock (FHF). We will
present numerical results for this procedure for the case of the hydrogen atom in section 11.4. Ap-
plication of this FHF method leads to an incomplete cancellation of the self-energy for open shell
atoms, which is the cause of the Hartree-Fock error for dissociating molecules.

Before we go further into this point we first discuss the behaviour of the Local Density Approxi-
mation in this limit. Within LDA the exchange energy is given by:

Em[pTapL] = Z_Cm/pa(r)%dr (11'27)

W=

where the constant c; is given by 4(6) . For the spin-restricted case we obtain:

1 1 Cx

4
E, — 3d 11.28
5r g0l =5 [ e (11.25)
The LDA correlation potential is much smaller than the exchange potential so we will neglect this
potential for the moment and make a comparison with the Hartree-Fock approximation. Doing

a restricted LDA calculation for an open shell atom is similar to doing an FHF calculation, one
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Figure 11.1: Minus the Hartree potential and the exchange-correlation potential for the hydrogen
atom from LDA and LSD calculations as a function of the distance from the atomic nucleus

Figure 11.2: Minus half of the Hartree potential and the exchange-correlation energy density for
the hydrogen atom from LDA and LSD calculations as a function of the distance from the atomic
nucleus
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H-atom | LDA | LDA (p.) | LSD |LSD (p.) | KS FHF
¢ -0.2335 -0.2690 -0.5000 | -0.2295
T,,T7F [ 0.4250 | 0.5000 | 0.4666 | 0.5000 | 0.5000 | 0.3578
Ene | -0.9210 | -1.0000 | -0.9656 | -1.0000 | -1.0000 | -0.8437
Ec 0.2828 | 0.3125 | 0.2984 | 0.3125 | 0.3125 | 0.2565
Ei | -0.4457 | -0.4416 | -0.4787 | -0.4776 | -0.5000 | -0.3577
E+NL | -0.4650 | -0.4629 | -0.4999 | -0.4996

E, -0.1931 | -0.2127 | -0.2564 | -0.2680 | -0.1563 | -0.1283
E,+NL | -0.2357 | -0.2588 | -0.2968 | -0.3097
E, -0.0394 | -0.0414 | -0.0217 | -0.0221 | -0.1563

E.+NL | -0.0161 | -0.0166 | -0.0025 | -0.0024
E,. -0.2325 | -0.2541 | -0.2781 | -0.2901 | -0.3125
Ey+NL | -0.2518 | -0.2754 | -0.2993 | -0.3121

Table 11.1: Energies of the atomic fragment in the infinite separation limit

just fractionally occupies each of the degenerate LDA Kohn-Sham orbitals in the outermost atomic
shell. The exchange-only LDA Kohn-Sham potential for atom A is then given by:

pa(ry) _%C_x
valloaliv) = va(e) + [ Z5 dry — 25 par)

W=

(11.29)

Also this exchange-potential gives an incomplete cancelation of the Hartree potential, however
the cancelation is better than in the FHF case. = More important, as has been pointed out by
Gunnarsson et al. [144] and shown in figure 11.1, is the fact that the difference between the LDA
exchange correlation potential and the Hartree potential is an almost constant function. A constant
shift (of about 0.2 a.u. ) in the potential affects the eigenvalue but not the density. Note that
this constancy is approximately independent of the nuclear charge as both the Hartree and the
exchange potential (which is the main part of the exchange-correlation potential) have a similar
scaling property with respect to the nuclear charge.

If we look at the energy expressions in LDA we see a much better cancelation of the exchange-
correlation energy and the electron repulsion than for the corresponding potentials. This has been
displayed for in figure 11.2 where we plot the LDA ( and LSD to be discussed later on ) exchange-
correlation density €, and minus half of the Hartree potential —vg . The most important difference
between a LDA and an Hartree-Fock calculation is therefore the difference in energy expressions
for the exchange energy leading to a better cancelation of the self-energy of the atoms in the
infinite separation limit. The importance of this difference in energy expressions is apparent from
table 11.1 in which we display the several energy terms of the hydrogen atomic fragments in the
infinite separation limit for the self-consistent LDA ,LSD, FHF approximations and for the exact
Kohn-Sham values. To show the dependency on the quality of the density we also included the
LDA and LSD results calculated from the exact density p.. As we can see from this table both LDA
and HF make an error in the electron nuclear attraction energy and in the kinetic energy which are
almost equal but of opposite sign, which leaves a small error. Now we note the importance of the
different energy expressions for the exchange energy. The LDA exchange energy is roughly equal to
the exact exchange-correlation energy, whereas the LDA correlation energy is much smaller than
the exact correlation energy, which leads to a rather good value of the exchange-correlation energy
and a cancellation of the electron repulsion energy. This then gives a good approximation of the
total atomic energy. The HF exchange energy is however only half of the electron repulsion energy
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and therefore gives a bad estimate of the total atomic energy.

The Hartree-Fock results for the dissociating hydrogen molecule can be improved (an in fact will give
the exact limit for this special case) by performing an unrestricted Hartree-Fock (UHF) calculation
in which one breaks the spin symmetry and localizes one spin up electron on one atom and a spin
down electron on the other atom. A similar procedure can be carried out in density functional
calculations using a spin density functionals. A better description than LDA for the dissociated
atom in the infinite separation limit is obtained in the Local Spin Density (LSD) approximation.
This method has been thorougly investigated by Gunnarsson and Lundqvist [127]. In spin density
functional theory one uses different potentials for the spin up and spin down electrons. As in UHF
this leads to a violation of the spin rotational symmetry. Using LSD one can for instance solve the
Kohn-Sham equations for the hydrogen atom containing only one electron with quantum number
S, = £1. Performing a spin rotation which leads to a different mixture of spin densities will give
a different LSD energy. We will now investigate this problem more closely.

The exact ground state solution for the hydrogen atom A at infinite separation ,as obtained from
singlet ground state wavefunction of Hs, is given by:

P(r,s) = \/pa(r)(cials) + c2f(s)) (11.30)

with ¢; = 1/v/2 and ¢ = i/v/2. The ground state energy should not change when we perform an
unitary transformation on the vector (ci,c) and the energy should therefore not depend on the
spinpolarisation [145, 146] of the two degenerate spin states. In general ,if we have an electron
density p which is a linear combination of densities p; = 3, pis corresponding to pure eigenstates
within one M-fold degenerate ground state multiplet, i.e:

M
p(r) = 3 wipi(r) (11.31)

with Zg‘/[ w; = 1, then any density obtained from the above density by a unitary transformation
within the space of degenerate states should yield the same ground state energy. This is an im-
mediate consequence of the definition of the functional F7. This means for the example of the
hydrogen atom that the spinrestricted density which is a linear combination (w; = we = % in
equation 11.31) of the degenerate pure spin up and spin down densities ( (¢1,c2) = (1,0) and (0, 1)
in equation 11.30 ) should yield the ground state energy for the hydrogen atom. As the invariance
property for unitary transformations within the degenerate ground state multiplet is not fulfilled
for the presently used approximate density functionals they do not decribe properly the dissocia-
tion of closed shell molecules into open shell atoms with degenerate ground states. These atomic
fragments in the dissociation limit are spinrestricted atoms with fractional occupation ( as in the
FHF case, see equation 11.23 ) of the degenerate orbitals. This is also true in the exact Kohn-Sham
case for which the corresponding density then corresponds to an ensemble ( see equation 11.31 ) of
pure state multiplet densities which gives the exact ground state energy of the atom when inserted
in the energy functional FE,. The total energies of the dissociated atomic fragments in the LDA
case however are too large, but smaller than the Hartree-Fock ( FHF ) atoms in this limit. As
an unrestricted LSD calculation lowers the atomic energy this yields an improvement of the total
atomic energy although such a correction should not be needed from a theoretical points of view.
From table 11.1 we can see the LSD improvements in the density reflected in the good estimates
for electron nuclear attraction energy and the kinetic energy, leading to a very good estimate of
the total energy especially if the nonlocal corrections are included.

After studying the infinite separation limit we will in the next section study some exact density
functional quantities as a function of the bond distance.



AJ o ALALASLLL ALY AALS LALVLS S LVAVASLAL AL LR ST LN e

Figure 11.3: Electron-electron repulsion energy as a function of the bond distance

11.4 Numerical results

In order to calculate exact Kohn-Sham quantities T, F/; and E,. for the hydrogen molecule we
performed some accurate Configuration Interaction (CI) calculations at several bond distances. We
compare these accurate results with Hartree-Fock and self-consistent density functional calculations
within the Local Density Approximation. The nonlocal exchange functional of Becke [44] and the
nonlocal correlation functional of Perdew [45, 147] where added on top of the LDA calculation
(using the VWN-correlation potential [85] ) in a post-scf manner. The effect of not including the
Becke and Perdew functionals in a selfconsistent manner is negligible [139] as the influence of these
potentials on the density is very small.

We first look at some density dependent quantities. In figure 11.3 we plotted the Coulomb
repulsion energy of the electronic cloud given by:

/ PEIPw) e, (11.32)
ry — 1“2|

calculated from the HF, CI and LDA densities. We can see from this figure that the Coulomb
repulsion energy approaches much earlier the 1/R(R — 00) behaviour, which is just the repulsion
of point charges with charge one, than the HF and LDA densities. That the LDA graph is closer
to the CI graph than the HF graph is in accordance with the result of the previous section that
the HF-density density is the most diffuse one. This fact is supported by figure 11.4 which plots
the electron nuclear attraction energy:

Enelpl = [ pr)o(r)dr (11.33)
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Figure 11.4: Electron nuclear attraction energy as a function of the bond distance

where v is the Coulomb potential of the atomic nuclei. We again can see that the correct asymptotic
behaviour —2 — 2/R(R — o0) is reached much earlier by the CI density, the worst density again
being the HF-density.

Another measure of the quality of the electron density is the kinetic energy T and the Kohn-Sham
kinetic energy Ts. In figure 11.5 we plotted the kinetic energies T7¢! and TH¥ and the Kohn-Sham
kinetic energies T, and T/P4, where Ty is calculated from the CI-density. We can see from this
figure that the graphs of T¢! and T, are very close at all bond distances, the difference being the
exchange-correlation part T of the kinetic energy. The LDA kinetic energy TSLD 4 has a large de-
viation from T at large bond distances which approaches quickly the atomic error in this quantity.
The HF kinetic energy at these bond distances then deviates even more from 7! again reflecting
the diffuseness of the density and the bad representation of the atomic fragments. Note however
that at large distances the LDA and HF errors in the electron nuclear attraction energy and the
kinetic energy are approximately equal and of opposite sign, giving a good approximation for the
sum of those quantities.

In the vicinity of the equilibrium bond distance (1.401 bohr) the errors in the HF and LDA densities
are small and in that case we have a good estimate of the energy terms described above.

In figure 11.6 we plotted the total energies for the CI, HF, LDA and LDA+NL with the nonlocal
corrections of Becke and Perdew added. We also calculated the expection value of the LDA Kohn-
Sham determinant, which is just the HF expression for the energy but with LDA orbitals inserted.
We will denote the corresponding graph by HFLDA. We see that the curves HF, HFLDA and LDA
are very close around the equilibrium distance. Also the CI and LDA+NL are very close in this
bond distance region. At large bond distances all the curves deviate from the CI curve, the worst
ones being HF and HFLDA (the HFLDA a little higher than HF because the LDA determinant
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Figure 11.5: Kinetic energy and Kohn-Sham kinetic energy as a function of the bond distance

Figure 11.6: Total energy as a function of the bond distance
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Figure 11.7: Exchange-correlation energy as a function of the bond distance

Figure 11.8: Exchange energy as a function of the bond distance

L JJ
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does not minimize the HF energy expression). The fact that the LDA curve is so much closer
to the CI curve than the HFLDA curve is mainly due to a different expression for the exchange
energy. The LDA exchange energy gives a better cancelation of the electron repulsion energy in the
atomic fragments than the HF and HFLDA exchange energy which cancel only half of the electron
repulsion energy. As the nonlocal corrections give an additional energy lowering the best curve at
all distances is given by the LDA+NL curve.

To analyze the several exchange and correlation functionals more closely we plotted in figure 11.7
the exchange-correlation energies g, Wy, ELPA and ELPA+NL 35 function of the bond distance.
From this plot we can see that indeed E,. > W, the difference being the exchange-correlation part
Ty of the kinetic energy. At large bond distances F,. and W, approach —FE¢ thereby canceling the
electron repulsion energy. Due to incomplete cancelation of this term within LDA and LDA+NL
exchange-correlation energies we expect the largest errors in these quanties at large separation. We
can see from figure 11.7 that this is indeed the case. Both ELPA and especially ELPATNL give
a very good approximation to the exact Kohn-Sham exchange-correlation energy FE,. around the
equilibrium distance. At larger distances both ELP4 and ELPATNL deviate from the exact Ey.
the difference approaching fast the atomic error in these quantities.

We will now investigate the separate behaviour of the exchange and correlation energies. In fig-
ure 11.8 we plot the exchange energies E,, EXF ELPA and ELPA+NL a5 a function of the bond
distance. We can see the same trends as for the total exchange-correlation energies. We have a very
good description of the exact exchange energy E, at equilibrium distance especially by ELPA+NL
and large errors at large distance. The ELPA+NL exchange will of course approach two times its
value for the spinrestricted atoms in the large distance limit. However one should realize that the
definition of exact exchange as defined in equation 11.8 is not a useful one to describe the physics
of bond breaking as the corresponding exact exchange potential does not contain the complete self-
energy correction of the atomic fragments. This means that the correlation potential which has to
correct this should contain part of the self-energy which gives obviously a rather unphysical descrip-
tion of the correlation energy. As discussed this not only a feature of bond breaking but a general
problem in the calculation of open shell systems within a spin restricted formalism. Let us look
more closely at the correlation energies. In figure 11.9 we plot the correlation energies E., ELP4
and EFPATNL  We can see that ELXPA and EXPA+NL have a very slow variation with respect to the
bond distance. The EXP4 represents the VWN parametrization of electron gas correlation energy
data giving a correlation energy which about a factor two too large in the molecule at equilibrium
distance and in the atomic fragments. Addition of the Perdew gradient correction to the correlation
energy gives very good values for the correlation energy for the molecule at equilibrium distance
and in atoms and is also almost constant as a function of the bond distance. This is not the case
for the correlation energy E. as defined in equation 11.12 .The graph of E. approaches just as E,
the value —%EC at large bond distances and becomes much larger than EXP4 and EFPA+NL | Thig
is due to the fact that F. has to cancel half of self-energy. The approximate functionals EXP4,
which is fitted to electron gas data, and the ECLD A+NL " which is fitted to atomic data, are of course
unable to imitate this behaviour.

In view of the inconvenient definition for exchange and correlation in the dissociation limit it is
better to regard the total exchange-correlation energy. The total exchange-correlation energy of an
atom is a quantity which automatically cancels the self-energy, as the exchange-correlation hole al-
ways will integrate to one electron, also for degenerate ground state wavefunctions. However F,. is
in general still different for different ground state ensemble densities but due to the correct inclusion
of the self-energy these differences are smaller than for the exchange or correlation alone. These
differences in E,. can of course not be avoided as different degenerate ground state wavefunctions
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Figure 11.9: Correlation energy as a function of the bond distance

will in general have different expectation values for any other operator than the total energy oper-
ator. From the above considerations it is clear that for the case of dissociating molecules it is much
easier to find appropriate approximations for E,. than for E, and E. as defined in equations 11.8
and 11.12.

We can therefore conclude that LDA+NL gives a very good description of the properties of the
molecule ( including exchange and correlation energies ) at equilibrium distance. The remaining
errors for LDA and LDA+NL are due to errors in the Coulomb repulsion and in the exchange-
correlation energy and the molecular error is quickly approaching the atomic errors in this quan-
tity. These is however not a problem in practical calculations as a spin unrestricted calculation
with one spin density on one atom gives a good description of the total atomic energy and one can
get good binding curves at all distances using spin unrestricted Kohn-Sham calculations similar
to UHF calculations. This is however unsatisfactory from a theoretical point of view as ,due to
unitary transformations among the degenerate ground states of the exact density functional E,,
spin restricted and spin unresticted calculations on the hydrogen atom should give the same energy.
In the next section we will investigate how and why several LDA and nonlocal (GGA) influence
the bond energy as they do and how this is related to density changes.

11.5 An analysis of bond energy contributions

In this section we will investigate how the various exchange and correlation energy contributions
(LDA and GGA) to molecular bonding energy are affected by certain density changes. We therefore
construct the molecular density of the hydrogen molecule in two steps. First py, which is the sum
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H, LDA KS HF
) P
T, TH" | 1.107 | 0.863 | 1.116 | 1.140 | 1.125
Ene -3.602 | -3.220 | -3.556 | -3.647 | -3.631
Ec 1.297 | 1.128 | 1.257 | 1.321 | 1.316
Eio -1.137 | -1.091 | -1.109 | -1.172 | -1.133
E;;+NL | -1.178 | -1.126 | -1.150

E, -0.559 | -0.488 | -0.547 | -0.661 | -0.658
E,+NL | -0.648 | -0.566 | -0.636
E, -0.089 | -0.089 | -0.093 | -0.039

E.+NL | -0.041 | -0.046 | -0.045
By -0.648 | -0.577 | -0.640 | -0.700
E..+NL | -0.689 | -0.612 | -0.681

Table 11.2: Energies of hydrogen molecule at equilibrium distance (R=1.401 bohr)

of atomic densities, is made. For the hydrogen molecule this density is given by:

1 -
px(r) = = (el 4 g=2Ir =) (11.34)
T

where 0 and R are the positions of the atomic nuclei. The bond energy contribution of a quantity
E corresponding to the density py, we will denote by A FEy, so we have:

AEy = Elps]| — Elpa] — E[ps] (11.35)

In the second step there is a change from pyx, to real molecular density which we will approximate
by a density contraction:

pr(r, R) = Xps(Ar, AR) (11.36)

which is just a scaling transformation. The bond energy contribution caused by this second density
change we will denote by AFE):

AE) = E[p,] — E[ps] (11.37)

A third contribution to the bond energy is caused by going from spin restricted to spin unrestricted
atoms. This energy change is not caused by a change in the spatial electron density but by a
change in the electron spin densities. This third energy change we will denote by AFE;. We will
now discuss how the two described density changes and the spin density change affect the bond
energy contributions of the LDA and GGA exchange and correlation functionals.

LDA exchange. The bond energy contribution AE, 5, for this case is given by:

Wl

4
3

Wl

AEns =—c; [ (pa®) + pp(e)} = pal)? = pu())dr <0 (1138)

This follows directly from the fact that:

4
3

ol
Wik

(z+y)s >34y (11.39)



444V LAl VLALJAL VAW UL LJULAYLS 4JAVAJAVA 4 VUL L AVAS VUV L ALY L JJ

if £,y > 0. For our model density we have AE, 5, = —1.70 eV. In order to estimate the bond energy
contribution AFE) we use the scaling property of the exchange functional [22].

Balpa(r, B)] = AB[p(r, AR)] (11.40)

where R is the relative position vector of the atomic nuclei. An expansion of equation 11.40 in
powers of A — 1 yields:

ABpp = (= )(Ealps] + B+ [ 0a((pslin)V gos(rdr) + 0 = 1)?) (11.41)

If we neglect the second term (assuming that E,[py (r, R)] varies much faster with respect to A than
with respect to R ) and we obtain:

ABE,»\~ (A —1)Eyfps] <0 (11.42)

The optimal A with minimizes the LDA+GGA functional is given by A = 1.140 and therefore we
obtain to a good approximation:

AE, ) = 0.140E,[ps)] (11.43)

Using the above formula we find AE, y = —1.86 eV. An actual calculation of E,[p,] gives AE, ) =
—1.60 eV. Finally there is the correction by going from spin unrestricted to spin restricted atoms
As can be seen from formula 11.27 this lowers the LDA exchange energy by a factor 23. We
therefore obtain the following positive correction to the bond energy:

1 1 3.4, 3
AB, o = (25~ 1)(Exlpal + Balpp]) = 224 = () (5)
In general we can say that both formation of py and contraction of the density give a negative
contribution to the bond energy contribution of the LDA exchange energy and that the spin unre-
stricted corrections give a positive contribution.

wl=

=3.01 eV (11.44)

GGA exchange. We consider in particular the Becke exchange correction. However our conclu-
sions remain valid for a broad class of nonlocal exchange corrections of the Becke form. The Becke
exchange energy correction is given by:

Exlprp) = 3 [ p0(e) f(o0)de (11.45)
where
£E2
f(@) = _ﬁl + 60z sinh ! 2 (11.46)
with 8 = 0.0042 and
2y (r) = VP D] (11.47)
po(r)3

Spin-unrestricted we have:

4
pey /p 23$ (11.48)
3

col
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The bond energy correction AE, 5. due to the Becke exchange is given by:

AE, s = 2i / (p2(r)3 f(2525) — pa(r)3 f(2324) — pp(r)3 f(252p))dr (11.49)

The main contribution to the integrand of the above integral arizes in the bond midpoint region of
the molecule where the molecular gradients are small (in the bond midpoint they are exactly zero
). In that case it is easily seen that we have:

AE,5 >0 (11.50)

Within our model we find AE, 5; = 0.38 eV. If we now contract the density then we have consider-
able changes in the density at the atomic nuclei. As the Becke exchange functional scales according
to equation 11.40 we can use the same arguments as for the LDA exchange and use equation 11.42
in order to calculate AE, ). Both an exact calculation and the approximate formula 11.42 give
AE; \ = —0.30 eV.

The atomic spin unrestricted correction to the Becke exchange is given by:

4 1 1
AE,, = 2/pA(r)3(f(:1:A) oS @bea)dr <0 (11.51)
3
We find AE, ; = —0.24 eV. So we can say in general that both formation of the density py and
the spin unrestricted corrections give a positive contribution to the bond energy. The density con-

traction leads to a negative contribution.

LDA correlation. Due to the rather complicated nature of the Vosko-Wilk-Nusair expression for the
LDA correlation energy it is difficult to predict the change in this expression due to the described
density variations. We find by numerical evaluation that AE. 5, = —0.17 eV, AE.y = —0.11 eV
and AE,; = —1.05 eV.

GGA correlation. We consider the Perdew correlation correction which is given by:

1

Blprp) = [ i Colale. I Volydr (11.52)
where

9(p, [Vpl) = pFa?e @IV (11.53)
with

A (11.54)

p§
where ( = (p+ — p;)/p is the spin polarization and:
1 1-—
a0) = 2 (558 + (1558 (11.55)

The function C(p) is a local function of the density and has been obtained from the gradient
expansion for slowly varying densities of the correlation energy of the electron gas. The function
® is given by:

C(c0) |Vl

d(p,|Vp|) = 1.745fm : (11.56)
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where f = 0.11. This function is obtained from the wavevector analysis of Langreth and Mehl. For
the spin unpolarized case we have (d=1) :

E.[p] = /C(p)p%xQe_‘b(p"Vp')dr (11.57)
We then have:

AE.y = / (Clpx)g(ps, |Vps|) — Cpa)g(pa,|Vpal) — Clps)g(ps, |V ps|)dr (11.58)

As with the Becke exchange correction the main contribution to the above integral arises from
the molecular bond midpoint region where the density gradients of the molecule are small ( the
function ¢ is exactly zero in the bond midpoint region ) so we find:

AE,5 <0 (11.59)

Within our model we find AE. s, = —0.17 eV. The Perdew correlation functional does not scale
like the exchange functional. However due to the fact th?t the function C' is almost constant as a
function of the density and the importance of the term p3z? it is to a good approximation true (as
we checked for several values of A ) that (at least for atomic and molecular densities):

Ec[pA(r, B)] = AE[p(r, )] (11.60)
which yields just as for the exchange case:
AE. )y~ (A=1)E.[ps] >0 (11.61)

A calculation using the above formula (using the optimal value A = 1.140 ) yields AE,, = 0.16
eV. An actual calculation gives AE, y = 0.13 eV.

We finally consider the atomic spin corrections. For spin polarized hydrogen atom we have an spin
polarisation { = 1 and d(¢) = 25 which means that the Perdew correlation energy for the spin
unpolarized hydrogen atom is a factor 25 times this energy for the spin polarized atom (assuming
that the spatial densities are the same). So we find:

AE,, =2(25 — 1)E.[p4] >0 (11.62)

Within our model we find AE, s = 0.28 eV. So for the Perdew correction the formation of py gives
a negative contribution to the bond energy and both the density contraction and spin polarization
corrections give a positive contribution to the bond energy.

As can be seen from the above analysis the actual sign of the bond energy contribution of the
several exchange and correlation energies to the bond energy depends on some opposing effects.
However as a rule the Becke exchange correction is positive and lowers the bond energy and the
Perdew correlation correction is negative and increases the bond energy. This is for instance true
for all first and second row homonuclear diatomic molecules. A notable exception being the hydro-
gen molecule which is the subject of this paper. However the hydrogen molecule is a rather special
case due the absence of core electrons so that density changes on the nuclei , which affect AFE)
are rather important. Also the spin corrections for the atoms are rather large because the spin
polarized hydrogen atoms are an extreme case of spin polarization with ( = 1. Those corrections
are smaller for atoms with a less extreme spin polarisation. This means that in applications to other
molecules the most important correction to the bond energy is the term A FEs which is positive for
the Becke exchange correction and negative for the Perdew correlation correction which confirms
the actual trend observed.



e \J ALALASLLL ALY AALS LALVLS S LVAVASLAL AL LR ST LN e

11.6 Conclusions

In this work we analyzed the exact exchange and correlation energy F, and E, as well as the Kohn-
Sham kinetic energy T as a function of the bond distance for the case of a dissociating hydrogen
molecule. These quantities are compared with the correspnding ones from the local density approx-
imation and nonlocal corrections. The LDA+NL gives a very good account for these quantities
at equilibrium separation and gives a binding curve close to the exact one. At large separation
the LDA and LDA+NL give a not so good description of the binding curve due to errors in the
total atomic energies. These errors are caused by the fact the presently used approximate density
functionals for the case of degenerate ground states are not invariant under unitary transforma-
tions within the ground state multiplet. Correct dissociation can however be obtained through
the construction of approximate density density functionals which give a good total ground state
energy for open shell atoms within a spin restricted formalism. The construction of such density
functionals remains a future challenge. It is further shown that LDA plus nonlocal correlation is
unable to describe the left-right correlation by underestimating this correlation energy. This error
is partly corrected by a corresponding overestimation of the exchange energy.

The fact that the Becke-Perdew correction in the hydrogen molecule is negative instead of the the
usual positive correction is shown to be related to special property of the hydrogen molecule of
having no core electrons which make density contraction effects important. Another important fact
in this respect is the fact the spin corrections for the atomic fragments in this molecule have a large
effect due to the extreme polarization of the polarized atoms.



Chapter 12

Energy expressions in density
functional theory using line integrals

In this paper we will adress the question of how to obtain energies from functionals when only
the functional derivative is given. It is shown that one can obtain explicit expressions for the
exchange-correlation energy from approximate exchange-correlation potentials using line integrals
along paths within the space of densities. The path dependence of the results is discussed and
criteria for path independence are given. Derivations are given of upper and lower bounds to the
exchange-correlation energy in terms of the exchange-correlation potential at the beginning and
the end point of a certain path. We further express the kinetic part T}, of the exchange-correlation
energy in terms of a line integral and derive a constraint on approximate correlation potentials. We
show how to use the line-integral formalism to derive the requirements which exchange-correlation
potentials must fulfil in order to make the exchange-correlation functional satisfy some symmetry
property such as rotational and translational invariance and scaling properties. Finally we will
discuss how to obtain bonding energies of molecules from approximate potentials.

12.1 Introduction

Density functional theory [5] has in the last few years been succesfully applied with increasing
accuracy to systems ranging from atoms and molecules [71, 70, 122] to surfaces and solids [47]. Es-
pecially the introduction of the so-called generalized gradient expansion approximations (GGA) [44,
50, 46, 43, 45] for the exchange-correlation energy has constituted a great improvement over the lo-
cal density approximation (LDA) in the calculation of for instance molecular bond energies. In view
of the accuracy of the GGA energy expressions for the exchange-correlation functional and their
improvement of the LDA energy expressions it is surprising that the GGA exchange-correlation
potential gives little improvement over the LDA exchange-correlation potential [49, 32] and has
a small influence on the density. For this reason calculating the GGA corrections from an LDA
density yields almost the same results as an inclusion of the GGA potentials in a self-consistent
calculation [139]. This fact is also reflected in the LDA+GGA eigenvalues which are very close to
the LDA eigenvalues which are much too small for finite systems such as atoms and molecules and
also for surfaces. As the eigenvalue of the highest occupied Kohn-Sham orbital has been proven to
be equal to the ionisation energy of the system [31, 72] the LDA gives too weakly bound electrons.
This latter fact is due to the LDA exchange-correlation potential having exponential decay instead
of the correct Coulombic decay. One way to improve the one-electron energies and the density (and

203
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related quantities such as dipole moments) is to directly approximate the exchange or exchange-
correlation potential instead of the exchange or exchange-correlation functional. Over the years
several potentials (not only within density functional theory) have been proposed. Well-known is
the average Hartree-Fock exchange potential proposed by Slater [101, 148]. A so-called optimized
effective potential (OEP) and an approximation to this was suggested by Sharp and Horton [34]
and by Talman and Shadwick [33]. This potential received considerable attention within the con-
text of exchange-only density functional theory or the optimized effective potential model (OPM)
and was shown to give one-electron energies close to the Hartree-Fock ones. An approximation to
this potential was recently proposed by Krieger et al. [35] and Gritsenko et al. [121]. Also within
the weighted density approximation (WDA) method approximate exchange potentials with the
correct asymptotic behaviour have been used [149, 150, 124]. A more crude way to improve the
asymptotic behaviour of the exchange potential was given by Latter [151] within the context of
the Thomas-Fermi model which due to its simplicity has found widespread use in atomic structure
calculations. Much less work has been done regarding the full exchange-correlation potential. An
approximate exchange-correlation potential has been proposed by Harbola and Sahni [131] . This
exchange-correlation potential v,.(r) has been defined as the work done by bringing an electron
from infinity to point r against the force of the electric field of the exchange-correlation hole. How-
ever to insure path-independence for non-spherical systems like molecules one must only consider
the irrotational part of this electric field [152]. A gradient approximation to vy, has recently been
proposed in reference [32] which was shown to give very good ionisation energies as calculated from
the highest occupied Kohn-Sham orbital.

In view of the fact that correct one-electron energies, the asymptotic Coulombic behaviour and
the atomic shell structure can be reasonably obtained by approximate potentials it is an inter-
esting question of theoretical and practical importance whether we can calculate good exchange
and correlation energies from these approximate potentials. This is also of importance since it
is possible to test the quality of approximate exchange-correlation potentials by comparing them
with accurate ones constructed from accurate densities. It is for instance an interesting question
how certain features in the exchange-correlation potential (such as the bond midpoint peaks in
molecules [86, 90] related to the left-right correlation effect ) contribute to the exchange-correlation
energy. This requires an understanding of the relation between potential and energy expression. A
further understanding of the features displayed in the Kohn-Sham potential might then also lead to
more improved expressions for the exchange-correlation energy. If we want to assign some energy
expression for instance to the model potentials considered above we immediately run into some
theoretical difficulties because none of the potentials considered, with the exception of the OPM
potential, is a functional derivative of some energy density functional. However for approximate
exchange potentials which satisfy the exchange scaling property it is still possible to assign an
exchange energy using the Levy-Perdew relation [121, 35]. However such a relation is not available
for the exchange-correlation potential due to the unknown scaling properties of the correlation
functional. In section 12.2 of this article we will show how to use line integrals to calculate the
exchange-correlation energy from an exchange-correlation potential. We also discuss some criteria
of path independence.In section 12.3 we discuss some bounds on the exchange-correlation energy
in terms of the exchange-correlation potential and we give an line integral expression of the kinetic
part Ty, of the exchange-correlation energy. In section 12.4 we derive some constraints on the
correlation potential. In section 12.5 we derive some properties with respect to rotation, trans-
lation and scaling of the exchange-correlation energy from given properties with respect to these
symmetries of the exchange-correlation potential. In section 12.6 we will adress the question how
to calculate molecular bond energies from given potentials. Finally in section 12.7 we will present
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our conclusions.

12.2 Line integrals and path dependence

In this section we will discuss the problem of obtaining energies from approximate potentials. The
exchange-correlation energy for a system with Coulombic two-particle interactions is within density
functional theory usually defined as:

Eyelp] = Flp] /dr e, PLTDPT2) (12.1)
ry — r2|
where the universal functional F' is as usual defined by constrained search [18, 128] over all anti-
symmetric wavefunctions yielding density p :
Flp] = min (¢ T+ W) (12.2)
where T is the kinetic energy operator and W is the interparticle interaction operator. The Kohn-

Sham kinetic energy Ts[p] is the kinetic energy of a noninteracting particle system with the same
density as the interacting system defined by:

Tilp) = min (Ws|T|hs) = (s [p]|T |5 p]) (12.3)

where we search over all Slater-determinants yielding density p and ¢4[p] is the Kohn-Sham deter-
minant. The exchange energy functional is usually defined as [22]:

p(r1)p(rz)

r
Eylp] = (¢s[o]| W |$s]p] /dr dry plr1) (12.4)
B
and the correlation functional by:
Bulp] = Frelp] — Falp) (12.5)

Suppose we have a parametrisation 7(¢) of a set of electron densities starting at v(0) = p; and
ending in (1) = p2. Suppose further that we have an exchange-correlation energy functional
E..[p]. Then we have:

dE'g[;C
E:vc[p2 Ey. pl] / dt =

! dEy. dy(t) ! L dy(t)
= [ @ [ g st T = [t [arvnn T (12.6)
in which v, is the functional derivative of E,.. :
0F,.
1) = 12.
) = £ (127

If we take for instance the straight path from zero to p defined by «y(t) = tp and we have E;.[0] =0
(which must be the case for any physically acceptable exchange-correlation functional) then ‘fiz =p
and it follows that:

Aol = [ drotw)eaclolim (12.8)
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in which ¢, is defined as:

Exe([ / dtvge([tp];r (12.9)

This thus yields an explicit expression of the exchange-correlation energy in terms of the exchange-
correlation potential. It should be remembered however that in this expression v, is a functional
derivative. Suppose however that we only have an expression of v,. for instance in terms of the
density and its gradients. Then we can define the line integral of v,. along a path  in the space of
densities as:

/ Vge = / dt / drvae([y(£)]; r)dzsf) (12.10)

As we can see from the above formulas the outcome of this line integral does not depend on the
chosen path (except for the endpoints of course) whenever v, is the functional derivative of some
functional E,.. If one uses approximate potentials to obtain energy expressions this way one has
to make sure that the result does not depend on the path . One therefore needs some criteria to
determine whether v, yields path independent line integrals. This is for instance the case when:

dvze(r)  Ovge(r)
op(x') — dp(r)
which is a vanishing curl condition which is equivalent to:
2By 0%Eye
dp(r)dp(r’) — dp(r')dp(r)

To prove this we only have to show that a v, satisfying the above relation is the functional derivative
of some functional E,..Suppose we define the functional F;. by integrating v,;. along the straight

path y(t) = tp:
o= [ drp(e)zselv) (12.13)

in which e, is defined as in equation 12.9. If v, satisfies condition 12.11 then v, is the functional
derivative of the above defined functional E,. and hence path independent. This is readily shown
by differentiation of the above equation 12.13. This yields:

=0 (12.11)

(12.12)

0Ec i r'p 65900 [P] )
So(r) +/ ) = )
= ene(p);r) + / dt / dr’ p(r') 2Vzel [Ep]) r) (12.14)

Now using condition 12.11 yields:

0Bz B ’ 5Ux0([t:0] r) _
5oty ~ coellP) +/ it [ an'tple) T O =

d t
= euel( +/ dp Pae(trlix) p D (i) +

/ 1 dt%(tvxc([tp]; ) - [ " dtvae((tp) ) = vee([ols) (12.15)
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Hence v, is the functional derivative of E,. and therefore path independent.

We will now give another criterium for path independence related to equation 12.11. In order to
do this we recall Stokes theorem in vector calculus which states for a vectorfield ¥ in n-dimensional
space:

Z%v,dml Z/

in which = is a closed curve which is the boundary of surface O. A generalisation of this theorem
to function spaces would be:

8’02 a’l)k
oz,

)dxldxk (12.16)

dv(r)  du(r) , ,
ﬁvép(r)dr = /o (6p(r’) = 5000 Yop(r)dp(r')drdr (12.17)
in which in the first integral the variations are restricted to be on the path + and in the second
integral on the surface O. From this equation we can see that if relation 12.11 is satisfied then the
integral of v along any closed path is zero and hence the line integral of v is path independent.
On the other hand if the line integral is zero for any closed path then we obtain the integrability
condition 12.11.

12.3 Exchange-correlation energy and the kinetic part: bounds
from potentials

The present formalism can be used to obtain energy expressions from approximate potentials from
line integrals. In order to obtain sensible results from such a calculation one has to make sure that
any approximate v, is either a functional derivative (for instance by requiring the integrability
condition 12.11 ) or by requiring that the approximate potential is a good approximation to the
exact potential for every density along the integration path. This favors in practical applications
some paths over other paths. For instance the path defined by v(t) = ¢p has the disadvantage of not
conserving the particle number which can therefore be fractional which gives theoretical problems
if one wants to assign a potential to the corresponding density. Another more appealing choice of
path is the following:

(1) = t*p(tr) (12.18)

If we let the path parameter ¢ run from 0 to 1 then we are integrating from 0 to p. The most
important feature of this path is that it is particle number conserving, thus:

/v(t)dr = /p(r)dr =N (12.19)

along the path. For hydrogen-like atoms for instance we have:

(tZ)3 e—tZr

- (12.20)

(t) =
in which Z is the nuclear charge. So if we let ¢ approach zero then the density () becomes
increasingly diffuser and approaches zero in every point of space but keeping its normalization.
Our main task is now to construct for the case of many electron systems exchange-correlation
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potentials which approximate the exact exchange-correlation potential along this path. Application
of equation 12.6 for this path leads to the following expression for the exchange-correlation energy:

/ dt/drvxc t)];r)(3t2p(tr) + t3r - Virp(tr)) =

—/ dt/dr vee([Y(1)]; —r)(3,0( ) +r-Vp(r)) (12.21)

in which we performed the substitution {r — r. Before we go on to discuss the exchange-correlation
potential let us first discuss the simpler case of the exchange-potential alone. Suppose we have an
approximate exchange potential o, for instance of the form:

Ba(r) = p3 (r) f (2, ) (12.22)
where
z(r) = |V4p(r)| (12.23)
p3(r)
and
y(r) = Vip(r) (12.24)
p3(r)

are dimensionless functions. This approximate potential satisfies the following well-known scaling
property [23] of the exchange potential:

va(lpilsr) = tog ([ol; tr) (12.25)

in which p; = (t) is just the path of equation 12.18 (in the following we will for notational
convenience use p; instead of y(¢) for this particular path). Let v, denote the exact exchange
potential being the functional derivative of the exact exchange functional. The difference between
the exact exchange energy FE,[p] and the approximate exchange energy E,[p] using the line integral
of equation 12.21 and scaling property 12.25 is then given by:

Falp] = /% /W—/ww r) — ([l ) (3p(r) + 1 Vp(r)) (12.26)

For a correctly scaling approximate exchange potential the difference in the two line integrals thus
only depends on the difference between the two potentials at the endpoints of the path and can be
made arbitrarily small by better fits of v, to v, at this endpoint. This can in practice be done for
instance by fitting to the so-called Optimised Effective Potential (OPM) [35, 121].

To show that if ¥, is not a functional derivative we can make the difference in the line integral of
v, and U, arbitrarily large we consider the following path;

3(t) = p(tr + (1 — t)R) (12.27)
In which R is an arbitrary vector in three-dimensional space. We have:

()

p7 = 3% p(tr+(1=t) R)+*0-V .,y golte+(I=) R)—t* RV, p(tr-+(1—1) R)(12.28)
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Integrating along this path (which can easily be checked to be particle number conserving ) yields
using the fact that both the exact v, and the approximate potential v, satisfy some translational
invariance property (see equation 12.67 of section 12.5) we find:

/ﬁw—/ﬁ% :/dr(vx(r) — () (3p(r) + 1 Vp(r)) — R - /dr vz (r) — 32(r)) Vp(r) (12.29)

We see that this expression can be made arbitrarily large by choosing an arbitrarily large R (which
amounts to choosing a different path ) if the difference between v, and ¥, is not zero.

Things are more complicated if we want to calculate the total exchange-correlation energy due to
the fact that we do not know the scaling properties of the correlation potential. This means that
we cannot calculate the exchange-correlation energy directly from knowledge of vg.([p];r) alone,
we must know v, along some path y(¢) in density space. However some useful inequalities can be
derived from the knowledge of v,.([p];r). Averill and Painter [30] and Levy and Perdew [22] have
derived the following useful relation:

Faclpl = [ droselpl 0)3p(x) + - Vp(r) - Tuclo] (12.30)
where

Ticlp] = T'lp] — Ts[p] (12.31)

is the kinetic part of the exchange-correlation energy. The kinetic energy T'[p] is as usual defined
by:

T(p] = ($[p)|T|¥[p)) (12.32)

where 7' is the kinetic energy operator and 1[p] is the anti-symmetric wavefunction yielding density
p and minimising the universal functional F[p]. As can be inferred directly from equation 12.6 using
the scaling path 12.18 it follows from equation 12.30 that equivalently:

(0] AF[y(t)
1 = Euelp] = =5

which is a useful relation that can be used to obtain the kinetic energy part of the exchange-
correlation energy from approximate exchange-correlation or correlation functionals such as used in
LDA and GGA. Relation 12.30 is also useful to obtain an upper bound to the exchange-correlation
energy from knowledge of the exchange-correlation potential. From the definitions for T[p] and
Ts[p] we can deduce the well-known result [5]:

Tulp] = (sl T |¢s[e]) < (Wlo]|T|[p]) = Tlp] (12.34)
and thus T,.[p] > 0 and we find the following inequality:

Tmc[p] 1= Ec[P] (1233)

Exclp] < /drvmc([f)];r)(3p(r) +r-Vp(r)) (12.35)

which provides an upper bound to E,.. A similar inequality can be obtained for the correlation
functional E,. (with corresponding correlation potential v. being the functional derivative of E. )
by substracting the Levy-Perdew relation 12.26 for the exchange from equation 12.30 with yields:

ol = [ deoclpln)3p(r) + 1 Vo) = Tuclp] < [ drvellple) Bp(e) + - Vp(r))  (12:36)
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This gives an upper bound to the correlation energy when the correlation potential is known.
To provide a lower bound to E, in terms of potentials we use the following relation valid for systems
with Coulombic interparticle interactions proved by Levy [27]:

1
lio ~ o] = ~b[o] (12.37)

where b[p] is a positive functional satisfying the following inequality:

Tyelp) — Eclp] < blp] < (¢s[p]|W|s[p]) (12.38)

where ¢;[p] is the Kohn-Sham determinant. Relation 12.37 immediately leads to:

o] =t 2] = P = [ aea (o)) 30(e) + 2 Vo) (12.39)
where

el v) = lim (il 5) (12.40)
Combining relations 12.38 and 12.33 then gives:

mlo) > Sy P [ el 0 )+ vellal ) 30(6) + - V() (1241

So we have now derived an upper and a lower bound to the correlation energy functional in terms
of the correlation potential. Adding the Levy-Perdew relation for the exchange potential on both
sides of the inequalities gives corresponding bounds for the exchange-correlation energy:

/dr (9zc([p); v) + vac([p];v)) (3p(r) + 1 - Vp(r)) < Exclp]

< / drvge([p); T) (3p(r) + 1 - Vp(r)) (12.42)

where ;. = v, + 0. (using 9, = v, which is due to exchange scaling property of v, ). So upper and
lower bounds to the exchange-correlation energy can be given from the knowledge of the exchange-
correlation potential at the beginning (¢ = 0) and the end (¢ = 1) of the scaling path.

We first will now give an expression for the kinetic part of the exchange-correlation energy. From
relation 12.30 and equation 12.6 we find:

] = [ deloaellpli1) = vael i) (Bplr) + - Vp(r)) (12.43)

where

Boe(| / dtt a7 (1)) ) (12.44)

This gives an explicit expression for Ty, in terms of the exchange-correlation potential. It can
therefore directly be calculated from approximate expressions of v, or from the knowledge of v,
along the scaling path. As a result of the scaling property of the exchange potential the above
equation can be further split up as follows.

ellple) = [ @) 5+ [ a5
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L | r
= vallphr) + [ dtgocly(®) ) = vallph v + (o ) (12.45)

where
L | r
1) = [ dtsuH®)}) (12.46)
0 t t
This leads to another expression for T} in terms of the correlation potential:
Tuelp) = [ dr(uellplx) = ([l ) 3p(x) + 1 To(x) (12.47)
From Ty.[p] > 0 it follows further that:
/drvc [pl;ir)(3p(r) + - Vp(r /drvc 3p(r) +r-Vp(r)) (12.48)

which provides a further constraint on approximate correlation potentials. Further constraints are
derived in the next section.

12.4 Constraints on v,

We now will derive some constraints on the correlation potential. Levy has proven the following
useful relation [27] which is valid for systems with repulsive Coulombic interparticle interactions:

tllm E.[p] > —o0 (12.49)
Using relation 12.49 it then follows directly from:
Eyclpt] = tEz[p] + Ec[pi] (12.50)
that
1
Eylp] = tl_l)r& gEﬂw[Pt] (12.51)

Equation 12.49 immediately leads to a constraint on the correlation potential. If we use the scaling
path we find the following line integral:

A 1 r
Edpa] = [t [ desvellodi D) 30() +- Vp(r) (12.52)
Application of equation 12.49 then immediately gives:
/ dt/dr ve([pel; )(3p( )+r-Vp(r)) > —o0 (12.53)

which puts constraints on appr0x1mate correlation potentials. The above constraint is for exam-
ple not satisfied by the LDA correlation potential due to the logarithmic divergence of the LDA
correlation energy as function of the scaling parameter . We can also write equation 12.51 in line
integral form giving:

Eylp] = Jim < / at [ drvn(pls 1) Bo(r) + - Vp(r) (12.54)
Inserting vy = vy + v, in the above equatlon and using the scaling property of v, we find the
following constraint on wv,:

lim _/ dt/dr el [pd)s 5 (3p(r) + 1+ V(r) =0 (12.55)

A—00 A
The above constraint which is Weaker than constraint 12.53 follows also directly from constraint 12.53.
The correlation potential of the local density approximation for instance satisfies the above equa-
tion 12.55 but not constraint 12.53.
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12.5 Invariance properties of potentials

The above formalism of line integrals provides an easy way to obtain conditions on the energy
functional in the case that the exchange-correlation potential has some invariance or symmetry
property. Suppose for instance that we vary the densities along our path v by varying our path
parameter ¢ but that the potential v;. has some symmetry property under such changes. Using
equation 12.6 we then can deduce some properties of E,.. In the following we will apply this idea
to translation, rotation and scaling properties of F.

We define a path y(t) by:

v(t) = p(R(t)r) (12.56)

where R(t) is a rotation in threedimensional space which rotates the vector r around a vector &
by an angle ¢. If the functional F,. is invariant under rotations we have that E,.[y(t)] = Exc[p] is
constant as a function of ¢ and we find:

dE d
,0

d

_ / drvse([7(0));)(@ X R(O)T) - ¥ giopep(R(O)r) (12.57)
For 6 = 0 in particular we find:

0= [ drvac(lpliv) (@ x 1) - Vplr) =

= [ drve([pl: RO @ x ROX) -V iopep(RO)K) (1258)

The above equations 12.57 and 12.58 yield the same result for all densities p and all rotations R(#).
We thus must have:

vre([p(R(O)r)]; 1) = vec([p(r)]; R(O)r) (12.59)

So if we insert in v, the rotated density then we obtain the same value in point r as v,. with the
original density in the rotated point R(6)r. This result and some other results in this section have
been presented elsewhere [23, 32] and are only presented here for clarity and to demonstrate the
usefulness of the density path formalism in deriving properties of the potential and functional. The
line integral of equation 12.6 offers the possibililty to make statements about the energy functional
when we know properties of the potential. We can now prove the following statement. If a potential
vz satisfies the rotation symmetry property of equation 12.59 and if v, is a functional derivative
of some functional F,. then FE,. is rotationally invariant. To prove this we insert the path of
equation 12.56 in equation 12.6 which gives:

0
Eze[p(R(0)r)] = Egclp(r)] = /0 dt / drvge([y(£)]; 1) (& X R(t)r) - Vppep(R(H)r) =

0
= /0 dt/drvm([p];r)(u_)' xr)-Vp(r) =0d- /drvxc([p];r)r x Vp(r) (12.60)
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in which we in the second step used the rotation symmetry property of equation 12.59 and carried
out a substitution R(t)r — r. If we insert # = 27 in the above formula 12.60 then we are integrating
along a closed path and we obtain:

%ch =27 - /drvxc([p];r)r x Vp(r) (12.61)
gl

As v, is a functional derivative the loop integral should be zero. This is also obvious from the
left hand side of equation 12.60 as the 2w-rotated density is equal to the starting density and we
obtain:

0= / drvge([p]; T)r X Vp(r) (12.62)
for any density p. If we insert this equation back into equation 12.60 then we obtain:

which proves our statement.
We will now carry out a similar derivation for the translation properties of the potential. If we
define the path ~y(¢) by:

v(t) = p(r + tR) (12.64)

in which R is an arbitrary translation vector. Now suppose that E,. is translationally invariant
then we have that Emc[ (t)] = Eqgclp] is constant as a function of ¢ and :

dEmC E,. dy(t
0= |t 1—/d 7()|t:1=

dt
= [ droncb (D)) - Vpte -+ ) (12.65)
Similarly:
dEmc
0= b @], - / drvee([p]; 1) R - Vp(r)
- /dmm([p]; v+ B)R-Vp(r + R) (12.66)

As the above equations 12.65 and 12.66 yield the same result for all densities p and translation
vectors R it follows that:

vee([p(r + R)l;t) = vee([p(r)); v + R) (12.67)

Thus vy, with the translated density inserted yields the same value in point r as v, with the
original density inserted in point r + R. This result has been derived elsewhere [32] and is only
presented here for the sake of clarity. Using the line integral of equation 12.6 we now however also
prove the opposite statement under some restrictions. If a potential satisfies relation 12.67 and
if vz is a functional derivative of some functional E,. which is bounded from above or below (
The exact exchange-correlation functional is bounded from above as E,. < 0 ) then this functional
is translational invariant. If we use the path of equation 12.64 and insert it in equation 12.6 we
obtain:

Byolp(r + B)] — Eyelp(r / dt / drvge([Y(D)]:T) B - Vp(r + tB) (12.68)
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If we use the translation symmetry property 12.67 we have:

—

1 - -
Folp(r + )] = Buelp(r)] = /0 dt / drvee([plit + tR)B - Vp(r + B) =

—/ dt/clrv;,;C [pl;r)R - Vp(r) = R - /drv:,;C Vp(r) (12.69)

in which we carried out a substitution r +¢R — r which makes the t-integration trivial. The right
hand side of this equation can be made arbitrarily large (both positive and negative) by making R
arbitrarily large. As F,. is bounded from above or below this righthand side of the equation must
therefore be zero which yields:

[ devaclipli¥) Vo) = 0 (12.70)
and therefore one has:

Buclp(r + B)] = Brolp(r)] (12.71)
We can carry out a similar analysis for scaling properties. We then define a path:

v(t) = t3p(tr) (12.72)

Suppose we have an energy functional £ with functional derivative v which satisfies the following
scaling relation:

Ely(t)] = t"E[p] (12.73)

with n some positive integer. If we differentiate the above equation in ¢ = 1 we obtain:

i) = COON L~ [ 22 )20 -

= [ ol »)3plr) + 1 Vp(r)) (12.74)
Differentiating the same expression in ¢t = X\ gives:
nA B[] = / dev([Y(V]: 1) (372 p(Ar) + N1 - Vaep(Ar)) (12.75)
This yields:
/ de—v([Y(V]: ) (3N p(Ar) + At - Vaep(Ar) (12.76)

On the other hand from equation 12.74 it follows:

Blp) =~ [ el ) B3p(c) + 1 To(r) =

= %/drv([p]; Ar)(3X3p(Ar) + Mr - Vyep(Ar)) (12.77)
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As the outcome of the integrals in equation 12.76 and 12.77 is equal for any density p and scaling
parameter A it follows:

o([(Wp(Ar)]; 1) = Ao ((o]; Ar) (12.78)

Thus result has been derived before [23] but is presented here to motivate our following statement.
If a potential v satisfies the scaling relation 12.78 and is the functional derivative of some functional
E with E[0] = 0 then this functional satisfies the scaling property 12.73.If we use the line integral
of equation 12.6 and insert the path of equation 12.72 we obtain:

Ely(A / dt / dev([y(1)); T) (382 p(tr) + 1 - Voep(ir)) (12.79)

If we now use the scaling property 12.78 we have after a substitution:

A
B - B0) = [ dt [ drt o(lpl:r)(3p(r) + - Vo(r) =

=2 [aro(phm)3o(e) + 1 Vp(r) (12.0)
Hence we have:

Ely(N)] = E[0] = A" (E[y(1)] - E[0]) (12.81)

In this equation E[0] is just an integration constant. For instance if we add to the functional 12.73
an arbitrary constant then it will satisfy the above equation 12.81 and its potential will still sat-
sify 12.78. So if we set E[0] = 0 then we obtain:

EVp(Ar)] = A" Elp(r) (12.82)

which proves our statement.

12.6 Calculating molecular binding energies from potentials

One of the most succesful applications of density functional theory has been the calculation of
molecular binding energies. This is largely due to the development of gradient corrected function-
als. However the potentials corresponding to these functionals are not much improved [32] . An
improvement of the existing gradient corrections might be sought in the development of better
potentials as they can be compared to exact potentials obtainable from accurate densities. In this
section we will discuss how to obtain binding energies from approximate potentials.

Suppose we have a diatomic molecule consisting of atom A and atom B. The total density of the
molecule is given by pyr = px+ Ap where py, = pa+pp is the sum of atomic densities and Ap is the
deformation density of the molecule. The binding energy contribution of the exchange-correlation
energy is then given by:

AEyc = Exclpm]—Exclpal—Ezclpl = (Exclpm)—Euclps])+(Exclps]—Exclpal— Exclpp]) (12.83)

The first term between brackets we will call AF; and the second term between brackets we will
call AFE5. This division is useful in connection with the application of the transition-state method
for bond energies developed by Ziegler and Rauk [153] to AE; and is helpful to obtain numerical
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stability for Coulombic terms analogous to AE» in schemes that rely on numerical integration [154].
The first term AE; can in practice accurately be calculated using the linear path [154, 155]:

Y(t) = ps +tlom — ps) = px + tAp (12.84)

which yields:

AE;| = / dt/drvm (t)];r)Ap(r) /drAp / dtvge([y(t)];r) (12.85)

This procedure is equivalent to the transition state method [153] as is evident when using the
Simpson rule for the ¢-integration:

AB; = [[arap)(Goreloshr) + Svacllorsr) + goae((pulir) (12.86)
where pr = ’y(%) = %(,02 + par) is the so-called transition state density. For practical applications
of the above method with approximate exchange-correlation potentials it is necessary that the
approximate potential gives a good description of the real exchange-correlation potential in the
region where the deformation density Ap is the largest. The other part of the binding energy AFs
is easily obtained by numerical integration if explicit exchange-correlation energy expressions are
known. However if no energy expressions are known we have to calculate also this term from the
potential.One way to do this is is just to calculate the total energies of the atom and the molecule
using equations 12.8 and 12.9 and to calculate the difference. This procedure has however some
disadvantages. First of all along the path y(¢) = tp the number of particles is not conserved which
presents some difficulties from a theoretical point of view. Secondly if one makes an approximate
expression for the potential v for some N-electron system, for instance by some fitting procedure
to some known exact potential, one makes unknown errors for systems with a different number of
electrons. It is therefore of some advantage to use particle number conserving paths. An other way
of calculating the energy difference AFs is to choose the following path:

¥s(t) = pa(r) + pp(r + tR) (12.87)

in which we let ¢ run from 1 to oco. This path is particle number conserving. If we have py = (1)
then:

8B = [ o= [ [ oelbs@lin - Vopte+ o) (12.59)

Application of the above formula puts some severe restrictions on approximate exchange-correlation
potentials. This approximate potential should give a good description of the exact v, at all bond
distances. For instance the bond midpoint peak in vy, in dissociating molecules [86, 90] must also
be described by this approximate v,.. This might be feasible for instance in a gradient expansion
using Laplacians of the density in any approximate v,.. However care should be taken for potentials
which are not functional derivatives as in that case the value of A FE5 will depend on the dissociation
path taken.

12.7 Conclusions

In this work we adressed the question how to obtain exchange-correlation energies from approxi-
mate exchange-correlation potentials. This is of some theoretical and practical importance as many
approximate exchange- and correlation potentials have been proposed. It is shown how one can
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use line integrals to express the exchange-correlation energy in terms of the exchange-correlation
potentials. It was further shown how to derive symmetry properties of the exchange-correlation en-
ergy functional from the corresponding properties of the exchange-correlation potential. We further
obtained some upper and lower bounds to the exchange-correlation energy which can be calculated
if the exchange-correlation potential is known in two limiting cases, at the beginning and the end
of the scaling path. We showed how to express the kinetic part T, of the exchange-correlation
energy in terms of line integrals over the exchange-correlation v;. or correlation potential v, and
derived some constraints on the correlation potential. We finally adressed the problem of calculat-
ing the exchange-correlation part of molecular binding energies from approximate potentials. The
constraints and inequalities derived in this article might prove useful to the development of more
accurate exchange-correlation potentials improving the LDA and GGA potentials. Work along this
line is in progress.
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Samenvatting

In dit proefschrift wordt de dichtheidsfunktionaaltheorie (DFT) onderzocht en worden nieuwe be-
naderingen voorgesteld voor de Kohn-Sham potentiaal.

De dichtheidsfunktionaaltheorie, die in de jaren zestig is ontwikkeld door Hohenberg en Kohn en
Kohn en Sham, geeft een methode om de grondtoestandseigenschappen van veeldeeltjessystemen
zoals atomen, molekulen en vaste stoffen te berekenen. In de dichtheidsfunktionaaltheorie zijn de
grondtoestandsverwachtingswaarden van de kwantummechanische operatoren die de fysische ob-
servabelen voorstellen dichtheidsfunktionalen, d.w.z. het zijn funkties die gedefinieerd zijn op de
oneindigdimensionale ruimte van elektronendichtheden. Een belangrijke dichtheidsfunktionaal is
de grondtoestandsenergiefunktionaal. Deze funktionaal wordt geminimaliseerd voor de grondtoe-
standselektronendichtheid van het systeem. Minimalisering van de energiefunktionaal leidt dan
tot een Kuler-Lagrange-vergelijking voor de elektronendichtheid. In de Kohn-Sham aanpak van
dichtheidsfunktionaaltheorie krijgt deze variationele vergelijking de vorm van een onafhankelijk
deeltjesmodel dat bekend staat als het Kohn-Sham systeem. Het wisselwerkende systeem van elek-
tronen wordt dus vervangen door een niet-wisselwerkend systeem van Kohn-Sham elektronen die
bewegen in het veld van een effektieve potentiaal. Deze Kohn-Sham potentiaal is een funktionaal
van de elektronendichtheid. Tengevolge van de ingewikkelde wiskundige definitie van de Kohn-
Sham potentiaal zijn hiervoor geen exakte analytische uitdrukkingen in termen van de dichtheid
bekend. De onbekende term in de Kohn-Sham potentiaal is de exchange-korrelatie potentiaal,
die de funktionele afgeleide is naar de elektronendichtheid van de exchange-korrelatie funktionaal.
Voor praktische toepassingen worden er voor deze funktionaal benaderingen gebruikt. De his-
torisch gezien meest gebruikte benadering is de lokale dichtheidsbenadering. Deze benadering, die
gebaseerd is op berekeningen aan het elektronengas, blijkt een simpele en tegelijkertijd verrassend
nauwkeurige benadering. De nauwkeurigheid van de lokale dichtheidsbenadering blijkt echter in be-
langrijke mate te worden vergroot door de zogenaamde gegeneraliseerde gradiéntbenaderingen, die
naast de lokale elektronendichtheid ook afthangen van de gradiént van de elektronendichtheid. Om
deze laatste reden worden de gradiéntfunktionalen ook wel nietlokale funktionalen genoemd. De
gradiéntfunktionalen blijken echter niet op alle punten de lokale dichtheidsbenadering te verbeteren.
De verbetering geldt vooral voor energietermen, zoals de bindingsenergie van molekulen. De verbe-
tering voor lokale grootheden zoals de exchange-korrelatie potentiaal of de elektronendichtheid is
veel minder. Dit betekent bijvoorbeeld ook dat grootheden die direkt van de elektronendichtheid
afhangen, zoals polariseerbaarheden, weinig verbetert worden. In dit proefschrift stellen we een
aantal benaderingen voor voor de exchange- en exchange-korrelatie potentiaal die de potentialen
van de gegenariseerde gradiéntbenaderingen aanzienlijk verbeteren, terwijl energietermen met geli-
jke nauwkeurigheid uitgerekend worden.

In hoofdstuk 5 van dit proefschrift bekijken we voor een aantal atomen de gradiéntbenaderingen
van Becke en Perdew voor de exchange-korrelatie potentiaal en vergelijken deze met bijna ex-
akte exchange-korrelatie potentialen berekend uit nauwkeurige elektronendichtheden. Om dit te
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doen gebruiken we een nieuw ontwikkelde methode om de Kohn-Sham potentiaal te berekenen uit
een gegeven elektronendichtheid. Vervolgens wordt een nieuwe gradiéntbenadering voorgesteld die
in tegenstelling tot de bekende gradiéntbenaderingen het goede langeafstandsgedrag van de xc-
potentiaal weergeeft. De Kohn-Sham eigenwaarden en de ionisatie-energie (die gegeven wordt door
de energie van de hoogst bezette baan van het Kohn-Sham systeem) worden hierdoor aanzienlijk
verbeterd.

In hoofdstuk 6 worden verschillende nieuwe gradiéntbenaderingen voorgesteld voor de Kohn-Sham
exchange potentiaal. Dit zijn Padé-approximanten in termen van variabelen die dimensieloze
samenstellingen zijn van de dichtheid en de gradiént en de laplaciaan van de dichtheid. Op deze
wijze wordt automatisch aan de goede schalingseigenschappen voldaan. De vorm van de Padé-
approximant wordt verder zo gekozen dat het langeafstandsgedrag van de potentiaal goed wordt
beschreven. De voorgestelde Padé-approximanten blijken de eigenwaarden en de vorm van de po-
tentiaal te verbeteren. De exchange energién die worden berekend met behulp van de Levy-Perdew
relatie zijn echter minder goed. Deze energién worden vooral bepaald door de vorm van de potenti-
aal in het kerngbied van het atoom. Een betere fit van de potentiaal in dit gebied verslechtert echter
het langeafstandsgedrag van de potentiaal hetgeen de te beperkte vorm van de Padé-approximant
aantoont.

In hoofstuk 7 analyseren we verschillende delen van de Kohn-Sham potentiaal. De vraag hier-
bij is hoe de effekten van het Pauli-principe en de effekten van de Coulomb-afstoting tussen de
elektronen de vorm van de Kohn-Sham potentiaal bepalen. In de uitgevoerde analyse wordt de
exchange-korrelatie potentiaal opgesplitst in twee termen, een aantrekkende langedrachtsterm en
een repulsieve kortdrachtsterm, die beide relatief eenvoudig te benaderen zijn. Een belangrijk ken-
merk van de exchange-korrelatie potentiaal is zijn atoomschillenstruktuur. Deze komt tot uiting
in de kortedrachtspotentiaal die een stapvorm heeft. De potentiaal is konstant binnen de atoom-
schillen en verandert snel op de schilovergangen. De atoomschillenstruktuur komt ook duidelijk
tot uiting in de eigenschappen van het exchange- en exchange-korrelatie gat en de konditionele
waarschijnlijkheidsamplitude. Beide grootheden beschrijven de verdeling van de andere elektronen
wanneer bekend is dat een gegeven elektron, die wij het referentie-elektron noemen, zich op een
bepaalde plaats in de ruimte bevindt. Het exchange gat en de konditionele waarschijnlijkheidsam-
plitude ondergaan grote veranderingen wanneer het referentie-elektron een schilovergang passeert.
Omdat verschillende delen van de Kohn-Sham potentiaal direkt in de konditionele waarschijnli-
jkheidsamplitudes kunnen worden uitgedrukt kan belangrijke informatie worden verkregen over de
Kohn-Sham potentiaal door de bestudering van deze waarschijnlijkheidsamplitudes. Bijvoorbeeld
de piekenstruktuur op de atoomschilovergangen in de zogenaamde kinetische potentiaal, die een
deel is van de funktionele afgeleide van de kinetische energie funktionaal, is direkt gerelateerd
aan de veranderingen van de waarschijnlijkheidsamplitude op de schilovergangen. Zoals besproken
wordt in hoofdstuk 10 beschrijft dezelfde kinetische potentiaal het links-rechts korrelatie-effekt in
dissociérende molekulen.

In hoofdstuk 8 leiden we de stappenstruktuur van de exchange-korrelatie potentiaal die in hoofd-
stuk 7 was gekonstateerd af. We maken hierbij een benadering voor de funktionele afgeleide naar
de elektronendichtheid van de paarkorrelatiefunktie. Een analytische uitdrukking voor deze funk-
tionele afgeleide van de paarkorrelatiefunktie, die verantwoordelijk is voor de stappenstruktuur in de
exchange-korrelatie potentiaal, was nog niet eerder afgeleid. De bijbehorende exchange potentiaal
is echter op een andere wijze eerder afgeleid door Krieger, Li en Iafrate (KLI). Deze potentiaal blijkt
een heel goede benadering voor de exakte Kohn-Sham exchange potentiaal. Een ander belangrijk
resultaat is een benaderde uitdrukking voor de inverse dichtheidsresponsfunktie die in verschillende
gebieden binnen de dichtheidsfunktionaaltheorie een belangrijke rol speelt (zoals in de konstruktie
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van potentialen uit dichtheden en in de berekening van energién van aangeslagen toestanden in
tijdsafhankelijke dichtheidsfunktionaaltheorie).

In hoofdstuk 9 stellen we benaderingen voor voor het stapgedeelte en het langedrachtsgedeelte van
de exchange-korrelatie potentiaal. Het langedrachtsgedeelte wordt benaderd door een gradiént-
uitdrukking met het goede langeafstandsgedrag afgeleid uit Beckes gradiéntfunktionaal voor de
exchange energie. De repulsieve stappotentiaal wordt geschreven als een som van orbitaaldichthe-
den met voorfaktoren die afhangen van de orbitaalenergién. Het analytisch verband tussen deze
faktoren en de orbitaalenergién wordt afgeleid door het opleggen van schalingsrelaties, ijkinvari-
antie en reduktie tot het goede elektronengasresultaat voor homogene systemen. De resulterende
potentiaal blijkt een praktische en nauwkeurige weergave te zijn van de exakte exchange potenti-
aal en leidt bovendien tot goede (van dezelfde kwaliteit als Beckes gradiéntbenadering) exchange
energien.

In hoofdstuk 10 en 11 bekijken we molekulaire systemen. In hoofdstuk 10 onderzoeken we de
eigenschappen van de Becke en Perdew gradiéntfunktionalen voor het geval van molekulaire disso-
ciatie. De Becke-Perdew gradiéntfunktionaal wordt nu binnen de kwantumchemie op grote schaal
toepast in molekulaire berekeningen omdat het goede geometrién en ( met een nauwkeurheid van
ongeveer 0.2 elektronvolt of minder ) bindingsenergién geeft. We proberen meer inzicht te verkrij-
gen in de werking van deze gradiéntfunktionalen in chemische binding. We bekijken hiervoor eerst
de eigenschappen van de exakte Kohn-Sham potentiaal in het bindingsmiddelpuntgebied. Zoals
eerder opgemerkt vertoont de Kohn-Sham potentiaal in het bindingsmiddelpunt een piekstruktuur
die gerelateerd is aan het links-rechts korrelatie-effekt. Deze piekstruktuur vindt zijn oorsprong
in het kinetische gedeelte van de exchange-korrelatie funktionaal en kan worden afgeleid uit het
gedrag van de konditionele waarschijnlijkheidsamplitude. We laten zien dat er ook een piekstruk-
tuur aanwezig is in de exchange-korrelatie potentialen van de Becke-Perdew gradiéntfunktionaal,
echter met een verkeerde funktionele afhankelijkheid van de dichtheid. We laten verder zien waarom
de Becke gradiéntfunktionaal voor de exchange in het algemeen een repulsieve bijdrage levert aan
de bindingsenergie en waarom de Perdew korrelatiefunktionaal gewoonlijk een aantrekkende bij-
drage levert. Dit heeft te maken met het feit dat dichtheidsgradiénten in de zadelpunten van de
elektronendichtheid (het bindingsmiddelpunt) nul zijn. Numerieke resultaten worden geanalyseerd
aan de hand van dichtheidheidsfunktionaalberekeningen aan het stikstofmolekuul.

In hoofdstuk 11 bekijken we exakte en benaderde dichtheidsfunktionaalresultaten voor het dis-
sociérende waterstofmolekuul. Het waterstofmolekuul is gekozen voor deze analyse omdat hier-
voor de exakte dichtheidsfunktionaalgetallen kunnen worden berekend uit nauwkeurige elektronen-
dichtheden verkregen met grote konfiguratie interaktie berekeningen. Een nadeel is echter dat het
waterstofmolekuul niet een 'standaard’ molekuul is in de zin dat er door de afwezigheid van gevulde
kernbanen geen Pauli-repulsie optreedt bij het vormen van de binding. De dichtheidsfunktionaal-
getallen worden verder vergeleken met resultaten verkregen in de Hartree-Fock benadering en met
de bijna exakte konfiguratie interaktie resultaten. Het blijkt dat DFT met gradiéntfunktionalen
een zeer nauwkeurige weergave geeft van de bindingskurve van het waterstofmolekuul. De kurve
wijkt echter af van de exakte kurve in de dissociatielimiet, hetgeen echter gekorrigeerd kan wor-
den door het uitvoeren van een onbeperkte Kohn-Sham berekening (Engels:unrestricted Kohn-
Sham). De DFT dissociatiefout is echter veel kleiner dan die in de Hartree-Fock benadering. Dit
komt omdat het exchange-korrelatie gat in de lokale dichtheidsbenadering en de gegeneraliseerde
gradiéntbenadering gelokaliseerd is rond het referentie-elektron en hierdoor veel meer lijkt op het
exakte exchange-korrelatie gat dan het gedelokaliseerde Hartree-Fock exchange gat. Dat er nog
steeds een dissociatiefout in DFT bestaat is het gevolg van het feit dat de benaderde dichtheids-
funktionalen niet invariant zijn onder spinrotaties hetgeen to problemen leidt voor gedegenereerde
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grondtoestanden zoals de open-schil fragmenten van een dissociérend molekuul.

In hoofdstuk 12 onderzoeken we het probleem hoe de exchange-korrelatie energie te berekenen in-
dien alleen de exchange-correlatie potentiaal bekend is. Uit de exchange potentiaal kan de exchange
energie berekend worden met behulp van de Levy-Perdew relatie die kan worden afgeleid uit de
schalingseigenschappen van de exchange funktionaal. Voor korrelatiefunktionalen zijn dergelijke
schalingseigenschappen niet bekend. Zoals we aantonen kan de korrelatie-energie echter wel wor-
den afgeleid uit de korrelatiepotentiaal door middel van lijnintegralen in de ruimte van elektronen-
dichtheden. Wegafhankelijkheid van deze lijnintegralen wordt besproken en integreerbaarheidsvoor-
waarden worden gegeven. We bespreken verder hoe verschillende invariantie-eigenschappen van de
exchange-korrelatie potentiaal kunnen worden afgeleid door het kiezen van paden die overeenkomen
met bepaalde symmetrieén (rotatie,translatie,schaling) en leiden ongelijkheden af voor de korre-
latiepotentiaal. We laten vervolgens zien hoe het lijnintegraalformalisme de overgangstoestand-
methode van Ziegler voor de berekening van molekulaire bindingsenergién generaliseert.
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