Worked Example¶
Initial imports¶
from scm.plams import plot_molecule, from_smiles, Molecule
from scm.plams.interfaces.molecule.packmol import packmol
from ase.visualize.plot import plot_atoms
from ase.build import fcc111, bulk
import matplotlib.pyplot as plt
import importlib.metadata
AMS2025 = importlib.metadata.version("scm") >= "2024.201"
if AMS2025:
from scm.plams import packmol_around
Helper functions¶
def printsummary(mol, details=None):
if details:
density = details["density"]
else:
density = mol.get_density() * 1e-3
s = f"{len(mol)} atoms, density = {density:.3f} g/cm^3"
if mol.lattice:
s += f", box = {mol.lattice[0][0]:.3f}, {mol.lattice[1][1]:.3f}, {mol.lattice[2][2]:.3f}"
s += f", formula = {mol.get_formula()}"
if details:
s += f'\n#added molecules per species: {details["n_molecules"]}, mole fractions: {details["mole_fractions"]}'
print(s)
Liquid water (fluid with 1 component)¶
First, create the gasphase molecule:
water = from_smiles("O")
plot_molecule(water);
print("pure liquid from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size")
out = packmol(water, n_atoms=194, density=1.0)
printsummary(out)
out.write("water-1.xyz")
plot_molecule(out);
pure liquid from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size
195 atoms, density = 1.000 g/cm^3, box = 12.482, 12.482, 12.482, formula = H130O65
print("pure liquid from approximate density (in g/cm^3) and an orthorhombic box")
out = packmol(water, density=1.0, box_bounds=[0.0, 0.0, 0.0, 8.0, 12.0, 14.0])
printsummary(out)
out.write("water-2.xyz")
plot_molecule(out);
pure liquid from approximate density (in g/cm^3) and an orthorhombic box
135 atoms, density = 1.002 g/cm^3, box = 8.000, 12.000, 14.000, formula = H90O45
print("pure liquid with explicit number of molecules and exact density")
out = packmol(water, n_molecules=64, density=1.0)
printsummary(out)
out.write("water-3.xyz")
plot_molecule(out);
pure liquid with explicit number of molecules and exact density
192 atoms, density = 1.000 g/cm^3, box = 12.417, 12.417, 12.417, formula = H128O64
print("pure liquid with explicit number of molecules and box")
out = packmol(water, n_molecules=64, box_bounds=[0.0, 0.0, 0.0, 12.0, 13.0, 14.0])
printsummary(out)
out.write("water-4.xyz")
plot_molecule(out);
pure liquid with explicit number of molecules and box
192 atoms, density = 0.877 g/cm^3, box = 12.000, 13.000, 14.000, formula = H128O64
if AMS2025:
print("water-5.xyz: pure liquid in non-orthorhombic box (requires AMS2025 or later)")
print("NOTE: Non-orthorhombic boxes may yield inaccurate results, always carefully check the output")
# You can pack inside any lattice using the packmol_around function
box = Molecule()
box.lattice = [[10.0, 2.0, -1.0], [-5.0, 8.0, 0.0], [0.0, -2.0, 11.0]]
out = packmol_around(box, molecules=[water], n_molecules=[32])
out.write("water-5.xyz")
plot_molecule(out);
water-5.xyz: pure liquid in non-orthorhombic box (requires AMS2025 or later)
NOTE: Non-orthorhombic boxes may yield inaccurate results, always carefully check the output
if AMS2025:
print("Experimental feature (AMS2025): guess density for pure liquid")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol(water, n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out);
Experimental feature (AMS2025): guess density for pure liquid
Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!
Guessed density: 1139.23 kg/m^3
Water-acetonitrile mixture (fluid with 2 or more components)¶
Let’s also create a single acetonitrile molecule:
acetonitrile = from_smiles("CC#N")
plot_molecule(acetonitrile);
Set the desired mole fractions and density. Here, the density is calculated as the weighted average of water (1.0 g/cm^3) and acetonitrile (0.76 g/cm^3) densities, but you could use any other density.
# MIXTURES
x_water = 0.666 # mole fraction
x_acetonitrile = 1 - x_water # mole fraction
# weighted average of pure component densities
density = (x_water * 1.0 + x_acetonitrile * 0.76) / (x_water + x_acetonitrile)
print("MIXTURES")
print(f"x_water = {x_water:.3f}")
print(f"x_acetonitrile = {x_acetonitrile:.3f}")
print(f"target density = {density:.3f} g/cm^3")
MIXTURES
x_water = 0.666
x_acetonitrile = 0.334
target density = 0.920 g/cm^3
By setting return_details=True
, you can get information about the
mole fractions of the returned system. They may not exactly match the
mole fractions you put in.
print(
"2-1 water-acetonitrile from approximate number of atoms and exact density (in g/cm^3), "
"cubic box with auto-determined size"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=200,
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-1.xyz")
plot_molecule(out);
2-1 water-acetonitrile from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size
201 atoms, density = 0.920 g/cm^3, box = 13.263, 13.263, 13.263, formula = C34H117N17O33
#added molecules per species: [33, 17], mole fractions: [0.66, 0.34]
The details
is a dictionary as follows:
for k, v in details.items():
print(f"{k}: {v}")
n_molecules: [33, 17]
mole_fractions: [0.66, 0.34]
n_atoms: 201
molecule_type_indices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
molecule_indices: [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49]
atom_indices_in_molecule: [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
volume: 2333.0853879652004
density: 0.9198400000000004
print("2-1 water-acetonitrile from approximate density (in g/cm^3) and box bounds")
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-2.xyz")
plot_molecule(out);
2-1 water-acetonitrile from approximate density (in g/cm^3) and box bounds
201 atoms, density = 0.933 g/cm^3, box = 13.200, 13.200, 13.200, formula = C34H117N17O33
#added molecules per species: [33, 17], mole fractions: [0.66, 0.34]
print("2-1 water-acetonitrile from explicit number of molecules and density, cubic box with auto-determined size")
out, details = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-3.xyz")
plot_molecule(out);
2-1 water-acetonitrile from explicit number of molecules and density, cubic box with auto-determined size
192 atoms, density = 0.920 g/cm^3, box = 13.058, 13.058, 13.058, formula = C32H112N16O32
#added molecules per species: [32, 16], mole fractions: [0.6666666666666666, 0.3333333333333333]
print("2-1 water-acetonitrile from explicit number of molecules and box")
out = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
)
printsummary(out)
out.write("water-acetonitrile-4.xyz")
plot_molecule(out);
2-1 water-acetonitrile from explicit number of molecules and box
192 atoms, density = 0.890 g/cm^3, box = 13.200, 13.200, 13.200, formula = C32H112N16O32
if AMS2025:
print("Experimental feature (AMS2025): guess density for mixture")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol([water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out);
Experimental feature (AMS2025): guess density for mixture
Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!
Guessed density: 853.04 kg/m^3
Pack inside sphere¶
Set sphere=True
to pack in a sphere (non-periodic) instead of in a
periodic box. The sphere will be centered near the origin.
print("water in a sphere from exact density and number of molecules")
out, details = packmol(molecules=[water], n_molecules=[100], density=1.0, return_details=True, sphere=True)
printsummary(out, details)
print(f"Radius of sphere: {details['radius']:.3f} ang.")
print(f"Center of mass xyz (ang): {out.get_center_of_mass()}")
out.write("water-sphere.xyz")
plot_molecule(out);
water in a sphere from exact density and number of molecules
300 atoms, density = 1.000 g/cm^3, formula = H200O100
#added molecules per species: [100], mole fractions: [1.0]
Radius of sphere: 8.939 ang.
Center of mass xyz (ang): (0.3501425085592405, 0.29762514209081564, -0.5227405711205764)
print(
"2-1 water-acetonitrile in a sphere from exact density (in g/cm^3) and "
"approximate number of atoms and mole fractions"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=500,
density=density,
return_details=True,
sphere=True,
)
printsummary(out, details)
out.write("water-acetonitrile-sphere.xyz")
plot_molecule(out);
2-1 water-acetonitrile in a sphere from exact density (in g/cm^3) and approximate number of atoms and mole fractions
501 atoms, density = 0.920 g/cm^3, formula = C84H292N42O83
#added molecules per species: [83, 42], mole fractions: [0.664, 0.336]
Packing ions, total system charge¶
The total system charge will be sum of the charges of the constituent molecules.
In PLAMS, molecule.properties.charge
specifies the charge:
ammonium = from_smiles("[NH4+]") # ammonia.properties.charge == +1
chloride = from_smiles("[Cl-]") # chloride.properties.charge == -1
print("3 water molecules, 3 ammonium, 1 chloride (non-periodic)")
print("Initial charges:")
print(f"Water: {water.properties.get('charge', 0)}")
print(f"Ammonium: {ammonium.properties.get('charge', 0)}")
print(f"Chloride: {chloride.properties.get('charge', 0)}")
out = packmol(molecules=[water, ammonium, chloride], n_molecules=[3, 3, 1], density=0.4, sphere=True)
tot_charge = out.properties.get("charge", 0)
print(f"Total charge of packmol-generated system: {tot_charge}")
out.write("water-ammonium-chloride.xyz")
plot_molecule(out);
3 water molecules, 3 ammonium, 1 chloride (non-periodic)
Initial charges:
Water: 0
Ammonium: 1
Chloride: -1
Total charge of packmol-generated system: 2
Microsolvation¶
packmol_microsolvation
can create a microsolvation sphere around a
solute.
from scm.plams import packmol_microsolvation
out = packmol_microsolvation(solute=acetonitrile, solvent=water, density=1.5, threshold=4.0)
# for microsolvation it's a good idea to have a higher density than normal to get enough solvent molecules
print(f"Microsolvated structure: {len(out)} atoms.")
out.write("acetonitrile-microsolvated.xyz")
figsize = (3, 3)
plot_molecule(out, figsize=figsize);
Microsolvated structure: 72 atoms.
Solid-liquid or solid-gas interfaces¶
First, create a slab using the ASE fcc111
function
from scm.plams import plot_molecule, fromASE
from ase.build import fcc111
rotation = "90x,0y,0z" # sideview of slab
slab = fromASE(fcc111("Al", size=(4, 6, 3), vacuum=15.0, orthogonal=True, periodic=True))
plot_molecule(slab, figsize=figsize, rotation=rotation);
print("water surrounding an Al slab, from an approximate density")
if AMS2025:
out = packmol_around(slab, water, density=1.0)
printsummary(out)
out.write("al-water-pure.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation);
water surrounding an Al slab, from an approximate density
546 atoms, density = 1.345 g/cm^3, box = 11.455, 14.881, 34.677, formula = Al72H316O158
print("2-1 water-acetonitrile mixture surrounding an Al slab, from mole fractions and an approximate density")
if AMS2025:
out = packmol_around(slab, [water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], density=density)
printsummary(out)
out.write("al-water-acetonitrile.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation);
2-1 water-acetonitrile mixture surrounding an Al slab, from mole fractions and an approximate density
480 atoms, density = 1.282 g/cm^3, box = 11.455, 14.881, 34.677, formula = C68H238Al72N34O68
from ase.build import surface
if AMS2025:
print("water surrounding non-orthorhombic Au(211) slab, from an approximate number of molecules")
print("NOTE: non-orthorhombic cell, results are approximate, requires AMS2025")
slab = surface("Au", (2, 1, 1), 6)
slab.center(vacuum=11.0, axis=2)
slab.set_pbc(True)
out = packmol_around(fromASE(slab), [water], n_molecules=[32], tolerance=1.8)
out.write("Au211-water.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation)
print(f"{out.lattice=}")
water surrounding non-orthorhombic Au(211) slab, from an approximate number of molecules
NOTE: non-orthorhombic cell, results are approximate, requires AMS2025
out.lattice=[(9.1231573482, 0.0, 0.0), (3.6492629392999993, 4.4694160692, 0.0), (0.0, 0.0, 31.161091638)]
Pack inside voids in crystals¶
Use the packmol_around
function. You can decrease tolerance
if
you need to pack very tightly. The default value for tolerance
is
2.0.
from scm.plams import fromASE
from ase.build import bulk
bulk_Al = fromASE(bulk("Al", cubic=True).repeat((3, 3, 3)))
rotation = "-85x,5y,0z"
plot_molecule(bulk_Al, rotation=rotation, radii=0.4);
if AMS2025:
out = packmol_around(
current=bulk_Al,
molecules=[from_smiles("[H]"), from_smiles("[He]")],
n_molecules=[50, 20],
tolerance=1.5,
)
plot_molecule(out, rotation=rotation, radii=0.4)
printsummary(out)
out.write("al-bulk-with-h-he.xyz")
178 atoms, density = 2.819 g/cm^3, box = 12.150, 12.150, 12.150, formula = Al108H50He20
Bonds, atom properties (force field types, regions, …)¶
The packmol()
function accepts the arguments keep_bonds
and
keep_atom_properties
. These options will keep the bonds defined for
the constitutent molecules, as well as any atomic properties.
The bonds and atom properties are easiest to see by printing the System block for an AMS job:
from scm.plams import Settings
water = from_smiles("O")
n2 = from_smiles("N#N")
# delete properties coming from from_smiles
for at in water:
at.properties = Settings()
for at in n2:
at.properties = Settings()
water[1].properties.region = "oxygen_atom"
water[2].properties.mass = 2.014 # deuterium
water.delete_bond(water[1, 2]) # delete bond between atoms 1 and 2 (O and H)
from scm.plams import AMSJob
out = packmol([water, n2], n_molecules=[2, 1], density=0.5)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 4.4683970000 4.0274410000 4.8301830000 region=mol0,oxygen_atom
H 4.1911940000 3.4970360000 4.0538400000 mass=2.014 region=mol0
H 4.0904700000 4.9334700000 4.8078930000 region=mol0
O 2.4022380000 2.5119780000 4.9388470000 region=mol0,oxygen_atom
H 2.1168150000 1.5763270000 4.8758370000 mass=2.014 region=mol0
H 1.7828170000 3.1154120000 4.4736580000 region=mol0
N 3.8850350000 1.5479000000 0.9974040000 region=mol1
N 4.9682670000 1.4976690000 1.2344790000 region=mol1
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
By default, the packmol()
function assigns regions called mol0
,
mol1
, etc. to the different added molecules. The region_names
option lets you set custom names.
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 1.8954680000 3.1933380000 0.9222520000 region=oxygen_atom,water
H 1.9676630000 4.1631210000 1.0454880000 mass=2.014 region=water
H 0.9891960000 2.8669170000 1.1128710000 region=water
O 4.1055510000 2.5003860000 3.7622970000 region=oxygen_atom,water
H 4.8926280000 3.0404560000 3.5393350000 mass=2.014 region=water
H 4.2556640000 1.5457960000 3.5878300000 region=water
N 1.6662680000 1.6519680000 4.9161680000 region=nitrogen_molecule
N 1.0030750000 1.0752030000 4.2382030000 region=nitrogen_molecule
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
Below, we also set keep_atom_properties=False
, this will remove the
previous regions (in this example “oxygen_atom”) and mass.
out = packmol([water, n2], n_molecules=[2, 1], density=0.5, keep_atom_properties=False)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 4.0652730000 3.9544190000 4.3862680000 region=mol0
H 3.2286770000 3.6326620000 4.7830780000 region=mol0
H 4.1543770000 4.9294310000 4.4612820000 region=mol0
O 2.0684390000 4.1227080000 1.7583370000 region=mol0
H 2.6733500000 3.4138690000 1.4541850000 region=mol0
H 1.5374060000 4.4922430000 1.0196470000 region=mol0
N 5.0006200000 1.0167660000 1.2504450000 region=mol1
N 4.9354770000 2.0781350000 0.9320530000 region=mol1
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
keep_bonds=False
will additionally ignore any defined bonds:
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
keep_bonds=False,
keep_atom_properties=False,
)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 1.5148360000 1.2112720000 3.1575050000 region=water
H 1.2508580000 1.6795210000 2.3377870000 region=water
H 2.4909520000 1.1559460000 3.2488970000 region=water
O 3.7560190000 3.1343020000 2.3314320000 region=water
H 3.1742240000 2.7225030000 1.6585170000 region=water
H 4.1497860000 2.4655170000 2.9330050000 region=water
N 1.1894490000 4.9504330000 4.6443000000 region=nitrogen_molecule
N 1.8753900000 4.1414680000 4.9716820000 region=nitrogen_molecule
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End