Skip to content
Scm logo
Scm logo
  • Amsterdam Modeling Suite
  • Applications
  • Tools
  • Docs & Support
  • Company
    • About us
    • Team
    • Projects & Collaborations
    • Partners & Contributors
    • News
    • Events
    • Careers
    • Pricing & Licensing
    • Contact us
Amsterdam Modeling Suite
Atomistic Scale
Electronic Structure
ADF

Understand and predict chemical properties with our fast and accurate molecular DFT code.

Periodic DFT

BAND & Quantum Espresso: Calculate reactivity, band gaps, optical response, and other properties for periodic systems.

DFTB & MOPAC

Model larger molecules and periodic systems, or prescreen many candidates, with the fast electronic structure methods DFTB and MOPAC.

Interatomic Potentials
ReaxFF

Study large, chemically evolving systems with ReaxFF molecular dynamics.

Machine Learning Potentials

Use preparametrized ML potentials M3GNET, ANI-1ccx or your own models.

Force Fields

GFN-FF, Apple&P, UFF, and more- (polarizable) force fields.

Meso- & Macroscale
kMC and Microkinetics

Predict catalytic turn-over frequencies with microkinetics and kinetic Monte Carlo.

Bumblebee: OLED stacks

3D kinetic Monte Carlo for simulating OLED device-level physics

Fluid Thermodynamics
COSMO-RS

Quick physical property predictions, thermodynamic properties in solution, and solvent screening.

Amsterdam Modeling Suite: computational chemistry with expert support to advance your chemistry & materials R&D

Discover the Suite Pricing & licensing
Tools
Workflows and Utilities
OLED workflows

Automatic workflows to simulate physical vapor deposition and calculate properties for OLED device modeling.

ChemTraYzer2

Automatically extract reaction pathways and reaction rates from reactive MD trajectories.

Conformers

Easily generate, screen, refine, and select conformers. Pass on to other modules for conformational averaging.

Reactions Discovery

Predict chemical (side) reactions from nothing but constituent molecules.

AMS Driver
Properties

Calculate frequencies, phonons, and more. Use forces and energies from AMS or external engines.

PES Exploration

Minimize structures, find transitions states, scan multiple coordinates.

Molecular Dynamics

Use advanced thermo- and barostats, non-equilibrium and accelerated MD, molecule gun.

Monte Carlo

Grand Canonical Monte Carlo to study absorption, (dis)charge processes.

Interfaces
ParAMS

Versatile graphical and python scripting tools to create training sets and parametrize DFTB, ReaxFF, and machine learned potentials.

PLAMS

Versatile python scripting interface to create your own computational chemistry workflows

GUI

Powerful graphical interface to set up, run, and analyze calculations. Even across different platforms.

VASP

Interface to popular plane-wave code VASP. Easily set up PES Scans to create training data.

The SCM team wants to make computational chemistry work for you!

Check out the tutorials Questions? Contact us!
Docs & Support
Downloads
Windows

ams2025.102

Mac

ams2025.102

Linux

ams2025.102

See all
Documentation
Overview

Documentation links for all our modules and tools

Tutorials

Get started quickly with our Tutorials!

Installation Manual

Quick-start guide and extensive installation manual

Brochures

Brochure and flyers for different applications

Other Resources
Changelog

Latest changes to our binaries

Webinars

Workshops

Knowledgebank

Research highlights

FAQ

General FAQs on licensing.

Pricing and licensing

Price and licensing information.

Consulting & Support
How can we help?
Search
  • Free trial
  • Contact

Home > Documentation

Navigate to
  • Documentation
  • Tutorials
  • Installation

Table of contents

  • 1. Introduction
    • 1.1. Parameter Fitting: A Lennard-Jones Example
    • 1.2. General Application
  • 2. Getting Started
    • 2.1. Installation
    • 2.2. Unit Tests
    • 2.3. First Steps with ParAMS
  • 3. Components
    • 3.1. Architecture Quick Reference
    • 3.2. Collections
      • 3.2.1. Job Collection
        • 3.2.1.1. Adding Jobs
        • 3.2.1.2. Working with the Collection
        • 3.2.1.3. I/O
        • 3.2.1.4. Generating AMSJobs
        • 3.2.1.5. Running Collection Jobs
      • 3.2.2. Engine Collection
      • 3.2.3. Collections API
        • 3.2.3.1. JCEntry
        • 3.2.3.2. JobCollection
        • 3.2.3.3. Engine
        • 3.2.3.4. EngineCollection
        • 3.2.3.5. Collection Base Class
    • 3.3. Data Set
      • 3.3.1. Adding Entries
      • 3.3.2. Accessing Entries
      • 3.3.3. Removing Entries
      • 3.3.4. Adding External Reference Data
      • 3.3.5. Calculating and Adding Reference Data with AMS
      • 3.3.6. Storage and I/O
      • 3.3.7. Calculating the Loss Function Value
      • 3.3.8. Checking for Consistency with a given Job Collection
      • 3.3.9. Splitting into Subsets
      • 3.3.10. Data Set Entry API
      • 3.3.11. Data Set API
    • 3.4. Extractors and Comparators
      • 3.4.1. Supported Data Structures
      • 3.4.2. Custom Comparators
      • 3.4.3. Available Extractors
        • 3.4.3.1. Distance
        • 3.4.3.2. Angles
        • 3.4.3.3. Dihedral
        • 3.4.3.4. RMSD
        • 3.4.3.5. Energy
        • 3.4.3.6. Forces
        • 3.4.3.7. Cell Volume
        • 3.4.3.8. Lattice Parameters
        • 3.4.3.9. Hessian
        • 3.4.3.10. Stress Tensor
        • 3.4.3.11. Charges
        • 3.4.3.12. Vibrational Frequencies
        • 3.4.3.13. PES
        • 3.4.3.14. Compared PES
    • 3.5. Parameter Interfaces
      • 3.5.1. Available Parameter Interfaces
        • 3.5.1.1. xTB
        • 3.5.1.2. ReaxFF
        • 3.5.1.3. SCC-DFTB repulsive potential
        • 3.5.1.4. Lennard Jones
      • 3.5.2. Parameter Interface Basics
      • 3.5.3. Working with Parameters
      • 3.5.4. The Active Parameters Subset
      • 3.5.5. Storage
        • 3.5.5.1. Lossless Storage
      • 3.5.6. Relation to PLAMS Settings
      • 3.5.7. Parameter API
      • 3.5.8. Interface Base Class API
    • 3.6. Optimizers
      • 3.6.1. CMA-ES
        • 3.6.1.1. List of valid cmasettings
        • 3.6.1.2. References
      • 3.6.2. Scipy
      • 3.6.3. Nevergrad
      • 3.6.4. Adaptive Rate MC
      • 3.6.5. Simple Grid Optimizer
      • 3.6.6. Optimizer Base Class
        • 3.6.6.1. BaseOptimizer API
        • 3.6.6.2. MinimizeResult API
    • 3.7. Optimization
      • 3.7.1. Optimization Setup
      • 3.7.2. Optimization API
    • 3.8. Parallelization
    • 3.9. Constraints
    • 3.10. Callbacks
      • 3.10.1. Logger
      • 3.10.2. Timeout
      • 3.10.3. Target Value
      • 3.10.4. Maximum Iterations
      • 3.10.5. Early Stopping
      • 3.10.6. Stopfile
      • 3.10.7. Time per Evaluation
      • 3.10.8. Load Average
      • 3.10.9. User-Defined Callbacks
      • 3.10.10. Callback API
    • 3.11. Loss Functions
      • 3.11.1. Least Absolute Error
      • 3.11.2. Mean Absolute Error
      • 3.11.3. Root-Mean-Square Error
      • 3.11.4. Sum of Squares Error
      • 3.11.5. Loss Function API
    • 3.12. Utilities
      • 3.12.1. Optimization History
      • 3.12.2. ReaxFF Conversion
      • 3.12.3. Plotting Funcitons
    • 3.13. Experimental Features
      • 3.13.1. Active Parameter Search
      • 3.13.2. Data Set Sensitivity
  • 4. ParAMS Main Script
    • 4.1. The Configuration File
  • 5. Examples
    • 5.1. Parameterization of a Lennard-Jones Engine for Argon
      • 5.1.1. Understanding and running the example
      • 5.1.2. Evaluating the Optimization
      • 5.1.3. Modifying the example
    • 5.2. Parameterization of a Water Force Field with ReaxFF
      • 5.2.1. Complete Example Script
      • 5.2.2. Changing the Example Script
    • 5.3. Refitting HF Charges with the ACKS2 Model
      • 5.3.1. The Config File
      • 5.3.2. Preparing the YAML Files from Input
      • 5.3.3. Running the Optimization
      • 5.3.4. Comparing the new parameters
      • 5.3.5. Playing with the example
  • 6. Citations
  • 7. Changelog
  • 8. Frequently Asked Questions
ParAMS
  • Documentation/
  • ParAMS/
  • Parameterization Tools for AMS

Parameterization Tools for AMS¶

Note

This is an alpha release of the ParAMS toolkit. It is mostly feature complete, but some APIs might still change in the future. Of course it might also contain some bugs. If you are interested in trying ParAMS, feel free to get in touch with us at support@scm.com. We are happy to get you started and appreciate all kinds of feedback on ParAMS.

Table of contents

  • 1. Introduction
    • 1.1. Parameter Fitting: A Lennard-Jones Example
    • 1.2. General Application
  • 2. Getting Started
    • 2.1. Installation
    • 2.2. Unit Tests
    • 2.3. First Steps with ParAMS
  • 3. Components
    • 3.1. Architecture Quick Reference
    • 3.2. Collections
    • 3.3. Data Set
    • 3.4. Extractors and Comparators
    • 3.5. Parameter Interfaces
    • 3.6. Optimizers
    • 3.7. Optimization
    • 3.8. Parallelization
    • 3.9. Constraints
    • 3.10. Callbacks
    • 3.11. Loss Functions
    • 3.12. Utilities
    • 3.13. Experimental Features
  • 4. ParAMS Main Script
    • 4.1. The Configuration File
  • 5. Examples
    • 5.1. Parameterization of a Lennard-Jones Engine for Argon
    • 5.2. Parameterization of a Water Force Field with ReaxFF
    • 5.3. Refitting HF Charges with the ACKS2 Model
  • 6. Citations
  • 7. Changelog
  • 8. Frequently Asked Questions
Next
AMS Modules
Electronic Structure
ADF: molecular DFT Periodic DFT DFTB & MOPAC
Interatomic Potentials
ReaxFF ML Potentials Force Fields
Kinetics
kMC and Microkinetics Bumblebee: OLEDs
Macroscale
COSMO-RS
Application Areas
Research Topics
Batteries Biotechnology Bonding Analysis Catalysis Heavy Elements Inorganic Chemistry Materials Science Nanoscience Oil & Gas OLEDs Perovskites Polymers Semiconductors Spectroscopy
Where to use AMS?
Industry Government Lab National Supercomputer Academic Research Teaching
Tools
Workflows
Conformers OLED workflows Reaction analysis Reaction discovery
AMS Driver
Hybrid Engine Molecular Dynamics Monte Carlo PES Exploration Properties
Python Utilities
ACErxn ParAMS PLAMS pyZacros
Interfaces
GUI VASP Parametrization
Documentation & Support
Downloads Documentation Videos Release notes Changelog Previous releases Webinars Workshops AMS Literature Brochure
Company
About us Careers Contact us Events News Our team Partners & Contributors Projects & Collaborations
Pricing & Licensing
Get a price quote Pricing structure Ordering License terms Resellers FAQ

© SCM – Software Chemistry & Materials 2025 – All Rights Reserved

Privacy Disclaimer Cookies Terms of Use Copyright
Manage Cookie Consent
We use cookies to optimise site functionality and give you the best possible experience.
See our cookie statement for all information.
Functional cookies Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}