4.2. Generate reference values¶
In all previous tutorials, the reference data was either already pre-calculated, or calculated by setting up a job in AMSinput and running it in the normal way before importing the results to ParAMS.
You can also use ParAMS to calculate the reference values. That is illustrated in this tutorial.
This can be useful if you, for example:
want to reevaluate (parts of) the training set with a different reference method,
have added a reaction energy without a reference value, or
only have a few reference jobs that are relatively quick to calculate.
Note
It is usually better to first run the reference calculations and then import them into ParAMS (i.e., to not follow this tutorial, but instead the Import training data (GUI) or Import training data (Python) tutorials). That way you can:
run the reference calculations on multiple nodes,
store the reference calculations and results in arbitrary places on disk,
inspect the reference results and correct any errors before the parametrization, and
use the results importer for PESScans which generate plots.
4.2.1. Prerequisites¶
Go through the Getting Started: Lennard-Jones tutorial.
Make a copy of the example directory
$AMSHOME/scripting/scm/params/examples/LJ_Ar_no_reference_data.
4.2.2. The input files¶
4.2.2.1. Training set without reference values (training_set.yaml)¶
The reference values will be calculated when you start the parametrization.
Unlike the training_set.yaml file in the previous tutorial, this example’s training_set.yaml does not contain any reference values:
---
dtype: DataSet
version: '2022.101'
---
Expression: energy('Ar32_frame001')-energy('Ar32_frame002')
Weight: 1.0
Sigma: 0.054422772491975996
Unit: eV, 27.211386245988
---
Expression: energy('Ar32_frame003')-energy('Ar32_frame002')
Weight: 1.0
Sigma: 0.054422772491975996
Unit: eV, 27.211386245988
---
Expression: forces('Ar32_frame001')
Weight: 1.0
Sigma: 0.15426620242897765
Unit: eV/angstrom, 51.422067476325886
---
Expression: forces('Ar32_frame002')
Weight: 1.0
Sigma: 0.15426620242897765
Unit: eV/angstrom, 51.422067476325886
---
Expression: forces('Ar32_frame003')
Weight: 1.0
Sigma: 0.15426620242897765
Unit: eV/angstrom, 51.422067476325886
...
This tutorial shows you how you can calculate the reference values (in units of Unit) with params.
4.2.2.2. Jobs and Engines (job_collection.yaml, job_collection_engines.yaml)¶
All Jobs that are mentioned in training set entries without a reference value, will be calculated before the parametrization starts with the help of a Reference Engine.
dftb;;kspace;;quality;GammaOnly;model;GFN1-xTB;.This rather cryptic ID is a reference engine id.
Engine dftb   kspace .......GFN1xTB_GammaPoint (do not use spaces in the name).This affects all jobs with that particular reference engine.
To edit the engine used for a job:
Ar32_frame002 job in the Detail column (where it says SinglePoint + gradients)GFN1xTB;2526569033. The numbers are a hash of the settings.Ar32_frame002 job has the new reference engine. You can rename it on the Engines panel if you prefer.In this way, you can create an arbitrary number of engines, or choose already-created engines.
Ar32_frame002 job in the Detail column (where it says SinglePoint + gradients)GFN1xTB_GammaPoint).GFN1xTB_GammaPoint engineUnlike the previous tutorial, here each entry in the job_collection.yaml has a ReferenceEngineID. For example, the first entry is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  | ---
Engines: job_collection_engines.yaml
dtype: JobCollection
version: '2022.101'
---
ID: 'Ar32_frame001'
ReferenceEngineID: dftb;;kspace;;quality;GammaOnly;model;GFN1-xTB;
AMSInput: |
   properties
     gradients Yes
   End
   system
     Atoms
                Ar       5.1883477539      -0.4887475488       7.9660568076 
                Ar       5.7991822399       0.4024595652       2.5103286966 
                Ar       6.1338265157       5.5335946219       7.0874208384 
                Ar       4.6137188191       5.9644505949       3.0942810122 
                Ar       8.4186778390       7.6292969115       8.0729664423 
                Ar       8.3937816110       8.6402371806       2.6057806799 
                Ar       7.5320205143       1.7666481606       7.7525889818 
                Ar       8.5630139885       2.0472039529       2.6380554086 
                Ar       2.6892353632       7.8435284207       7.7883054306 
                Ar       2.4061636915       7.5716025415       2.4535180075 
                Ar       2.2485171283       2.9764130946       7.8589298904 
                Ar       3.0711058946       1.8500587164       2.5620921469 
                Ar       7.6655637500      -0.4865893003       0.0018797080 
                Ar       7.7550067215      -0.0222821825       4.8528637785 
                Ar       7.7157262425       4.6625079517      -0.3861722152 
                Ar       7.7434900996       5.2619590353       4.2602386226 
                Ar       3.4302237084      -0.2708640738       0.6280466620 
                Ar       2.8648051689       0.6106220610       6.1208342905 
                Ar       3.2529823775       5.7151788324      -0.2024448179 
                Ar       2.0046357208       4.9353027402       5.4968740217 
                Ar       0.9326855213       8.0600564695      -0.3181225099 
                Ar      -0.5654205469       8.5703446434       5.8930973456 
                Ar      -0.9561293133       2.1098403312      -0.0052667919 
                Ar      -0.8081417664       3.2747992855       5.5295389610 
                Ar       5.5571960244       7.5645919074       0.1312355350 
                Ar       4.4530832384       7.6170633330       5.4810860433 
                Ar       5.1235367625       2.7983577675      -0.3161069611 
                Ar       5.2048439076       2.9885672135       4.5193274119 
                Ar      -0.2535891591       0.0134355189       8.3061692970 
                Ar       0.5614183785      -0.1927751317       3.2355155467 
                Ar      -0.0234943080       5.0313863031       8.0451075074 
                Ar      -0.4760138873       6.2617510830       2.5759742219 
     End
     Lattice
           10.5200000000     0.0000000000     0.0000000000
            0.0000000000    10.5200000000     0.0000000000
            0.0000000000     0.0000000000    10.5200000000
 | 
The ReferenceEngineID refers to an engine in job_collection_engines.yaml, which is an Engine Collection. Each entry has a unique ID, and an AMSInput block containing calculation settings for the AMS engine.
---
Jobs: job_collection.yaml
dtype: EngineCollection
version: '2022.101'
---
ID: 'dftb;;kspace;;quality;GammaOnly;model;GFN1-xTB;'
AMSInput: |
   Engine dftb
     kspace
       quality GammaOnly
     End
     model GFN1-xTB
   EndEngine
...
In this example, there is only one reference engine. It has the ID
dftb;;kspace;;quality;GammaOnly;model;GFN1-xTB;. The ID could be any
string. It does not affect the results, but should describe the reference
engine. Each job in the job collection with this ReferenceEngineID will be
evaluated with this reference engine.
The AMSInput affects the calculation. In this example, it sets up a GFN1-xTB engine with Γ-point sampling. The AMSInput will be added verbatim to the input to the reference job.
Note
If you do not have DFTB license, change the Engine block in job_collection_engines.yaml to
Engine ForceField
    Type UFF
EndEngine
to instead use a UFF force field as the reference method.
4.2.3. Calculate the reference values¶
Select the Generate Reference task:
Save and run the task:
calc_ref_values.paramsOnce complete the GUI will automatically load the reference values:
Since the reference data has been automatically loaded, you may now immediately continue to setting up an optimization. You can switch the task back to Optimization, change any settings you like (for details see Getting Started: Lennard-Jones), and then save the job. The reference values will be saved within the new job folder as normal.
To run the reference jobs and generate the reference data, change to the example directory and run:
"$AMSBIN/params"
This runs the reference calculations, adds the reference data to the training set, and saves it in results/training_set.ref.yaml
To use the results in an optimization simply set one up as described in Getting Started: Lennard-Jones and ensure that the DataSet%Path key points to results/training_set.ref.yaml or a copy of it.
4.2.4. Output files for reference calculations and data¶
In the results folder, you will find:
the individual job results saved in
results/reference_jobsthe task input saved in
results/settings_and_initial_dataa file
training_set.ref.yamlcontaining the reference values.
4.2.4.1. The reference_jobs folder¶
For example, the file reference_jobs/Ar32_frame001/Ar32_frame001.in
contains the input to the Ar32_frame001 job, which combines input from the
job collection and engine
collection:
properties
  gradients yes
End
system
  Atoms
             Ar       5.1883477539      -0.4887475488       7.9660568076 
             Ar       5.7991822399       0.4024595652       2.5103286966 
             Ar       6.1338265157       5.5335946219       7.0874208384 
             Ar       4.6137188191       5.9644505949       3.0942810122 
             Ar       8.4186778390       7.6292969115       8.0729664423 
             Ar       8.3937816110       8.6402371806       2.6057806799 
             Ar       7.5320205143       1.7666481606       7.7525889818 
             Ar       8.5630139885       2.0472039529       2.6380554086 
             Ar       2.6892353632       7.8435284207       7.7883054306 
             Ar       2.4061636915       7.5716025415       2.4535180075 
             Ar       2.2485171283       2.9764130946       7.8589298904 
             Ar       3.0711058946       1.8500587164       2.5620921469 
             Ar       7.6655637500      -0.4865893003       0.0018797080 
             Ar       7.7550067215      -0.0222821825       4.8528637785 
             Ar       7.7157262425       4.6625079517      -0.3861722152 
             Ar       7.7434900996       5.2619590353       4.2602386226 
             Ar       3.4302237084      -0.2708640738       0.6280466620 
             Ar       2.8648051689       0.6106220610       6.1208342905 
             Ar       3.2529823775       5.7151788324      -0.2024448179 
             Ar       2.0046357208       4.9353027402       5.4968740217 
             Ar       0.9326855213       8.0600564695      -0.3181225099 
             Ar      -0.5654205469       8.5703446434       5.8930973456 
             Ar      -0.9561293133       2.1098403312      -0.0052667919 
             Ar      -0.8081417664       3.2747992855       5.5295389610 
             Ar       5.5571960244       7.5645919074       0.1312355350 
             Ar       4.4530832384       7.6170633330       5.4810860433 
             Ar       5.1235367625       2.7983577675      -0.3161069611 
             Ar       5.2048439076       2.9885672135       4.5193274119 
             Ar      -0.2535891591       0.0134355189       8.3061692970 
             Ar       0.5614183785      -0.1927751317       3.2355155467 
             Ar      -0.0234943080       5.0313863031       8.0451075074 
             Ar      -0.4760138873       6.2617510830       2.5759742219 
  End
  Lattice
        10.5200000000     0.0000000000     0.0000000000
         0.0000000000    10.5200000000     0.0000000000
         0.0000000000     0.0000000000    10.5200000000
  End
End
task singlepoint
Engine dftb
  kspace
    quality GammaOnly
  End
  model GFN1-xTB
EndEngine
The normal AMS output can be found in the same folder: the logfile, standard outputfile, and the binary ams.rkf and dftb.rkf files.
4.2.4.2. The training_set.ref.yaml file¶
The training_set.ref.yaml file contains the calculated reference values. For example, it starts with
---
dtype: DataSet
version: '2022.101'
---
Expression: energy('Ar32_frame001')-energy('Ar32_frame002')
Weight: 1.0
Sigma: 0.054422772491975996
ReferenceValue: 0.20395942701637979
Unit: eV, 27.211386245988
---
Expression: energy('Ar32_frame003')-energy('Ar32_frame002')
Weight: 1.0
Sigma: 0.054422772491975996
ReferenceValue: 0.22060005303998803
Unit: eV, 27.211386245988
---
Expression: forces('Ar32_frame001')
Weight: 1.0
Sigma: 0.15426620242897765
ReferenceValue: |
These were the reference values that were used in the Getting Started: Lennard-Jones tutorial.
4.2.5. Generate reference values in Python¶
See run.py, where first the GenerateReference job is run, and then the resulting reference values are used to run an optimization. See also ParAMSJob and ParAMSResults.
#!/usr/bin/env amspython
from scm.plams import *
from scm.params import *
import os
def main():
    init()
    inputfile = os.path.expandvars('$AMSHOME/scripting/scm/params/examples/LJ_Ar_no_reference_data/params.in')
    job = ParAMSJob.from_inputfile(inputfile, name="genref")
    job.run()
    # use all settings from the LJ_Ar example except for the path to the training set
    inputfile = os.path.expandvars('$AMSHOME/scripting/scm/params/examples/LJ_Ar/params.in')
    opt_job = ParAMSJob.from_inputfile(inputfile, name="optimization")
    opt_job.training_set = job.results.get_training_set_ref_path()
    opt_job.run()
    
    loss = opt_job.results.get_loss(source='latest')
    print(f"Final loss: {loss}")
    finish()
if __name__ == '__main__':
    main()