References

  1. E.J. Baerends, V. Branchadell and M. Sodupe, Atomic reference-energies for density functional calculations, Chemical Physics Letters 265,481 (1997)
  1. F.M. Bickelhaupt and E.J. Baerends, Kohn-Sham DFT: Predicting and Understanding Chemistry, in Reviews in Computational Chemistry, D.B. Boyd and K.B. Lipkowitz, Editors. 2000, Wiley-VCH: New York. p. 1-86.
  1. T. Ziegler and A. Rauk, On the calculation of Bonding Energies by the Hartree Fock Slater method. I. The Transition State Method, Theoretica Chimica Acta 46, 1 (1977)
  1. P.J. van den Hoek, A.W. Kleyn and E.J. Baerends, What is the origin of the repulsive wall in atom-atom potentials, Comments Atomic and Molecular Physics 23, 93 (1989)
  1. E.J. Baerends, Pauli repulsion effects in scattering from and catalysis by surface, in Cluster models for surface and bulk phenomena, ISBN13: 9780306441028, G. Puccchiori, P.S. Bagus and F. Parmigiani, Editors. 1992, Springer: New-York. p. 189-207.
  1. L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of Chemical Physics 88, 322 (1988)
  1. L. Versluis, The determination of molecular structures by the HFS method, PhD thesis, University of Calgary, 1989
  1. L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density functional theory, Journal of Chemical Physics 95, 7401 (1991)
  1. L. Deng, T. Ziegler and L. Fan, A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of H2 CO, Journal of Chemical Physics 99, 3823 (1993)
  1. L. Deng and T. Ziegler, The determination of Intrinsic Reaction Coordinates by density functional theory, International Journal of Quantum Chemistry 52, 731 (1994)
  1. T.H. Fischer and J. Almlöf, General Methods for Geometry and Wave Function Optimization, Journal of Physical Chemistry 96, 9768 (1992)
  1. L. Fan and T. Ziegler, Application of density functional theory to infrared absorption intensity calculations on main group molecules, Journal of Chemical Physics 96, 9005 (1992)
  1. L. Fan and T. Ziegler, Nonlocal density functional theory as a practical tool in calculations on transition states and activation energies, Journal of the American Chemical Society 114, 10890 (1992)
  1. A. Bérces, Application of density functional theory to the vibrational characterization of transition metal complexes, PhD thesis, University of Calgary, 1995
  1. R. van Leeuwen and E.J. Baerends, Exchange-correlation potential with correct asymptotic behavior, Physical Review A 49, 2421 (1994)
  1. M. Grüning, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, Shape corrections to exchange-correlation Kohn-Sham potentials by gradient-regulated seamless connection of model potentials for inner and outer region, Journal of Chemical Physics 114, 652 (2001)
  1. P.R.T. Schipper, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials, Journal of Chemical Physics 112, 1344 (2000)
  1. M. Grüning, O.V. Gritsenko, S.J.A. van Gisbergen and E.J. Baerends, On the required shape correction to the LDA and GGA Kohn Sham potentials for molecular response calculations of (hyper)polarizabilities and excitation energies, Journal of Chemical Physics 116, 9591 (2002)
  1. D.P. Chong, O.V. Gritsenko and E.J. Baerends, Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials, Journal of Chemical Physics 116, 1760 (2002)
  1. S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (8), 1200 (1980)
  1. H. Stoll, C.M.E. Pavlidou, and H. Preuss, On the calculation of correlation energies in the spin-density functional formalism, Theoretica Chimica Acta 49, 143 (1978)
  1. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A 38, 3098 (1988)
  1. J.P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation, Physical Review B 33, 8822 (1986)
  1. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Sing and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 46, 6671 (1992)
  1. C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, Journal of Chemical Physics 108, 664 (1998)
  1. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996)
  1. B. Hammer, L.B. Hansen, and J.K. Norskøv, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B 59, 7413 (1999)
  1. Y. Zhang and W. Yang, Comment on “Generalized Gradient Approximation Made Simple”, Physical Review Letters 80, 890 (1998)
  1. N.C. Handy and A.J. Cohen, Left-right correlation energy, Molecular Physics 99, 403 (2001)
  1. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Revied B 33, 8822 (1986) Erratum: J.P. Perdew, Physical Review B 34, 7406 (1986)
  1. C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37, 785 (1988)
  1. B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of density functional methods, Journal of Chemical Physics 98, 5612 (1993)
  1. T.V. Russo, R.L. Martin and P.J. Hay, Density Functional calculations on first-row transition metals, Journal of Chemical Physics 101, 7729 (1994)
  1. R. Neumann, R.H. Nobes and N.C. Handy, Exchange functionals and potentials, Molecular Physics 87, 1 (1996)
  1. J.P. Perdew, K. Burke and M. Ernzerhof, ERRATA for “Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]”  Physical Review Letters 78, 1396 (1997)
  1. F.A. Hamprecht, A.J. Cohen, D.J. Tozer and N.C. Handy, Development and assessment of new exchange-correlation functionals, Journal of Chemical Physics 109, 6264 (1988)
  1. A.D. Boese, N.L. Doltsinis, N.C. Handy and M. Sprik, New generalized gradient approximation functionals, Journal of Chemical Physics 112, 1670 (2000)
  1. A.D. Boese and N.C. Handy, A new parametrization of exchange-correlation generalized gradient approximation functionals, Journal of Chemical Physics 114, 5497 (2001)
  1. T. Tsuneda, T. Suzumura and K. Hirao, A new one-parameter progressive Colle.Salvetti-type correlation functional, Journal of Chemical Physics 110, 10664 (1999)
  1. J.B. Krieger, J. Chen, G.J. Iafrate and A. Savin, in Electron Correlations and Materials Properties, ISBN13: 9780306462825, A. Gonis and N. Kioussis, Editors. 1999, Plenum: New York.
  1. J.P. Perdew, S. Kurth, A. Zupan and P. Blaha, Erratum: Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation [Phys. Rev. Lett. 82, 2544 (1999)], Physical Review Letters 82, 5179 (1999).
  1. T. van Voorhis and G.E. Scuseria, A novel form for the exchange-correlation energy functional, Journal of Chemical Physics 109, 400 (1998)
  1. M. Filatov and W. Thiel, A new gradient-corrected exchange-correlation density functional, Molecular Physics 91, 847 (1997)
  1. M. Filatov and W. Thiel, Exchange-correlation density functional beyond the gradient approximation, Physical Review A 57, 189 (1998)
  1. E.I. Proynov, S. Sirois and D.R. Salahub, Extension of the LAP functional to include parallel spin correlation, International Journal of Quantum Chemistry 64, 427 (1997)
  1. E.I. Proynov, H. Chermette and D.R. Salahub, New tau-dependent correlation functional combined with a modified Becke exchange, Journal of Chemical Physics 113, 10013 (2000)
  1. S. Patchkovskii, J. Autschbach and T. Ziegler, Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory, Journal of Chemical Physics 115, 26 (2001)
  1. S. Patchkovskii and T. Ziegler, Improving “difficult” reaction barriers with self-interaction corrected density functional theory, Journal of Chemical Physics 1167806 (2002)
  1. S. Patchkovskii and T. Ziegler, Phosphorus NMR chemical shifts with self-interaction free, gradient-corrected DFT, Journal of Physical Chemistry A 106, 1088 (2002)
  1. P.H.T. Philipsen, E. van Lenthe, J.G. Snijders and E.J. Baerends, Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation, Physical Review B 56, 13556 (1997)
  1. J.G. Snijders and E.J. Baerends, A perturbation theory approach to relativistic calculations. I. Atoms, Molecular Physics 36, 1789 (1978)
  1. J.G. Snijders, E.J. Baerends and P. Ros, A perturbation theory approach to relativistic calculations. II. Molecules, Molecular Physics 38, 1909 (1979)
  1. T. Ziegler, J.G. Snijders and E.J. Baerends, Relativistic effects on bonding, Journal of Chemical Physics 74, 1271 (1981)
  1. R.L. DeKock, E.J. Baerends, P.M. Boerrigter and J.G. Snijders, On the nature of the first excited states of the uranyl ion, Chemical Physics Letters 105, 308 (1984)
  1. R.L. DeKock, E.J. Baerends, P.M. Boerrigter and R. Hengelmolen, Electronic structure and bonding of Hg(CH3 )2 , Hg(CN)2 , Hg(CH3 )(CN), Hg(CCCH3 )2 , and Au(PMe)3 (CH3 ), Journal of the American Chemical Society 106, 3387 (1984)
  1. P.M. Boerrigter, Spectroscopy and bonding of heavy element compounds, 1987, Vrije Universiteit.
  1. P.M. Boerrigter, M.A. Buijse and J.G. Snijders, Spin-Orbit interaction in the excited states of the dihalogen ions F2 + , Cl2 + and Br2 +, Chemical Physics 111, 47 (1987)
  1. P.M. Boerrigter, E.J. Baerends and J.G. Snijders, A relativistic LCAO Hartree-Fock-Slater investigation of the electronic structure of the actinocenes M(COT)2 , M=Th, Pa, U, Np and Pu, Chemical Physics 122, 357 (1988)
  1. T. Ziegler, V. Tschinke, E.J. Baerends, J.G. Snijders and W. Ravenek, Calculation of bond energies in compounds of heavy elements by a quasi-relativistic approach, Journal of Physical Chemistry 93, 3050 (1989)
  1. J. Li, G. Schreckenbach and T. Ziegler, A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method, Journal of the American Chemical Society 117, 486 (1995)
  1. E. van Lenthe, A.E. Ehlers and E.J. Baerends, Geometry optimization in the Zero Order Regular Approximation for relativistic effects, Journal of Chemical Physics 110, 8943 (1999)
  1. E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians, Journal of Chemical Physics 99, 4597 (1993)
  1. E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic total energy using regular approximations, Journal of Chemical Physics 101, 9783 (1994)
  1. E. van Lenthe, J.G. Snijders and E.J. Baerends, The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules, Journal of Chemical Physics 105, 6505 (1996)
  1. E. van Lenthe, R. van Leeuwen, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians, International Journal of Quantum Chemistry 57, 281 (1996)
  1. C.C. Pye and T. Ziegler, An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package, Theoretical Chemistry Accounts 101, 396 (1999)
  1. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, Journal of the Chemical Society: Perkin Transactions 2, 799 (1993)
  1. A. Klamt, Conductor-like Screening Model for real solvents: A new approach to the quantitative calculation of solvation phenomena, Journal of Physical Chemistry 99, 2224 (1995)
  1. A. Klamt and V. Jones, Treatment of the outlying charge in continuum solvation models, Journal of Chemical Physics 105, 9972 (1996)
  1. J.L. Pascual-ahuir, E. Silla and I. Tuñon, GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, Journal of Computational Chemistry 15, 1127 (1994)
  1. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Implementation of time-dependent density functional response equations, Computer Physics Communications 118, 119 (1999)
  1. S.J.A. van Gisbergen, *Molecular Response Property Calculations using Time Dependent Density Functional Theory*, in *Chemistry*. 1998, Vrije Universiteit: Amsterdam. p. 190.
  1. E.K.U. Gross, J.F. Dobson and Petersilka, in Density Functional Theory, R.F. Nalewajski, Editor. 1996, Springer: Heidelberg.
  1. S.J.A. van Gisbergen, V.P. Osinga, O.V. Gritsenko, R. van Leeuwen, J.G. Snijders and E.J. Baerends, Improved density functional theory results for frequency-dependent polarizabilities, by the use of an exchange-correlation potential with correct asymptotic behavior, Journal of Chemical Physics 105, 3142 (1996)
  1. S.J.A. van Gisbergen, J.G. Snijders, and E.J. Baerends, Time-dependent Density Functional Results for the Dynamic Hyperpolarizability of C60, Physical Review Letters 78, 3097 (1997)
  1. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory, Journal of Chemical Physics 109, 10644 (1998)
  1. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules, Journal of Chemical Physics 109, 10657 (1998)
  1. M.E. Casida, C. Jamorski, K.C. Casida and D.R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, Journal of Chemical Physics 108, 4439 (1998)
  1. V.P. Osinga, S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Density functional results for isotropic and anisotropic multipole polarizabilities and C6 , C7 , and C8 Van der Waals dispersion coefficients for molecules, Journal of Chemical Physics 106, 5091 (1997)
  1. J. Autschbach and T. Ziegler, Calculating molecular electric and magnetic properties from time-dependent density functional response theory, Journal of Chemical Physics 116, 891 (2002)
  1. J. Autschbach, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, Journal of Chemical Physics 116, 6930 (2002)
  1. S.J.A. van Gisbergen, F. Kootstra, P.R.T. Schipper, O.V. Gritsenko, J.G. Snijders and E.J. Baerends, Density-functional-theory response-property calculations with accurate exchange-correlation potentials, Physical Review A 57, 2556 (1998)
  1. S.J.A. van Gisbergen, A. Rosa, G. Ricciardi and E.J. Baerends, Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin, Journal of Chemical Physics 111, 2499 (1999)
  1. A. Rosa, G. Ricciardi, E.J. Baerends and S.J.A. van Gisbergen, The Optical Spectra of NiP, Nipz, NiTBP, and NiPc. Electronic effects of meso-tetraaza substitution and tetrabenzoannulation, Journal of Physical Chemistry A 105, 3311 (2001)
  1. G. Ricciardi, A. Rosa and E.J. Baerends, Ground and Excited States of Zinc Phthalocyanine studied by Density Functional Methods, Journal of Physical Chemistry A 105, 5242 (2001)
  1. S.J.A. van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijders and E.J.Baerends, Excitation energies for transition metal compounds from time-dependent density functional theory. Applications to MnO4- , Ni(CO)4 and Mn2 (CO)10, Journal of Physical Chemistry A 103, 6835 (1999)
  1. A. Rosa, E.J. Baerends, S.J.A. van Gisbergen, E. van Lenthe, J.A. Groeneveld and J. G. Snijders, Article Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach, Journal of the American Chemical Society 121, 10356 (1999)
  1. S.J.A. van Gisbergen, C. Fonseca Guerra and E.J. Baerends, Towards excitation energies and (hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling techniques to time-dependent density functional response theory, Journal of Computational Chemistry 21, 1511 (2000)
  1. S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, A Density Functional Theory study of frequency-dependent polarizabilities and van der Waals dispersion coefficients for polyatomic molecules, Journal of Chemical Physics 103, 9347 (1995)
  1. B. Champagne, E.A. Perpète, S.J.A. van Gisbergen, E.J. Baerends, J.G. Snijders, C. Soubra-Ghaoui, K.A. Robins and B.Kirtman, Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains, Journal of Chemical Physics 109, 10489 (1998) Erratum: Journal of Chemical Physics 111, 6652 (1999)
  1. D.M. Bishop, Aspects of Non-Linear-Optical Calculations, Advances in Quantum Chemistry 25, 3 (1994)
  1. A. Willets, J.E. Rice, D.M. Burland and D.P. Shelton, Problems in comparison of experimental and theoretical hyperpolarizabilities, Journal of Chemical Physics 97, 7590 (1992)
  1. D.P. Shelton and J.E. Rice, Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase, Chemical Reviews 94, 3 (1994)
  1. J. Autschbach, S. Patchkovskii, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules, Journal of Chemical Physics 117, 581 (2002)
  1. E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular g-tensors in the zero order regular approximation for relativistic effects, Journal of Chemical Physics 107, 2488 (1997)
  1. E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects, Journal of Chemical Physics 108, 4783 (1998)
  1. E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear quadrupole coupling constants in the zero-order regular approximation for relativistic effects, Journal of Chemical Physics 112, 8279 (2000)
  1. R.E. Bulo, A.W. Ehlers, S. Grimme and K. Lammertsma, Vinylphosphirane.Phospholene Rearrangements: Pericyclic [1,3]-Sigmatropic Shifts or Not? Journal of the American Chemical Society 124, 13903 (2002)
  1. R. Pauncz, Spin Eigenfunctions, ISBN13: 9780306401411, 1979, New York: Plenum Press
  1. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, ISBN13: 9780070627390, 1st ed. revised ed. 1989: McGraw-Hill
  1. H. Eschrig and V.D.P. Servedio, Relativistic density functional approach to open shells, Journal of Computational Chemistry 20, 23 (1999)
  1. C. van Wüllen, Spin densities in two-component relativistic density functional calculations: Noncollinear versus collinear approach, Journal of Computational Chemistry 23, 779 (2002)
  1. S.G. Wang and W.H.E. Schwarz, Simulation of nondynamical correlation in density functional calculations by the optimized fractional orbital occupation approach: Application to the potential energy surfaces of O3 and SO2, Journal of Chemical Physics 105, 4641 (1996)
  1. P.M. Boerrigter, G. te Velde and E.J. Baerends, Three-dimensional Numerical Integration for Electronic Structure Calculations, International Journal of Quantum Chemistry 33, 87 (1988)
  1. G. te Velde and E.J. Baerends, Numerical Integration for Polyatomic Systems, Journal of Computational Physics 99, 84 (1992)
  1. A. Bérces and T. Ziegler, The harmonic force field of benzene calculated by local density functional theory, Chemical Physics Letters 203, 592 (1993)
  1. A. Bérces and T. Ziegler, The harmonic force field of benzene. A local density functional study, Journal of Chemical Physics 98, 4793 (1993)
  1. F. Neese and E. I. Solomon, MCD C-Term Signs, Saturation Behavior, and Determination of Band Polarizations in Randomly Oriented Systems with Spin S \(\leq\) 1/2. Applications to S = 1/2 and S = 5/2, Inorganic Chemistry 38, 1847 (1999)
  1. G. te Velde, Numerical integration and other methodological aspects of bandstructure calculations, in Chemistry. 1990, Vrije Universiteit: Amsterdam.
  1. T. Ziegler and A. Rauk, A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method, Inorganic Chemistry 18, 1558 (1979)
  1. L. Noodleman, and E.J. Baerends, Electronic Structure, Magnetic Properties, ESR, and Optical Spectra for 2-Fe Ferredoxin Models by LCAO-Xa Valence Bond Theory, Journal of the American Chemical Society 106, 2316 (1984)
  1. F.M. Bickelhaupt, N.M. Nibbering, E.M. van Wezenbeek and E.J. Baerends, The Central Bond in the Three CN Dimers NC_CN, CN-CN, and CN-NC: Electron Pair Bonding and Pauli Repulsion Effects*, Journal of Physical Chemistry 96, 4864 (1992)
  1. G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors using GIAO’s and modern density functional theory, Journal of Physical Chemistry 99, 606 (1995)
  1. G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation, International Journal of Quantum Chemistry 60, 753 (1996)
  1. G. Schreckenbach and T. Ziegler, Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes, International Journal of Quantum Chemistry 61, 899 (1997)
  1. S.K. Wolff and T. Ziegler, Calculation of DFT-GIAO NMR shifts with inclusion of spin-orbit coupling, Journal of Chemical Physics 109, 895 (1998)
  1. S.K. Wolff, T. Ziegler, E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , Journal of Chemical Physics 110, 7689 (1999)
  1. J. Autschbach and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds, Journal of Chemical Physics 113, 936 (2000)
  1. J. Autschbach, and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate relativistic density functional calculations. II. Spin-orbit coupling effects and anisotropies, Journal of Chemical Physics 113, 9410 (2000)
  1. G. Schreckenbach and T. Ziegler, Calculation of the G-tensor of electron paramagnetic resonance spectroscopy using Gauge-Including Atomic Orbitals and Density Functional Theory, Journal of Physical Chemistry A 101, 3388 (1997)
  1. S. Patchkovskii and T. Ziegler, Calculation of the EPR g-Tensors of High-Spin Radicals with Density Functional Theory, Journal of Physical Chemistry A 105, 5490 (2001)
  1. C. Edmiston and K. Rudenberg, Localized Atomic and Molecular Orbitals, Reviews of Modern Physics 35, 457 (1963)
  1. J.M Foster and S.F. Boys, Canonical Configurational Interaction Procedure, Reviews of Modern Physics 32, 300 (1960)
  1. W. von Niessen, Density Localization of Atomic and Molecular Orbitals. I, Journal of Chemical Physics 56, 4290 (1972)
  1. F.L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoretica Chimica Acta 44, 129 (1977)
  1. K.B. Wiberg and P.R. Rablen, Comparison of atomic charges derived via different procedures, Journal of Computational Chemistry 14, 1504 (1993)
  1. F.M. Bickelhaupt, N.J.R. van Eikema Hommes, C. Fonseca Guerra and E.J. Baerends, The Carbon-Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4), Organometallics 15, 2923 (1996)
  1. C. Fonseca Guerra, J.-W. Handgraaf, E. J. Baerends and F. M. Bickelhaupt, Voronoi Deformation Density (VDD) charges. Assessment of the Mulliken, Bader, Hirshfeld, Weinhold and VDD methods for Charge Analysis, Journal of Computational Chemistry 25, 189 (2004)
  1. C. Fonseca Guerra, F.M. Bickelhaupt, J.G. Snijders and E.J. Baerends, The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance, Chemistry - A European Journal 5, 3581 (1999)
  1. K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, International Journal of Quantum Chemistry 10, 325 (1976)
  1. T. Ziegler and A. Rauk, Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as sigma donors and pi acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method, Inorganic Chemistry 18, 1755 (1979)
  1. H. Fujimoto, J. Osamura and T. Minato, Orbital interaction and chemical bonds. Exchange repulsion and rehybridization in chemical reactions, Journal of the American Chemical Society 100, 2954 (1978)
  1. S. Wolfe, D.J. Mitchell and M.-H. Whangbo, On the role of steric effects in the perturbational molecular orbital method of conformational analysis, Journal of the American Chemical Society 100, 1936 (1978)
  1. A.J. Stone and R.W. Erskine, Intermolecular self-consistent-field perturbation theory for organic reactions. I. Theory and implementation; nucleophilic attack on carbonyl compounds, Journal of the American Chemical Society 102, 7185 (1980)
  1. F. Bernardi, A. Bottoni, A. Mangini and G. Tonachini, Quantitative orbital analysis of ab initio SCF=MO computations : Part II. Conformational preferences in H2N—OH and H2N—SH, Journal of Molecular Structure: THEOCHEM 86, 163 (1981)
  1. P.J. van den Hoek and E.J. Baerends, Chemical bonding at metal-semiconductor interfaces, Applied Surface Science 41/42, 236 (1989)
  1. J. Autschbach, *On the calculation of relativistic effects and how to understand their trends in atoms and molecules*, in *Chemistry*. 1999, University of Siegen: Siegen.
  1. M.A. Watson, N.C. Handy and A.J. Cohen, Density functional calculations, using Slater basis sets, with exact exchange, Journal of Chemical Physics 119, 6475 (2003)
  1. Ö. Farkas and H.B. Schlegel, Methods for optimizing large molecules. Part III. An improved algorithm for geometry optimization using direct inversion in the iterative subspace (GDIIS), Physical Chemistry Chemical Physics 4, 11 (2002)
  1. I. Mayer, Charge, bond order and valence in the ab inition SCF theory, Chemical Physics Letters 97, 270 (1983)
  1. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model within density functional theory, Journal of Chemical Physics 118, 514 (2003)
  1. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model for calculating molecular linear response properties in solution, Journal of Chemical Physics 119, 3800 (2003)
  1. L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model for calculating frequency-dependent hyperpolarizabilities of molecules in solution, Journal of Chemical Physics 119, 12998 (2003)
  1. L. Jensen, M. Swart and P.T. van Duijnen, Microscopic and macroscopic polarization within a combined quantum mechanics and molecular mechanics model, Journal of Chemical Physics 122, 34103 (2005)
  1. L. Jensen, Modelling of optical response properties: Application to nanostructures, PhD thesis, Rijksuniversiteit Groningen, 2004.
  1. P.T. van Duijnen and M. Swart, Molecular and Atomic Polarizabilities: Thole’s Model Revisited, Journal of Physical Chemistry A 102, 2399 (1998)
  1. L. Jensen, P.-O. Astrand, A. Osted, J. Kongsted and K.V. Mikkelsen, Polarizability of molecular clusters as calculated by a dipole interaction model, Journal of Chemical Physics 116, 4001 (2002)
  1. A. Michalak, R.L. De Kock and T. Ziegler, Bond Multiplicity in Transition-Metal Complexes: Applications of Two-Electron Valence Indices, Journal of Physical Chemistry A 112, 7256 (2008)
  1. R.F. Nalewajski and J. Mrozek, Modified valence indices from the two-particle density matrix, International Journal of Quantum Chemistry 51, 187 (1994)
  1. R.F. Nalewajski, J. Mrozek and A. Michalak, Two-electron valence indices from the Kohn-Sham orbitals, International Journal of Quantum Chemistry 61, 589 (1997)
  1. R.F. Nalewajski, J. Mrozek and A. Michalak, Exploring Bonding Patterns of Molecular Systems Using Quantum Mechanical Bond Multiplicities, Polish Journal of Chemistry 72, 1779 (1998)
  1. R.F. Nalewajski, J. Mrozek and G. Mazur, Quantum chemical valence indices from the one-determinantal difference approach, Canadian Journal of Chemistry 74, 1121 (1996)
  1. M.S. Gopinathan and K. Jug, Valency. I. A quantum chemical definition and properties, Theoretica Chimica Acta 1983 63, 497 (1983)
  1. F. Wang and T. Ziegler, Excitation energies of some d1 systems calculated using time-dependent density functional theory: an implementation of open-shell TDDFT theory for doublet-doublet excitations, Molecular Physics 102, 2585 (2004)
  1. Z. Rinkevicius, I. Tunell, P. Salek, O. Vahtras and H. Agren, Restricted density functional theory of linear time-dependent properties in open-shell molecules, Journal of Chemical Physics 119, 34 (2003)
  1. F. Wang and T. Ziegler, Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential, Journal of Chemical Physics 121, 12191 (2004)
  1. F. Wang and T. Ziegler, The performance of time-dependent density functional theory based on a noncollinear exchange-correlation potential in the calculations of excitation energies, Journal of Chemical Physics 122, 74109 (2005)
  1. S. Hirata and M. Head-Gordon, Time-dependent density functional theory within the Tamm-Dancoff approximation, Chemical Physics Letters 314, 291 (1999)
  1. G. Henkelman, B.P. Uberuaga and H. Jonssón, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, Journal of Chemical Physics 113, 9901 (2000)
  1. G. Vignale and W. Kohn, Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory, Physical Review Letters 77, 2037 (1996)
  1. G. Vignale and W. Kohn, in Electronic Density Functional Theory: Recent Progress and New Direction, ISBN13: 9780306458347, J. F. Dobson, G. Vignale, and M. P. Das, Editors. 1998, Plenum: New York.
  1. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger and J. G. Snijders, Ultranonlocality in Time-Dependent Current-Density-Functional Theory: Application to Conjugated Polymers, Physical Review Letters 88, 186401 (2002)
  1. M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger and J. G. Snijders, Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers, Journal of Chemical Physics 118, 1044 (2003)
  1. M. van Faassen and P. L. de Boeij, Excitation energies for a benchmark set of molecules obtained within time-dependent current-density functional theory using the Vignale-Kohn functional, Journal of Chemical Physics 120, 8353 (2004)
  1. M. van Faassen and P. L. de Boeij, Excitation energies of \(\Pi\) -conjugated oligomers within time-dependent current-density-functional theory, Journal of Chemical Physics 121, 10707 (2004)
  1. M. van Faassen, Time-Dependent Current-Density-Functional Theory for Molecules, PhD thesis, Rijksuniversiteit Groningen, 2004.
  1. R. Nifosi, S. Conti and M. P. Tosi, Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2, Physical Review B 58: p. 12758 (1998)
  1. Z.X. Qian and G. Vignale, Dynamical exchange-correlation potentials for the electron liquid in the spin channel, Physical Review B 68, 195113 (2003)
  1. M. Stener, G. Fronzoni and M. de Simone, Time dependent density functional theory of core electrons excitations, Chemical Physics Letters 373, 115 (2003)
  1. M. Swart, P.Th. van Duijnen and J.G. Snijders, A charge analysis derived from an atomic multipole expansion, Journal of Computational Chemistry 22, 79 (2001)
  1. T.W. Keal and D.J. Tozer, The exchange-correlation potential in Kohn.Sham nuclear magnetic resonance shielding calculations, Journal of Chemical Physics 119, 3015 (2003)
  1. X. Xu and W.A. Goddard III, The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proceedings of the National Academy of Sciences 101, 2673 (2004)
  1. J. Baker, A. Kessi and B. Delley, The generation and use of delocalized internal coordinates in geometry optimization, Journal of Chemical Physics 1996 105, 192 (1996)
  1. C. Adamo and V. Barone, Physically motivated density functionals with improved performances: The modified Perdew.Burke.Ernzerhof model, Journal of Chemical Physics 1996 116, 5933 (1996)
  1. M. Swart, A.W. Ehlers and K. Lammertsma, Performance of the OPBE exchange-correlation functional, Molecular Physics 2004 102, 2467 (2004)
  1. P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, Journal of Physical Chemistry 98, 11623 (1994)
  1. M. Reiher, O. Salomon and B.A. Hess, Reparameterization of hybrid functionals based on energy differences of states of different multiplicity, Theoretical Chemistry Accounts 107, 48 (2001)
  1. C. Adamo and V. Barone, Toward reliable adiabatic connection models free from adjustable parameters, Chemical Physics Letters 274, 242 (1997)
  1. J.K. Kang and C.B. Musgrave, Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation, Journal of Chemical Physics 115, 11040 (2001)
  1. A.J. Cohen and N.C. Handy, Dynamic correlation, Molecular Physics 99, 607 (2001)
  1. B.J. Lynch, P.L. Fast, M. Harris and D.G. Truhlar, Adiabatic Connection for Kinetics, Journal of Physical Chemistry A 104, 4811 (2000)
  1. F. Wang, T. Ziegler, E. van Lenthe, S.J.A. van Gisbergen and E.J. Baerends, The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry, Journal of Chemical Physics 122, 204103 (2005)
  1. F. Wang and T. Ziegler, Theoretical study of the electronic spectra of square-planar platinum (II) complexes based on the two-component relativistic time-dependent density-functional theory, Journal of Chemical Physics 123, 194102 (2005)
  1. T.A. Wesolowski and A. Warshel, Frozen Density Functional Approach for ab-initio Calculations of Solvated Molecules, Journal of Physical Chemistry 97, 8050 (1993)
  1. J. Neugebauer, C.R. Jacob, T.A. Wesolowski and E.J. Baerends, An Explicit Quantum Chemical Method for Modeling Large Solvation Shells Applied to Aminocoumarin C151, Journal of Physical Chemistry A 109, 7805 (2005)
  1. M.E. Casida and T.A. Wesolowski, Generalization of the Kohn-Sham equations with constrained electron density formalism and its time-dependent response theory formulation, International Journal of Quantum Chemistry 96, 577 (2004)
  1. T.A. Wesolowski, Hydrogen-Bonding-Induced Shifts of the Excitation Energies in Nucleic Acid Bases: An Interplay between Electrostatic and Electron Density Overlap Effects, Journal of the American Chemical Society 126, 11444 (2004)
  1. T.A. Wesolowski, Density functional theory with approximate kinetic energy functionals applied to hydrogen bonds, Journal of Chemical Physics 106, 8516 (1997)
  1. C.R. Jacob, T.A. Wesolowski and L. Visscher, Orbital-free embedding applied to the calculation of induced dipole moments in CO2... X (X=He, Ne, Ar, Kr, Xe, Hg) van der Waals complexes, Journal of Chemical Physics 123, 174104 (2005)
  1. C.R. Jacob, J. Neugebauer, L. Jensen and L. Visscher, Comparison of frozen-density embedding and discrete reaction field solvent models for molecular properties, Physical Chemistry Chemical Physics 8, 2349 (2006)
  1. J. Neugebauer, M.J. Louwerse, E.J. Baerends and T.A. Wesolowski, The merits of the frozen-density embedding scheme to model solvatochromic shifts, Journal of Chemical Physics 122, 94115 (2005)
  1. J. Neugebauer, M.J. Louwerse, P. Belanzoni, T.A. Wesolowski and E.J. Baerends, Modeling solvent effects on electron-spin-resonance hyperfine couplings by frozen-density embedding, Journal of Chemical Physics 123, 114101 (2005)
  1. J. Neugebauer and E.J. Baerends, Exploring the Ability of Frozen-Density Embedding to Model Induced Circular Dichroism, Journal of Physical Chemistry A 110, 8786 (2006)
  1. L.H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society 23, 542 (1927)
  1. E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Zeitschrift für Physik 48, 73 (1928)
  1. C.F. von Weizsäcker, Zur Theorie der Kernmassen, Zeitschrift für Physik 96, 431 (1935)
  1. A. Lembarki and H. Chermette, Obtaining a gradient-corrected kinetic-energy functional from the Perdew-Wang exchange functional, Physical Review A 50, 5328 (1994)
  1. H. Lee, C. Lee and R.G. Parr, Conjoint gradient correction to the Hartree-Fock kinetic- and exchange-energy density functionals, Physical Review A 44, 768 (1991)
  1. J.P. Perdew and Wang Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Physical Review B 33, 8800 (1986), Erratum Physical Review B 40, 3399 (1989)
  1. H. Ou-Yang and M. Levy, Approximate noninteracting kinetic energy functionals from a nonuniform scaling requirement, International Journal of Quantum Chemistry 40, 379 (1991)
  1. A.J. Thakkar, Comparison of kinetic-energy density functionals, Physical Review A 46, 6920 (1992)
  1. J. Neugebauer, E.J. Baerends, E. Efremov, F. Ariese and C. Gooijer, Combined Theoretical and Experimental Deep-UV Resonance Raman Studies of Substituted Pyrenes, Journal of Physical Chemistry A 109, 2100 (2005)
  1. J. Neugebauer, E.J. Baerends and M. Nooijen, Vibronic coupling and double excitations in linear response time-dependent density functional calculations: Dipole-allowed states of N2 , Journal of Chemical Physics 121, 6155 (2004)
  1. J. Neugebauer, Vibronic Coupling Calculations using ADF, documentation on the VIBRON module available on request.
  1. T.A. Wesolowski, in: Computational Chemistry: Reviews of Current Trends - Vol. 10, World Scientific, 2006.
  1. M. Zbiri, M. Atanasov, C. Daul, J.-M. Garcia Lastra and T.A. Wesolowski, Application of the density functional theory derived orbital-free embedding potential to calculate the splitting energies of lanthanide cations in chloroelpasolite crystals, Chemical Physics Letters 397, 441 (2004)
  1. M. Zbiri, C.A. Daul and T.A. Wesolowski, Effect of the f-Orbital Delocalization on the Ligand-Field Splitting Energies in Lanthanide-Containing Elpasolites, Journal of Chemical Theory and Computation 2, 1106 (2006)
  1. A. Bérces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone and T. Ziegler, An implementation of the coupled perturbed Kohn-Sham equations: perturbation due to nuclear displacements, Computer Physics Communications 100, 247 (1997)
  1. H. Jacobsen, A. Bérces, D. Swerhone and T. Ziegler, Analytic second derivatives of molecular energies: a density functional implementation, Computer Physics Communications 100, 263 (1997)
  1. S.K. Wolff, Analytical second derivatives in the Amsterdam density functional package, International Journal of Quantum Chemistry 104, 645 (2005)
  1. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry 25, 1463 (2004)
  1. M. Ernzerhof and G. Scuseria, Assessment of the Perdew.Burke.Ernzerhof exchange-correlation functional, Journal of Chemical Physics 110, 5029 (1999)
  1. C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, Journal of Chemical Physics 110, 6158 (1999)
  1. A.D. Buckingham, P.W. Fowler and J.M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces, Chemical Reviews 88, 963 (1988)
  1. J.M. Ducéré and L. Cavallo, Parametrization of an Empirical Correction Term to Density Functional Theory for an Accurate Description of \(\Pi\) -Stacking Interactions in Nucleic Acids, Journal of Physical Chemistry B 111, 13124 (2007)
  1. V.P. Nicu J. Neugebauer S.K. Wolff and E.J. Baerends, A vibrational circular dichroism implementation within a Slater-type-orbital based density functional framework and its application to hexa- and hepta-helicenes, Theoretical Chemical Accounts 119, 245 (2008)
  1. C.R. Jacob, J. Neugebauer and L. Visscher, A flexible implementation of frozen-density embedding for use in multilevel simulations, Journal of Computational Chemistry 29, 1011 (2008)
  1. C.R. Jacob and L. Visscher, Calculation of nuclear magnetic resonance shieldings using frozen-density embedding, Journal of Chemical Physics 125, 194104 (2006)
  1. V. Bakken and T. Helgaker, The efficient optimization of molecular geometries using redundant internal coordinates, Journal of Chemical Physics 117, 9160 (2002)
  1. C.R. Jacob, S.M., Beyhan and L. Visscher, Exact functional derivative of the nonadditive kinetic-energy bifunctional in the long-distance limit, Journal of Chemical Physics 126, 234116 (2007)
  1. Y. Zhao, N.E. Schultz and D.G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions, Journal of Chemical Physics 123, 161103 (2005)
  1. Y. Zhao, N.E. Schultz and D.G. Truhlar, Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions, Journal of Chemical Theory and Computation 2, 364 (2006)
  1. Y. Zhao and D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, Journal of Chemical Physics 125, 194101 (2006)
  1. Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemical Accounts 120, 215 (2008)
  1. M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of Quantum Chemistry 106, 2536 (2006)
  1. S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, Journal of Computational Chemistry 27, 1787 (2006)
  1. S. Grimme, , J. Antony, T. Schwabe and C. Mück-Lichtenfeld, Density Functional Theory with Dispersion Corrections for Supramolecular Structures, Aggregates, and Complexes of (Bio)Organic Molecules, Organic & Biomolecular Chemistry 5, 741 (2007)
  1. J.I. Rodríguez, A.M. Köster, P.W. Ayers, A. Santos-Valle, A. Vela and G. Merino, An efficient grid-based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces, Journal of Computational Chemistry 30, 1082 (2009)
  1. J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz and C. Bo, A high performance grid-based algorithm for computing QTAIM properties, Chemical Physics Letters 472, 149 (2009)
  1. M. Krykunov and J. Autschbach, Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory, Journal of Chemical Physics 126, 24101 (2007)
  1. M. Krykunov, M.D. Kundrat and J. Autschbach, Calculation of CD spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory, Journal of Chemical Physics 125, 194110 (2006)
  1. M. Krykunov and J. Autschbach, Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory, Journal of Chemical Physics 125, 34102 (2006)
  1. J. Autschbach, L. Jensen, G.C. Schatz, Y.C.E. Tse and M. Krykunov, Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules, Journal of Physical Chemistry A 110, 2461 (2006)
  1. M. Krykunov and J. Autschbach, Calculation of optical rotation with time-periodic magnetic field-dependent basis functions in approximate time-dependent density functional theory, Journal of Chemical Physics 123, 114103 (2005)
  1. A. Baev, M. Samoc, P.N. Prasad, M. Krykunov and J. Autschbach, A Quantum Chemical Approach to the Design of Chiral Negative Index Materials, Optics Express 15, 5730 (2007)
  1. M. Krykunov, A. Banerjee, T. Ziegler and J. Autschbach, Calculation of Verdet constants with time-dependent density functional theory: Implementation and results for small molecules, Journal of Chemical Physics 122, 74105 (2005)
  1. P. Cortona, Self-consistently determined properties of solids without band-structure calculations, Physical Review B 44, 8454 (1991)
  1. T.A. Wesolowski and J. Weber, Kohn-Sham equations with constrained electron density: The effect of various kinetic energy functional parametrizations on the ground-state molecular properties, International Journal of Quantum Chemistry 61, 303 (1997)
  1. T.A. Wesolowski, H. Chermette and J. Weber, Accuracy of Approximate Kinetic Energy Functionals in the Model of Kohn-Sham Equations with Constrained Electron Density: the FH... NCH complex as a Test Case, Journal of Chemical Physics 105, 9182 (1996)
  1. T.A. Wesolowski and J. Weber, Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules, Chemical Physics Letters 248, 71 (1996)
  1. Y.A. Bernard, M. Dulak, J.W. Kaminski and T.A. Wesolowski, The energy-differences based exact criterion for testing approximations to the functional for the kinetic energy of non-interacting electrons, Journal of Physics A 41, 55302 (2008)
  1. D.A. Kirzhnits, Soviet Physics JETP-USSR 5, 64 (1957)
  1. P. Fuentealba and O. Reyes, Further evidence of the conjoint correction to the local kinetic and exchange energy density functionals, Chemical Physics Letters 232, 31 (1995)
  1. O.V. Gritsenko, P.R.T. Schipper and E.J. Baerends, Approximation of the exchange-correlation Kohn-Sham potential with a statistical average of different orbital model potentials, Chemical Physics Letters 302, 199 (1999)
  1. B. Delley, The conductor-like screening model for polymers and surfaces, Molecular Simulation 32, 117 (2006)
  1. J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Climbing the Density Functional Ladder: Nonempirical MetaGeneralized Gradient Approximation Designed for Molecules and Solids Physical Review Letters 91, 146401 (2003)
  1. V.N. Staroverov, G.E. Scuseria, J. Tao and J.P. Perdew, Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes Journal of Chemical Physics 119, 12129 (2003)
  1. S. Ivanov, S. Hirata, R. J. Bartlett, Exact Exchange Treatment for Molecules in Finite-Basis-Set Kohn-Sham Theory, Physical Review Letters 83, 5455 (1999)
  1. A.F. Izmaylov, V.N. Staroverov, G.E. Scuseria, E.R. Davidson, G. Stoltz, E. Cancès, The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques, Journal of Chemical Physics 126, 084107 (2007)
  1. M. Krykunov and T. Ziegler, On the use of the exact exchange optimized effective potential method for static response properties, International Journal of Quantum Chemistry 109, 3246 (2009)
  1. M.L. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science, 221, 709 (1983)
  1. L. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical Society 58, 1486 (1936)
  1. S. Miertus, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum: a direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chemical Physics 55, 117 (1981)
  1. J. Tomasi, R. Bonaccorsi, R. Cammi and F.J. Olivares del Valle, Theoretical chemistry in solution. Some results and perspectives of the continuum methods and in particular of the polarizable continuum model, Journal of Molecular Structure: THEOCHEM 234, 401 (1991)
  1. J.L. Chen, L. Noodleman, D.A. Case and D. Bashford, Incorporating solvation effects into density functional electronic structure calculations, Journal of Physical Chemistry 98, 11059 (1994)
  1. J.-M. Mouesca, J.L. Chen, L. Noodleman, D. Bashford and D.A. Case, Density functional/Poisson-Boltzmann calculations of redox potentials for iron-sulfur clusters, Journal of the American Chemical Society 116, 11898 (1994)
  1. A. Fortunelli and J. Tomasi, The implementation of density functional theory within the polarizable continuum model for solvation, Chemical Physics Letters 231, 34 (1994)
  1. C.M. Breneman and K.B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis, Journal of Computational Chemistry 11, 361 (1990)
  1. F.M. Richards, Areas, volumes, packing and protein structures, Annual Review of Biophysics and Bioengineering 6, 151 (1977)
  1. T. You and D. Bashford, An analytical algorithm for the rapid determination of the solvent accessibility of points in a three-dimensional lattice around a solute molecule, Journal of Computational Chemistry 16, 743 (1995)
  1. M. Mitoraj, A. Michalak and T. Ziegler, A Combined Charge and Energy Decomposition Scheme for Bond Analysis, Journal of Chemical Theory and Computation 5, 962 (2009)
  1. M. Mitoraj, A. Michalak and T. Ziegler, On the Nature of the Agostic Bond between Metal Centers and Beta-Hydrogen Atoms in Alkyl Complexes. An Analysis Based on the Extended Transition State Method and the Natural Orbitals for Chemical Valence Scheme (ETS-NOCV), Organometallics 28, 3727 (2009)
  1. A.W. Götz, S.M. Beyhan and L. Visscher, Performance of Kinetic Energy Functionals for Interaction Energies in a Subsystem Formulation of Density Functional Theory, Journal of Chemical Theory and Computation 5, 3161 (2009)
  1. M. Ernzerhof, The role of the kinetic energy density in approximations to the exchange energy, Journal of Molecular Structure: THEOCHEM 501-502, 59 (2000)
  1. J.P. Perdew, Generalized gradient approximation for the fermion kinetic energy as a functional of the density, Physics Letters A 165, 79 (1992)
  1. L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives, Journal of Chemical Physics 123, 174110 (2005)
  1. L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G as calculated using Time-Dependent Density Functional Theory, Journal of Physical Chemistry A 110, 5973 (2006)
  1. L.L. Zhao, L. Jensen and G.C. Schatz, Pyridine - Ag20 Cluster: A Model System for Studying Surface-Enhanced Raman Scattering, Journal of the American Chemical Society 128, 2911 (2006)
  1. L. Jensen, L.L. Zhao and G.C. Schatz, Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn (n=2-8,20) Clusters, Journal of Physical Chemistry C 111, 4756 (2007)
  1. J. Autschbach, Magnitude of Finite-Nucleus-Size Effects in Relativistic Density Functional Computations of Indirect NMR Nuclear Spin-Spin Coupling Constants, ChemPhysChem 10, 2274 (2009)
  1. S. Høst, J. Olsen, B. Jansík, L. Thøgersen, P. Jørgensen and T. Helgaker, The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices, Journal of Chemical Physics 129, 124106 (2008)
  1. M. Krykunov, M. Seth, T. Ziegler and J. Autschbach, Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory, Journal of Chemical Physics 127, 244102 (2007)
  1. S.B. Piepho and P. N. Schatz, Group Theory in Spectroscopy With Application to Magnetic Circular Dichroism, (Wiley, New York, 1983).
  1. W.R. Mason, A Practical Guide to Magnetic Circular Dichroism Spectroscopy, (Wiley, New Jersey, 2007).
  1. M. Seth and T. Ziegler, Formulation of magnetically perturbed time-dependent density functional theory, Journal of Chemical Physics 127, 134108 (2007)
  1. M. Seth, M. Krykunov, T. Ziegler, J. Autschbach and A. Banerjee, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism: Calculation of B terms, Journal of Chemical Physics 128, 144105 (2008)
  1. M. Seth, M. Krykunov, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. II. Calculation of A terms, Journal of Chemical Physics 128, 234102 (2008)
  1. M. Seth, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. III. Temperature-dependent magnetic circular dichroism induced by spin-orbit coupling, Journal of Chemical Physics 129, 104105 (2008)
  1. J.M. Garcia Lastra, J.W. Kaminski and T.A. Wesolowski, Orbital-free effective embedding potential at nuclear cusps, Journal of Chemical Physics 129, 074107 (2008)
  1. F. Wang and T. Ziegler, A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect, Journal of Chemical Physics 123, 154102 (2005)
  1. W.-G. Han, T. Liu, T. Lovell and L. Noodleman, DFT calculations of 57 Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: Applications to methane monooxygenase and ribonucleotide reductase, Journal of Computational Chemistry 27, 1292 (2006)
  1. A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen and M. Waroquier, Vibrational Modes in partially optimized molecular systems, Journal of Chemical Physics126, 224102 (2007)
  1. A. Ghysels, D. Van Neck and M. Waroquier, Cartesian formulation of the Mobile Block Hessian Approach to vibrational analysis in partially optimized systems, Journal of Chemical Physics 127, 164108 (2007)
  1. J.J. Mortensen, K. Kaasbjerg, S.L. Frederiksen, J.K. Nørskov, J.P. Sethna, and K.W. Jacobsen, Bayesian Error Estimation in Density-Functional Theory, Physical Review Letters 95, 216401 (2005)
  1. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters 100, 136406 (2008)
  1. M. Swart, M. Solà and F.M. Bickelhaupt, A new all-round DFT functional based on spin states and SN2 barriers, Journal of Chemical Physics 131, 094103 (2009)
  1. M. Swart, M. Solà and F.M. Bickelhaupt, Switching between OPTX and PBE exchange functionals, Journal of Computational Methods in Science and Engineering 9, 69 (2009)
  1. J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45, 13244 (1992)
  1. K.N. Kudin, G.E. Scuseria and E. Cances, A black-box self-consistent field convergence algorithm: One step closer, Journal of Chemical Physics 116, 8255 (2002)
  1. N.L. Allinger, X. Zhou, J. Bergsma, Molecular mechanics parameters, Journal of Molecular Structure: THEOCHEM 312, 69 (1994)
  1. X. Hu and W. Yang, Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function, Journal of Chemical Physics 132, 054109 (2010)
  1. S. Grimme, J. Anthony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, Journal of Chemical Physics 132, 154104 (2010).
  1. M.D. Newton, Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions, Chemical Reviews 91, 767 (1991).
  1. K. Senthilkumar, F.C. Grozema, F.M. Bickelhaupt, and L.D.A. Siebbeles, Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies, Journal of Chemical Physics 119, 9809 (2003).
  1. K. Senthilkumar, F.C. Grozema, C. Fonseca Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A. Ratner, and L.D.A. Siebbeles, Absolute Rates of Hole Transfer in DNA, Journal of the American Chemical Society 127, 14894 (2005)
  1. J. Neugebauer, Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory, Journal of Chemical Physics 126, 134116 (2007).
  1. J. Neugebauer, Photophysical Properties of Natural Light-Harvesting Complexes Studied by Subsystem Density Functional Theory, Journal of Physical Chemistry B 112, 2207 (2008)
  1. J. Neugebauer, On the calculation of general response properties in subsystem density functional theory, Journal of Chemical Physics 131, 084104 (2009).
  1. T.N. Truong and E.V. Stefanovich, A new method for incorporating solvent effect into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity, Chemical Physics Letters 240, 253 (1995)
  1. S. Gusarov, T. Ziegler, and A. Kovalenko, Self-Consistent Combination of the Three-Dimensional RISM Theory of Molecular Solvation with Analytical Gradients and the Amsterdam Density Functional Package, Journal of Physical Chemistry A 110, 6083 (2006)
  1. D. Casanova, S. Gusarov, A. Kovalenko, and T. Ziegler, Evaluation of the SCF Combination of KS-DFT and 3D-RISM-KH; Solvation Effect on Conformational Equilibria, Tautomerization Energies, and Activation Barriers, Journal of Chemical Theory and Computation 3, 458 (2007)
  1. A. Kovalenko and F. Hirata, Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference-interaction site model, Journal of Chemical Physics 110, 10095 (1999)
  1. A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference-interaction site model approach, Journal of Chemical Physics 112, 10391 (2000)
  1. A. Kovalenko, Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces, In Molecular Theory of Solvation; Hirata, Fumio, Ed.; Understanding Chemical Reactivity (series); Mezey, Paul G., Series Ed.; Kluwer Acadamic Publishers: Dordrecht, The Netherlands, 2003; Vol. 24, pp 169-275.
  1. J.W. Kaminski, S. Gusarov, A. Kovalenko, T.A. Wesolowski, Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density, Journal of Physical Chemistry A 114, 6082 (2010)
  1. L. Jensen, J. Autschbach, M. Krykunov, and G.C. Schatz, Resonance vibrational Raman optical activity: A time-dependent density functional theory approach, Journal of Chemical Physics 127, 134101 (2007)
  1. M. Krykunov, A. Banerjee, T. Ziegler and J. Autschbach, Calculation of Verdet constants with time-dependent density functional theory. Implementation and results for small molecules, Journal of Chemical Physics 122, 074105 (2005)
  1. E.J. Baerends, D.E. Ellis and P. Ros, Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure, Chemical Physics 2, 41 (1973)
  1. E.J. Baerends and P. Ros, Evaluation of the LCAO Hartree-Fock-Slater method: Applications to transition-metal complexes, International Journal of Quantum Chemistry 14, S12, 169 (1978)
  1. G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, Chemistry with ADF, Journal of Computational Chemistry 22, 931 (2001)
  1. A. Devarajan, A. Gaenko, and J. Autschbach, Two-component relativistic density functional method for computing nonsingular complex linear response of molecules based on the zeroth order regular approximation, Journal of Chemical Physics 130, 194102 (2009)
  1. M.R. Pederson, S.N. Khanna, Magnetic anisotropy barrier for spin tunneling in Mn12 O12 molecules, Physical Review B 60, 9566 (1999)
  1. F. Neese, Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory, Journal of Chemical Physics 127, 164112 (2007)
  1. C. van Wüllen, Magnetic anisotropy from density functional calculations. Comparison of different approaches: Mn12 O12 acetate as a test case, Journal of Chemical Physics 130, 194109 (2009)
  1. S. Schmitt, P. Jost, C. van Wüllen, Zero-field splittings from density functional calculations: Analysis and improvement of known methods, Journal of Chemical Physics 134, 194113 (2011)
  1. S.N. Steinmann, and C. Corminboeuf, Comprehensive Benchmarking of a Density-Dependent Dispersion Correction, Journal of Chemical Theory and Computation 7, 3567 (2011).
  1. R.C. Raffenetti, Eventempered atomic orbitals. II. Atomic SCF wavefunctions in terms of eventempered exponential bases, Journal of Chemical Physics 59, 5936 (1973)
  1. D.P. Chong, Completeness profiles of one-electron basis sets, Canadian Journal of Chemistry 73, 79 (1995)
  1. G.D. Zeiss, W.R. Scott, N. Suzuki, D.P. Chong, S.R. Langhoff, Finite-field calculations of molecular polarizabilities using field-induced polarization functions: second- and third-order perturbation correlation corrections to the coupled Hartree-Fock polarizability of H2 O, Molecular Physics 37, 1543 (1979)
  1. E. van Lenthe and E.J. Baerends, Optimized Slater-type basis sets for the elements 1-118, Journal of Computational Chemistry 24, 1142 (2003)
  1. D.P. Chong, E. van Lenthe, S.J.A. van Gisbergen and E.J. Baerends, Even-tempered Slater-Type orbitals revisited: From Hydrogen to Krypton, Journal of Computational Chemistry 25, 1030 (2004)
  1. D.P. Chong, Augmenting basis set for time-dependent density functional theory calculation of excitation energies: Slater-type orbitals for hydrogen to krypton, Molecular Physics 103, 749 (2005)
  1. T. Ziegler, A. Rauk and E.J. Baerends, On the calculation of Multiplet Energies by the Hartree Fock Slater method, Theoretica Chimica Acta 43, 261 (1977)
  1. C. Daul, DFT applied to excited states, International Journal of Quantum Chemistry 52, 867 (1994)
  1. E.J. Baerends, V. Branchadell and M. Sodupe, Atomic reference-energies for density functional calculations, Chemical Physics Letters 265, 481 (1997)
  1. P.J. van den Hoek, E.J. Baerends, and R.A. van Santen, Ethylene epoxidation on silver(110): the role of subsurface oxygen, Journal of Physical Chemistry 93, 6469 (1989)
  1. J. Autschbach, S. Zheng, and R.W. Schurko, Analysis of Electric Field Gradient Tensors at Quadrupolar Nuclei in Common Structural Motifs, Concepts in Magnetic Resonance Part A 36A, 84 (2010)
  1. A.J. Rossini, R.W. Mills, G.A. Briscoe, E.L. Norton, S.J. Geier, I. Hung, S. Zheng, J. Autschbach, and R.W. Schurko, Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes, Journal of the American Chemical Society 131, 3317 (2009)
  1. J. Autschbach, Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals, Journal of Chemical Physics 128, 164112 (2008)
  1. J. Autschbach and S. Zheng, Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs, Magnetic Resonance in Chemistry 46, S45 (2008)
  1. J. Autschbach and S. Zheng, Relativistic computations of NMR parameters from first principles: Theory and applications, Annual Reports on NMR Spectroscopy 67, 1 (2009)
  1. J. Autschbach, Analyzing molecular properties calculated with two-component relativistic methods using spin-free Natural Bond Orbitals: NMR spin-spin coupling constants Journal of Chemical Physics 127, 124106 (2007)
  1. J. Autschbach and B. Le Guennic, Analyzing and interpreting NMR spin-spin coupling constants from molecular orbital calculations, Journal of Chemical Education 84, 156 (2007)
  1. A.M.A. Boshaala, S.J. Simpson, J. Autschbach and S. Zheng, Synthesis and Characterization of the Trihalophosphine Compounds of Ruthenium [RuX2 (\(\eta\)6 -cymene)(PY3 )] (X = Cl, Br, Y = F, Cl, Br) and the Related PF2 (NMe2 ) and P(NMe2 )3 Compounds; Multinuclear NMR Spectroscopy and the X-ray Single Crystal Structures of [RuBr2 (\(\eta\)6 -cymene)(PF3 )], [RuBr2 (\(\eta\)6 -cymene)(PF2 {NMe2 })], and [RuI2 (\(\eta\)6 -cymene)(P{NMe2 }3 )], Inorganic Chemistry 47, 9279 (2008)
  1. A. Michalak, M. Mitoraj, and T. Ziegler, Bond Orbitals from Chemical Valence Theory, Journal of Physical Chemistry A 112, 1933 (2008)
  1. E. Clementi, C. Roetti, Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z \(\leq\) 54, Atomic Data and Nuclear Data Tables 14, 177 (1974)
  1. A.D. McLean, R.S. McLean, Roothaan-Hartree-Fock atomic wave functions Slater basis-set expansions for Z = 55-92, Atomic Data and Nuclear Data Tables 26, 197 (1981)
  1. J.G. Snijders, P. Vernooijs, E.J. Baerends, Roothaan-Hartree-Fock-Slater atomic wave functions: Single-zeta, double-zeta, and extended Slater-type basis sets for 87 Fr-103 Lr, Atomic Data and Nuclear Data Tables 26, 483 (1981)
  1. J. Autschbach and B. Pritchard, Calculation of molecular g-tensors using the zeroth-order regular approximation and density functional theory: expectation value versus linear response approaches, Theoretical Chemistry Accounts 129, 453 (2011)
  1. J. Autschbach, S. Patchkovskii, and B. Pritchard, Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory, Journal of Chemical Theory and Computation 7, 2175 (2011)
  1. S. Moon, and S. Patchkovskii, First-principles calculations of paramagnetic NMR shifts, in Calculation of NMR and EPR parameters, ISBN13: 9783527307791, M. Kaupp, M. Bühl, V.G. Malkin, Editors, (Wiley, Weinheim, 2004).
  1. P. Hrobárik, Ro. Reviakine, A.V. Arbuznikov, O.L. Malkina, V.G. Malkin, F.H. Köhler, and M. Kaupp, Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: Validation on 3d metallocenes, Journal of Chemical Physics 126, 024107 (2007)
  1. J. Li, M.R. Nelson, C.Y. Peng, D. Bashford, and L. Noodleman, Incorporating Protein Environments in Density Functional Theory: A Self-Consistent Reaction Field Calculation of Redox Potentials of [2Fe2S] Clusters in Ferredoxin and Phthalate Dioxygenase Reductase, Journal of Physical Chemistry A 102, 6311 (1998)
  1. T. Liu, W.-G Han, F. Himo, G.M. Ullmann, D. Bashford, A. Toutchkine, K.M. Hahn, and L. Noodleman, Density Functional Vertical Self-Consistent Reaction Field Theory for Solvatochromism Studies of Solvent-Sensitive Dyes, Journal of Physical Chemistry A 108, 3545 (2004)
  1. W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K.M. Hahn, L. Noodleman, A Theoretical Study of the UV/Visible Absorption and Emission Solvatochromic Properties of Solvent-Sensitive Dyes, ChemPhysChem 4, 1084 (2003)
  1. A. Kovyrshin, J. Neugebauer, State-selective optimization of local excited electronic states in extended systems, Journal of Chemical Physics 133, 174114 (2010)
  1. M. Swart, E. Rösler, and F. M. Bickelhaupt, Proton affinities of maingroup-element hydrides and noble gases: Trends across the periodic table, structural effects, and DFT validation, Journal of Computational Chemistry 27, 1486 (2006)
  1. M. Swart, and F. M. Bickelhaupt, Proton Affinities of Anionic Bases: Trends Across the Periodic Table, Structural Effects, and DFT Validation, Journal of Chemical Theory and Computation 2, 281 (2006).
  1. A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference-interaction site model approach, and comparison with simulations, Journal of Chemical Physics 112, 10403 (2000)
  1. M. Seth, G. Mazur, and T. Ziegler, Time-dependent density functional theory gradients in the Amsterdam density functional package: geometry optimizations of spin-flip excitations, Theoretical Chemistry Accounts 129, 331 (2011)
  1. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen and J.B. Neaton, mine-Gold Linked Single-Molecule Circuits: Experiment and Theory, Nano Letters 7, 3477 (2007)
  1. M. Pavanello and J. Neugebauer, Modelling charge transfer reactions with the frozen density embedding formalism, Journal of Chemical Physics 135, 234103 (2011)
  1. M. Pavanello, T. Van Voorhis, L. Visscher, and J. Neugebauer, An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings, Journal of Chemical Physics 138, 054101 (2013)
  1. U. Ekström, L. Visscher, R. Bast, A.J. Thorvaldsen, and K. Ruud, Arbitrary-Order Density Functional Response Theory from Automatic Differentiation, Journal of Chemical Theory and Computation 6, 1971 (2010)
  1. M. Seth and T. Ziegler, Range-Separated Exchange Functionals with Slater-Type Functions, Journal of Chemical Theory and Computation 8, 901 (2012)
  1. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García A.J. Cohen, and W. Yang, Revealing Non-Covalent Interactions, Journal of the American Chemical Society 132, 6498 (2010)
  1. J. Contreras-García E.R. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D.N. Beratan, and W. Yang, NCIPLOT: A Program for Plotting Noncovalent Interaction Regions, Journal of Chemical Theory and Computation 7, 625 (2011)
  1. P. de Silva, J. Korchowiec, T.A. Wesolowski, Revealing the Bonding Pattern from the Molecular Electron Density Using Single Exponential Decay Detector: An Orbital-Free Alternative to the Electron Localization Function, ChemPhysChem 13, 3462 (2012)
  1. R. De Francesco, M. Stener, and G. Fronzoni, Theoretical Study of Near-Edge X-ray Absorption Fine Structure Spectra of Metal Phthalocyanines at C and N K-Edges, Journal of Physical Chemistry A, 116 2285 (2012)
  1. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, Journal of Chemical Physics 92, 508 (1992)
  1. A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules, Journal of Chemical Physics 88, 2547 (1988)
  1. J.L. Payton, S.M. Morton, Justin E. Moore, and Lasse Jensen, A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy, Journal of Chemical Physics 136, 214103 (2012)
  1. J.I. Rodríguez, An Efficient Method for Computing the QTAIM Topology of a Scalar Field: The Electron Density Case, Journal of Computational Chemistry 34, 681 (2013)
  1. C. König, N. Schlüter. J. Neugebauer, Direct Determination of Exciton Couplings from Subsystem TDDFT within the Tamm-Dancoff Approximation, Journal of Chemical Physics 138, 034104 (2013)
  1. C.J.O. Verzijl, J.S. Seldenthuis, and J.M. Thijssen, Applicability of the wide-band limit in DFT-based molecular transport calculations, Journal of Chemical Physics 138, 094102 (2013)
  1. H. Kim, J.-M. Choi, W.A. Goddard, Universal Correction of Density Functional Theory to Include London Dispersion (up to Lr, Element 103), Journal of Physical Chemistry Letters 3, 360 (2012)
  1. M. Swart, A new family of hybrid density functionals, Chemical Physics Letters 580, 166 (2013)
  1. J. Autschbach, C.D. Igna, T. Ziegler, A theoretical investigation of the apparently irregular behavior of Pt-Pt spin-spin coupling constants Journal of the American Chemical Society 125, 1028 (2003)
  1. B.L. Guennic, K. Matsumoto, J. Autschbach, On the NMR properties of platinum thallium bonded complexes: Analysis of relativistic density functional theory results, Magnetic Resonance in Chemistry 42, S99 (2004)
  1. J. Khandogin, T. Ziegler, A density functional study of nuclear magnetic resonance spin-spin coupling constants in transition metal systems, Spectrochimica Acta Part A 55, 607 (1999)
  1. N.F. Ramsey, Electron Coupled Interactions between Nuclear Spins in Molecules, Physical Review 91, 303 (1953)
  1. R.M. Dickson, T. Ziegler, NMR Spin-Spin Coupling Constants from Density Functional Theory with Slater-Type Basis Functions, Journal of Physical Chemistry 100, 5286 (1996)
  1. D.L. Bryce, R. Wasylishen, Indirect Nuclear Spin-Spin Coupling Tensors in Diatomic Molecules: A Comparison of Results Obtained by Experiment and First Principles Calculations, Journal of the American Chemical Society 122, 3197 (2000)
  1. G. Schreckenbach, S.K. Wolff, T. Ziegler, Covering the Entire Periodic Table: Relativistic Density Functional Calculations of NMR Chemical Shifts in Diamagnetic Actinide Compounds, in Modeling NMR chemical shifts, ACS Symposium Series, Vol 732, J.C. Facelli, A.C. de Dios, Editors (American Chemical Society, Washington DC, 1999), Chapter 7
  1. M. Franchini, P.H.T. Philipsen, L. Visscher, The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite, Journal of Computational Chemistry 34, 1818 (2013).
  1. A. Tkatchenko, R.A. DiStasio Jr., R. Car, M. Scheffler Accurate and Efficient Method for Many-Body van der Waals Interactions, Physical Review Letters 108, 236402 (2012)
  1. A. Ambrosetti, A.M. Reilly, Robert A. DiStasio Jr., A. Tkatchenko, Long-range correlation energy calculated from coupled atomic response functions, Journal of Chemical Physics 140, 18A508 (2014)
  1. A.V. Marenich, S.V. Jerome, C.J. Cramer, D.G. Truhlar, Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases, Journal of Chemical Theory and Computation 8, 527 (2012)
  1. M. Franchini, P.H.T. Philipsen, E. van Lenthe, L. Visscher, Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting, Journal of Chemical Theory and Computation 10, 1994 (2014)
  1. A.D. Becke, R.M. Dickson, Numerical solution of Poisson’s equation in polyatomic molecules, Journal of Chemical Physics 89, 2993 (1988)
  1. M.-C. Kim, E. Sim, and K. Burke, Understanding and Reducing Errors in Density Functional Calculations, Physical Review Letters 111, 2073003 (2013)
  1. D.V. Chulhai and L. Jensen, Simulating Surface-Enhanced Raman Optical Activity Using Atomistic Electrodynamics-Quantum Mechanical Models, Journal of Physical Chemistry A 118, 9069 (2014)
  1. D.V. Chulhai and L. Jensen, Plasmonic Circular Dichroism of 310- and α-Helix Using a Discrete Interaction Model/Quantum Mechanics Method, Journal of Physical Chemistry A 119, 5218 (2015)
  1. D.V. Chulhai and L. Jensen, Frozen Density Embedding with External Orthogonality in Delocalized Covalent Systems, Journal of Chemical Theory and Computation 11, 3080 (2015).
  1. S. Bernadotte, A.J. Atkins, Ch.R. Jacob, Origin-independent calculation of quadrupole intensities in X-ray spectroscopy, Journal of Chemical Physics 137, 204106 (2012)
  1. N. Lee, T. Petrenko, U, Bergmann, F. Neese, and S. DeBeer, Probing Valence Orbital Composition with Iron Kβ X-ray Emission Spectroscopy, Journal of the American Chemical Society 132, 9715 (2010)
  1. A.J. Atkins, M. Bauer, and Ch.R. Jacob, The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes, Physical Chemistry Chemical Physics 15, 8095 (2013)
  1. P. de Silva and C. Corminboeuf, Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob’s ladder, Journal of Chemical Physics 143, 111105 (2015)
  1. S. Grimme, A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules, Journal of Chemical Physics 138, 244104 (2013)
  1. C. Bannwarth and S. Grimme, A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules, Computational and Theoretical Chemistry 1040-1041, 45 (2014)
  1. T. Risthaus, A. Hansen, and S. Grimme, Excited states using the simplified Tamm-Dancoff-Approach for range-separated hybrid density functionals: development and application, Physical Chemistry Chemical Physics 16, 14408 (2014)
  1. M.A.L. Marques, M.J.T. Oliveira, and T. Burnus, Libxc: a library of exchange and correlation functionals for density functional theory, Computer Physics Communications 183, 2272 (2012)
  1. J. Cullen, M. Krykunov, and T. Ziegler, The formulation of a self-consistent constricted variational density functional theory for the description of excited states, Chemical Physics 391, 11 (2011)
  1. M. Krykunov and T. Ziegler, Self-consistent Formulation of Constricted Variational Density Functional Theory with Orbital Relaxation. Implementation and Applications, Journal of Chemical Theory and Computation 9, 2761 (2013)
  1. J. Sun, J.P. Perdew, and A. Ruzsinszky, Semilocal density functional obeying a strongly tightened bound for exchange, Proceedings of the National Academy of Sciences 112, 685 (2015)
  1. R.L. Martin, Natural transition orbitals, Journal of Chemical Physics 118, 4775 (2003)
  1. R. López, J.F. Rico, G. Ramírez, I. Ema, D. Zorrilla, DAMQT 2.0: A new version of the DAMQT package for the analysis of electron density in molecules, Computer Physics Communications 192, 289 (2015)
  1. S. Grimme and A. Hansen, A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects, Angewandte Chemie International Edition 54, 12308 (2015)
  1. A.V. Marenich, C.J. Cramer, and D.G. Truhlar, Generalized Born Solvation Model SM12, Journal of Chemical Theory and Computation 9, 609 (2013)
  1. W.C. Still, A. Tempczyk, R.C. Hawley, and T. Hendrickson, Semianalytical treatment of solvation for molecular mechanics and dynamics, Journal of the American Chemical Society 112, 6127 (1990)
  1. D.A. Liotard, G.D. Hawkins, G.C. Lynch, C.J. Cramer, and D.G. Truhlar, Improved Methods for Semiempirical Solvation Models, Journal of Computational Chemistry 16, 422 (1995)
  1. M. Mantina, R. Valero, C.J. Cramer, D.G. Truhlar, in CRC Handbook of Chemistry and Physics, 91st ed. (2010-2011), ISBN13 9781439820773, W.M. Haynes, Ed., CRC Press: Boca Raton, FL, 2010.
  1. J. Autschbach and T. Ziegler, Solvent Effects on Heavy Atom Nuclear Spin.Spin Coupling Constants: A Theoretical Study of Hg.C and Pt.P Couplings, Journal of the American Chemical Society 123, 3341 (2001)
  1. J. Autschbach and T. Ziegler, A Theoretical Investigation of the Remarkable Nuclear Spin.Spin Coupling Pattern in [(NC)5 Pt-Tl(CN)]-, Journal of the American Chemical Society 123, 5320 (2001)
  1. P. Ramos, M. Mankarious, M. Pavanello, A critical look at methods for calculating charge transfer couplings fast and accurately, in Practical Aspects of Computational Chemistry IV, Jerzy Leszczynski and Manoj Shukla (eds.), 2016, Springer (Accepted).
  1. A. Solovyeva, M. Pavanello, J. Neugebauer, Describing Long-Range Charge-Separation Processes with Subsystem Density-Functional Theory, J. Chem. Phys. 140, 164103 (2014)
  1. P. Ramos, M. Pavanello, Constrained Subsystem Density Functional Theory, Physical Chemistry Chemical Physics 18, 21172 (2016).
  1. P. Ramos, M. Papadakis, M. Pavanello, Performance of Frozen Density Embedding for Modeling Hole Transfer Reactions, Journal of Physical Chemistry B 119, 7541 (2015)
  1. Q. Wu, T. Van Voorhis, Direct optimization method to study constrained systems within density-functional theory, Physical Review A 72, 024502 (2005)
  1. P. Ramos, M. Pavanello, Constrained subsystem density functional theory, Physical Chemistry Chemical Physics 18, 21172 (2016)
  1. F. Senn, M. Krykunov, Excited State Studies of Polyacenes Using the All-Order Constricted Variational Density Functional Theory with Orbital Relaxation, Journal of Physical Chemistry A 119, 10575 (2015)
  1. T. Ziegler, M. Krykunov, J. Cullen, The implementation of a self-consistent constricted variational density functional theory for the description of excited states, Journal of Chemical Physics 136, 124107 (2012)
  1. T. Ziegler, M. Krykunov, I. Seidu, Y.C. Park, Constricted Variational Density Functional Theory Approach to the Description of Excited States, Density Functional Methods for Excited States: Topics in Current Chemistry 368, 61 (2016)
  1. A. van der Avoird, P.E.S. Wormer, F. Mulder, R.M. Berns, Topics in Current Chemistry 93, 1 (1980)
  1. C.J. Pickard and F. Mauri, First-Principles Theory of the EPR g Tensor in Solids: Defects in Quartz, Physical Review Letters 88, 86403 (2002)
  1. S. Patchkovskii and G. Schreckenbach in Calculation of NMR and EPR parameters, ISBN13: 9783527307791, M. Kaupp, M. Bühl, V.G. Malkin, Editors, (Wiley, Weinheim, 2004).
  1. S. Patchkovskii, R.S. Strong, C.J. Pickard and S. Un, Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance, Journal of Chemical Physics 122, 214101 (2005)
  1. J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner and J.M. Thijssen, Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008)
  1. G.M. Sando and K.G. Spears, Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects, Journal of Physical Chemistry A 105, 5326 (2001)
  1. P.T. Ruhoff and M.A. Ratner, Algorithms for computing Franck-Condon overlap integrals, International Journal of Quantum Chemistry 77, 383 (2000)
  1. J. Poater, E. van Lenthe and E.J. Baerends, Nuclear magnetic resonance chemical shifts with the statistical average of orbital-dependent model potentials in Kohn.Sham density functional theory, Journal of Chemical Physics 118, 8584 (2003)
  1. M. Krykunov, T. Ziegler and E. van Lenthe, Hybrid density functional calculations of nuclear magnetic shieldings using Slater-type orbitals and the zeroth-order regular approximation, International Journal of Quantum Chemistry 109, 1676 (2009)
  1. M. Krykunov, T. Ziegler and E. van Lenthe, Implementation of a hybrid DFT method for calculating NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187 Os, 195 Pt and 13 C in heavy metal complexes, Journal of Physical Chemistry A 113, 11495 (2009)
  1. R. Rüger, E. van Lenthe, T. Heine, L. Visscher, Tight-Binding Approximations to Time-Dependent Density Functional Theory - a fast approach for the calculation of electronically excited states, Journal of Chemical Physics 144, 184103 (2016)
  1. J. Autschbach, Two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques, Journal of Chemical Physics 129, 094105 (2008), Erratum: Journal of Chemical Physics 130, 209901 (2009)
  1. D.L. Bryce and J. Autschbach, Relativistic hybrid density functional calculations of indirect nuclear spin-spin coupling tensors . Comparison with experiment for diatomic alkali metal halides, Canadian Journal of Chemistry 87, 927 (2009)
  1. J. Autschbach, The role of the exchange-correlation response kernel and scaling corrections in relativistic density functional nuclear magnetic shielding calculations with the zeroth-order regular approximation, Molecular Physics 111, 2544 (2013)
  1. J. Autschbach and H.F. King, Analyzing molecular static linear response properties with perturbed localized orbitals, Journal of Chemical Physics 133, 044109 (2010)
  1. J. Autschbach, Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals, Journal of Chemical Physics 128, 164112 (2008)
  1. K.G. Dyall, An exact separation of the spin-free and spin-dependent terms of the Dirac-Coulomb-Breit Hamiltonian, Journal of Chemical Physics 100, 2118 (1994)
  1. L. Visscher and E. van Lenthe, On the distinction between scalar and spin-orbit relativistic effects, Chemical Physics Letters 306, 357 (1999)
  1. Y.A. Wang, C.Y. Yam, Y.K. Chen, G. Chen, Communication: Linear-expansion shooting techniques for accelerating self-consistent field convergence, Journal of Chemical Physics 134, 241103 (2011)
  1. W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, Journal of the American Chemical Society 106, 6638 (1984)
  1. A.E. Kobryn, A. Kovalenko, Molecular theory of hydrodynamic boundary conditions in nanofluidics, Journal of Chemical Physics 129, 134701 (2008)
  1. O. Acevedo, W.L. Jorgensen, Influence of Inter- and Intramolecular Hydrogen Bonding on Kemp Decarboxylations from QM/MM Simulations, Journal of the American Chemical Society 127, 8829 (2005)
  1. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density Functional Theory, Journal of Computational Chemistry 32, 1457 (2011).
  1. Ph. Haas, F. Tran, P. Blaha, and K.H. Schwartz, Construction of an optimal GGA functional for molecules and solids, Physical Review B83, 205117 (2011).
  1. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun, Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry, Physical Review Letters 103, 026403 (2009).
  1. C.A. Peeples and G. Schreckenbach, Implementation of the SM12 Solvation Model into ADF and Comparison with COSMO, Journal of Chemical Theory and Computation 12, 4033 (2016)
  1. F. Feixas, E. Matito, J. Poater and M. Sola, Quantifying aromaticity with electron delocalisation measures, Chem. Soc. Rev. 44, 6434 (2015)
  1. P. de Silva and C. Corminboeuf, Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap, Journal of Chemical Theory and Computation 10, 3745 (2014)
  1. N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger, Gauge-Invariant Calculation of Static and Dynamical Magnetic Properties from the Current Density, Physical Review Letters 114, 066404 (2015)
  1. N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger, Gauge-Invariant Formulation of Circular Dichroism, Journal of Chemical Theory and Computation 12, 3278 (2016)
  1. N. Raimbault, Gauge-invariant magnetic properties from the current, PhD thesis, Université Paul Sabatier, LCPQ, Toulouse, 2015
  1. A.J. Sadlej and J.G. Snijders, Spin separation in the regular Hamiltonian approach to solutions of the Dirac equation, Chemical Physics Letters 229, 435 (1994)
  1. E. van Lenthe, E.J. Baerends, and J.G. Snijders, Construction of the Foldy-Wouthuysen transformation and solution of the Dirac equation using large components only, Journal of Chemical Physics 105, 2373 (1996)
  1. K.G. Dyall, Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation, Journal of Chemical Physics 106, 9618 (1997)
  1. W. Kutzelnigg and W. Liu, Quasirelativistic theory equivalent to fully relativistic theory, Journal of Chemical Physics 123, 241102 (2005)
  1. A. Goez, and J. Neugebauer, A Local Variant of the Conductor-Like Screening Model for Fragment-Based Electronic-Structure Method, Journal of Chemical Theory and Computation 11, 5277 (2015)
  1. A. Goez, and J. Neugebauer, Including protein density relaxation effects in first-principles embedding calculations of cofactor excitation energies, Molecular Physics 115, 526 (2016)
  1. Z. Hu, J. Autschbach, and L. Jensen, Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach, Journal of Chemical Physics 141, 124305 (2014)
  1. Z. Hu, J. Autschbach, and L. Jensen, Simulating Third-Order Nonlinear Optical Properties Using Damped Cubic Response Theory within Time-Dependent Density Functional Theory, Journal of Chemical Theory and Computation 12, 1294 (2016)
  1. J.I. Rodríguez, .W. Ayers, A.W. Götz, and F.L. Castillo-Alvarado, Virial theorem in the Kohn-Sham density-functional theory formalism: Accurate calculation of the atomic quantum theory of atoms in molecules energies, Journal of Chemical Physics 131, 021101 (2009)
  1. J.S.M. Anderson, J.I. Rodriguez, P.W. Ayers, and A.W. Götz, Relativistic (SR-ZORA) Quantum Theory of Atoms in Molecules Properties, Journal of Computational Chemistry 82, 81 (2017).
  1. P.L.A. Popelier, Atoms in Molecules An Introduction, Pearson Education, Harlow, 2000.
  1. P.W Ayers, S. Jenkins, Bond metallicity measures, Comput. Theor. Chem. 1053, 112 (2015).
  1. V. Tognetti, L. Joubert, Density functional theory and Bader’s atoms-in-molecules theory: towards a vivid dialogue, Phys. Chem. Chem. Phys. 16, 14539 (2014).
  1. Y.A. Abramov, On the Possibility of Kinetic Energy Density Evaluation from the Experimental Electron-Density Distribution, Acta Cryst. A53, 264 (1997).
  1. P. Geerlings, F. de Proft, W. Langenaecker, Conceptual Density Functional Theory, Chem. Rev. 103, 1793 (2003).
  1. F. Zielinski, V. Tognetti, L. Joubert, Condensed descriptors for reactivity: A methodological study, Chem. Phys. Lett. 527, 67 (2012).
  1. V. Tognetti, C. Morell, L. Joubert, Atomic electronegativities in molecules, Chem. Phys. Lett. 635, 111 (2015).
  1. X. Fradera, M.A Austen, The Lewis model and beyond, R.F.W. Bader, J. Phys. Chem. A 103, 304 (1999).
  1. J. Poater, M. Solà, M. Duran, X. Fradera, The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory, Theor. Chem. Acc. 107, 362 (2002).
  1. P. Geerlings, S. Fias, Z. Boisdenghien, F. De Proft, Conceptual DFT: chemistry from the linear response function, Chem. Soc. Rev. 43, 4989 (2014).
  1. M. Atanasov, C.A. Daul, C. Rauzy, New insights into the effects of covalency on the ligand field parameters: a DFT study, Chemical Physics Letters 367, 737 (2003)
  1. M. Atanasov, C.A. Daul, C. Rauzy, A DFT Based Ligand Field Theory, Structure & Bonding 106, 97 (2004)
  1. A. Borel, C.A. Daul, L. Helm, Hybrid ligand-field theory/quantum chemical calculation of the fine structure and ZFS in lanthanide(III) complexes, Chemical Physics Letters 383, 584 (2004)
  1. M. Atanasov, E.J. Baerends, P. Beattig, R. Bruyndockx, C. Daul, C. Rauzy, The calculation of ESR parameters by density functional theory: the g- and A-tensors of Co(acacen), Chemical Physics Letters 399, 433 (2004)
  1. M. Atanasov, C.A. Daul, A DFT based ligand field model for magnetic exchange coupling in transition metal dimmer complexes: (i) principles, Chemical Physics Letters 379, 209 (2003)
  1. M. Atanasov, C.A. Daul, A DFT based ligand field model for magnetic exchange coupling in transition metal dimer complexes:: (ii) application to magnetic systems with more than one unpaired electron per site, Chemical Physics Letters 381, 584 (2003)
  1. F. Senn, C.A. Daul, Calculation of :sup:`59`Co shielding tensor :math:`sigma` using LF-DFT, Journal of Molecular Structure: THEOCHEM 954, 105 (2010)
  1. C. Daul, Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT), Chimia 68 (2014)
  1. H. Ramanantoanina, W. Urland, F. Cimpoesu, and C. Daul, Ligand field density functional theory calculation of the 4f2 → 4f1 5d1 transitions in the quantum cutter Cs2 KYF6 Pr3+, Physical Chemistry Chemical Physics 15, 13902 (2013).
  1. H. Ramanantoanina, W. Urland, A. Garcia-Fuente, F. Cimpoesu, and C. Daul, Ligand field density functional theory for the prediction of future domestic lighting, Physical Chemistry Chemical Physics 16, 14625 (2014).
  1. H. Ramanantoanina, M. Sahnoun, A. Barbiero, M. Ferbinteanu, F. Cimpoesu, Development and applications of the LFDFT: the non-empirical account of ligand field and the simulation of the f–d transitions by density functional theory, Physical Chemistry Chemical Physics 17, 18547 (2015).
  1. V.P. Nicu, J. Neugebauer and E.J. Baerends, Effects of Complex Formation on Vibrational Circular Dichroism Spectra, Journal of Physical Chemistry A 112, 6978 (2008)
  1. M.A.J. Koenis, W.J. Buma and V.P. Nicu, Analysis of VCD spectra of peptides: a generalised coupled oscillator approach using VCDtools, manuscript in preparation, (2018)
  1. V.P. Nicu, Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals, Physical Chemistry Chemical Physics 18, 21202 (2016).
  1. Y.C. Park, F. Senn, M. Krykunov, and T. Ziegler, Self-Consistent Constricted Variational Theory RSCF-CV( \(\infty\) )-DFT and Its Restrictions To Obtain a Numerically Stable \(\Delta\) SCF-DFT-like Method: Theory and Calculations for Triplet States, Journal of Chemical Theory and Computation 12, 5438 (2016)
  1. O. Baseggio, G. Fronzoni, and M. Stener, A new time dependent density functional algorithm for large systems and plasmons in metal clusters, Journal of Chemical Physics 143, 024106 (2015)
  1. O. Baseggio, D. Toffoli, G. Fronzoni, M. Stener, L. Sementa, and A. Fortunelli, Extension of the Time-Dependent Density Functional Complex Polarizability Algorithm to Circular Dichroism: Implementation and Applications to Ag8 and Au38 (SC2 H4 C6 H5 )24, Journal of Physical Chemistry C 120, 24335 (2016)
  1. S. Bernadotte, F. Evers, and C.R. Jacob, Plasmons in Molecules, Journal of Physical Chemistry C 117, 1863 (2013)
  1. R.G. Parr, W.T. Yang, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc. 106, 4049 (1984)
  1. C. Morell, A. Grand, A. Toro-Labbé, New Dual Descriptor for Chemical reactivity, J. Phys. Chem. A 109, 205 (2005)
  1. A. Klamt, V. Jonas, T. Bürger and J.C. Lohrenz, Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074 (1998)
  1. D.Schlüns, M. Franchini, A. W. Götz, J. Neugebauer, C. R. Jacob ,L. Visscher, Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program, J. Comput. Chem. 38, 4 (2017)
  1. Z. Hu, D.V. Chulhai, and L. Jensen, Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models, Journal of Chemical Theory and Computation 12, 5968 (2016)
  1. S.Lehtola, C. Steigemann, M.J.T. Oliveira, M.A.L. Marques, Recent developments in LibXC – A comprehensive library of functionals for density functional theory, SoftwareX 7, 1 (2018)
  1. F.M. Bickelhaupt, M. Solà, C. Fonseca Guerra, Highly polar bonds and the meaning of covalency and ionicity – structure and bonding of alkali metal hydride oligomers, Faraday Discussions 135, 451 (2007)
  1. M. Mitoraj, and A. Michalak, Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes, Journal of Molecular Modeling 13, 347 (2007)
  1. J.Martínez, Local Reactivity Descriptors from Degenerate Frontier Molecular Orbitals, Chem. Phys. Lett. 478, 310-322 (2009)
  1. P. Ramos, M. Pavanello, Low-lying excited states by constrained DFT, Journal of Chemical Physics 148, 144103 (2018)
  1. M.J.G. Peach, P. Benfield, T. Helgaker, and D.J. Tozer, Excitation energies in density functional theory: An evaluation and a diagnostic test, Journal of Chemical Physics 128, 044118 (2008)
  1. C.A. Guido, P. Cortona, B. Mennucci, and C. Adamo, On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor, Journal of Chemical Theory and Computation 9, 3118 (2013)
  1. F. Plasser, and H. Lischka, Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations, Journal of Chemical Theory and Computation 8, 2777 (2012)
  1. F. Plasser, M. Wormit, and A. Dreuw, New tools for the systematic analysis and visualization of electronic excitations. I. Formalism, Journal of Chemical Physics 141, 024106 (2008)
  1. F. Plasser, S.A. Bäppler, Wormit, and A. Dreuw, New tools for the systematic analysis and visualization of electronic excitations. II. Applications, Journal of Chemical Physics 141, 024107 (2008)
  1. S.A. Mewes, J.-M. Mewes, A. Dreuw, and F. Plasser, Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations, Physical Chemistry Chemical Physics 18, 2548 (2016).
      1. Blanco, A. M. Pendás and E. Francisco, Interacting Quantum Atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules, Journal of Chemical Theory and Computation 1, 1096 (2005).
      1. Pendás, M. A. Blanco and E. Francisco, A molecular energy decomposition scheme for atoms in molecules, Journal of Chemical Theory and Computation 2, 90 (2006).
    1. Tognetti and L. Joubert, On Atoms-in-Molecules Energies from Kohn–Sham calculations, ChemPhysChem 18, 2675 (2017).
    1. Tognetti and L. Joubert, On the physical role of exchange in the formation of an intramolecular bond path between two electronegative atoms, Journal of Chemical Physics 138, 024102 (2013).