Additional periodicity data¶
Periodic
KSpace integer
EffectiveMass
Enabled [True | False]
KPointCoord float_list
NumAbove integer
NumBelow integer
StepSize float
End
BandStructure
Automatic [True | False]
DeltaK float
Enabled [True | False]
FatBands [True | False]
UseSymmetry [True | False]
End
BZPath
Path # Non-standard block. See details.
...
End
End
DOS
EMax float
EMin float
NSteps integer
End
Screening
dMadel float
rMadel float
End
End
PeriodicType: Block Description: Block that sets various details of the calculation only relevant for periodic systems. KSpaceType: Integer Default value: 1 Description: This parameter controls the number of k-points used in the calculation. By default DFTB does not do any k-space sampling and uses only the Gamma-point as the only k-point. This should be sufficient for systems with large unit cells For smaller systems, k-space sampling can be enabled explicitly using this keyword. For very small unit cells (one atom wide) a value of 5 is advised. For medium sized unit cells 3 is adequate. The k-space sampling is relatively new in DFTB and as of the ADF2017 release still has some incompatibilities with other features: At the moment it is not possible to use k-space sampling in combination with DFTB3, spin-polarization, l-dependent SCC cycles or density matrix purification. Furthermore, if KSpace is not 1 (Gamma-only in GUI) DFTB can only run in serial mode. If not running via the GUI you need to do this yourself (use NSCM=1). EffectiveMassType: Block Description: In a semi-conductor, the mobility of electrons and holes is related to the curvature of the bands at the top of the valence band and the bottom of the conduction band. With the effective mass option, this curvature is obtained by numerical differentiation. The estimation is done with the specified step size, and twice the specified step size, and both results are printed to give a hint on the accuracy. By far the most convenient way to use this key is without specifying any options. EnabledType: Bool Default value: False Description: In a semi-conductor, the mobility of electrons and holes is related to the curvature of the bands at the top of the valence band and the bottom of the conduction band. With the effective mass option, this curvature is obtained by numerical differentiation. The estimation is done with the specified step size, and twice the specified step size, and both results are printed to give a hint on the accuracy. By far the most convenient way to use this key is without specifying any options. KPointCoordType: Float List Unit: 1/Bohr Recurring: True Description: Coordinate of the k-points for which you would like to compute the effective mass. NumAboveType: Integer Default value: 1 Description: Number of bands to take into account above the Fermi level. NumBelowType: Integer Default value: 1 Description: Number of bands to take into account below the Fermi level. StepSizeType: Float Default value: 0.001 Description: Size of the step taken in reciprocal space to perform the numerical differentiation
BandStructureType: Block Description: Options for band structure plotting. This has no effect on the calculated energy. [Warning: The band structure is only computed in case of k-space sampling, i.e. it is not computed for Gamma-only calculations (see: Periodic%KSpace).] AutomaticType: Bool Default value: True Description: Generate and use the standard path through the Brillouin zone. If not, use the user defined path (set via Custom path in the GUI, or with the Periodic%BZPath keyword in the run script). DeltaKType: Float Default value: 0.1 Unit: 1/Bohr Description: Step size in reciprocal space for band structure interpolation. Using a smaller number will produce smoother band curves at an increased computational time. EnabledType: Bool Default value: True Description: Whether or not to calculate the band structure. FatBandsType: Bool Default value: True Description: Control the computation of the fat bands (only when the bandstructure is calculated). The fat bands are the periodic equivalent of the Mulliken population analysis. The definition of the fat bands can be found in the Band Documentation. UseSymmetryType: Bool Default value: True Description: If set, only the irreducible wedge of the Wigner-Seitz cell is sampled. If not, the whole (inversion-unique) Wigner-Seitz cell is sampled.
BZPathType: Block Description: If [BandStructure%Automatic] is disabled, DFTB will compute the band structure for the user-defined path in the [BZPath] block. You should define the vertices of your path in fractional coordinates (with respect to the reciprocal lattice vectors) in the [Path] sub-block. If you want to make a jump in your path, you need to specify a new [Path] sub-block. PathType: Non-standard block Recurring: True Description: A section of a k space path.
DOSType: Block Description: The subkeys of [DOS] allow to customize the calculation of the density of states. EMaxType: Float Default value: 0.75 Unit: Hartree Description: Upper end of the energy interval in which the density of states is calculated. EMinType: Float Default value: -0.75 Unit: Hartree Description: Lower end of the energy interval in which the density of states is calculated. NStepsType: Integer Default value: 300 Description: The number of energy intervals between [EMin] and [EMax] for which the density of states is calculated.
ScreeningType: Block Description: For SCC-DFTB in periodic systems the Coulomb interaction is screened with a Fermi-Dirac like function defined as TODO S(r)=1/(exp((r-r_madel)/d_madel)+1). Screening is always enable, even if this section is absent. This section allows to change some details of the screening procedure. dMadelType: Float Unit: Bohr Description: Sets the smoothness of the screening function. The default is 1/10 of [rMadel]. rMadelType: Float Unit: Bohr Description: Sets the range of the screening function. The default is 2x the norm of the longest lattice vector.