Required Citations

When you publish results in the scientific literature which were obtained with programs of the ADF package, you are required to include references to the program package with the appropriate release number, and a few key publications.

In addition references to special features are mandatory, in case you have used them.

General References

For calculations with the periodic structures BAND program, version 2020.1:

  1. G. te Velde and E.J. Baerends, Precise density-functional method for periodic structures, Physical Review B 44, 7888 (1991).

  2. BAND 2024.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, Optionally, you may add the following list of authors and contributors: P.H.T. Philipsen, G. te Velde, E.J. Baerends, J.A. Berger, P.L. de Boeij, M. Franchini, J.A. Groeneveld, E.S. Kadantsev, R. Klooster, F. Kootstra, M.C.W.M. Pols, P. Romaniello, M. Raupach, D.G. Skachkov, J.G. Snijders, C.J.O. Verzijl, J.A. Celis Gil, J. M. Thijssen, G. Wiesenekker, C. A. Peeples, G. Schreckenbach, T. Ziegler.

Note: if you have used a modified (by yourself, for instance) version of the code, you should mention in the citation that a modified version has been used.

Feature References


See key references above, for all work with BAND


G. Wiesenekker, G. te Velde and E.J. Baerends, Analytic quadratic integration over the two-dimensional Brillouin zone, Journal of Physics C: Solid State Physics 21, 4263 (1988).

G. Wiesenekker and E.J. Baerends, Quadratic integration over the three-dimensional Brillouin zone, Journal of Physics: Condensed Matter 3, 6721 (1991).

M. Franchini, P.H.T. Philipsen, L. Visscher, The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite, Journal of Computational Chemistry 34, 1818 (2013).

M. Franchini, P.H.T. Philipsen, E. van Lenthe, L. Visscher, Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting, Journal of Chemical Theory and Computation 10, 1994 (2014).

Geometry optimization


E.S. Kadantsev, R. Klooster. P.L. de Boeij and T. Ziegler, The Formulation and Implementation of Analytic Energy Gradients for Periodic Density Functional Calculations with STO/NAO Bloch Basis Set, Molecular Physics 105, 2583 (2007).



F. Kootstra, P.L. de Boeij and J.G. Snijders, Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals, Journal of Chemical Physics 112, 6517 (2000).

P. Romaniello and P.L. de Boeij, Time-dependent current-density-functional theory for the metallic response of solids, Physical Review B 71, 155108 (2005).

Main applications

F. Kootstra, P.L. de Boeij, and J.G. Snijders, Application of time-dependent density-functional theory to the dielectric function of various nonmetallic crystals, Physical Review B 62, 7071 (2000).

P. Romaniello, P.L. de Boeij, F. Carbone, and D. van der Marel, Optical properties of bcc transition metals in the range 0 - 40 eV, Physical Review B 73, 075115 (2006).

Suggested book references

F. Kootstra, Ph.D. thesis, Rijksuniversiteit Groningen, Groningen (2001).

P. Romaniello, Ph.D. thesis, Rijksuniversiteit Groningen, Groningen (2006).

A. Berger, Ph.D. thesis, Rijksuniversiteit Groningen, Groningen (2006).

Relativistic TDDFT


P. Romaniello and P.L. de Boeij, Relativistic two-component formulation of time-dependent current-density functional theory: Application to the linear response of solids, Journal of Chemical Physics 127, 174111 (2007).

Vignale Kohn


J.A. Berger, P.L. de Boeij and R. van Leeuwen, Analysis of the viscoelastic coefficients in the Vignale-Kohn functional: The cases of one- and three-dimensional polyacetylene, Physical Review B 71, 155104 (2005).


J.A. Berger, P. Romaniello, R. van Leeuwen and P.L. de Boeij, Performance of the Vignale-Kohn functional in the linear response of metals, Physical Review B 74, 245117 (2006).

J.A. Berger, P.L. de Boeij, and R. van Leeuwen, Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors, Physical Review B 75, 35116 (2007).



D. Skachkov, M. Krykunov, E. Kadantsev, and T. Ziegler, The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory, Journal of Chemical Theory and Computation 6, 1650 (2010)

D. Skachkov, M. Krykunov, and T. Ziegler, An improved scheme for the calculation of NMR chemical shifts in periodic systems based on gauge including atomic orbitals and density functional theory, Canadian Journal of Chemistry 89, 1150 (2011).


A-tensor: Nuclear magnetic dipole hyperfine interaction

E.S. Kadantsev and T. Ziegler, Implementation of a Density Functional Theory-Based Method for the Calculation of the Hyperfine A-tensor in Periodic Systems with the Use of Numerical and Slater Type Atomic Orbitals: Application to Paramagnetic Defects, Journal of Physical Chemistry A 112, 4521 (2008).

G-tensor: Zeeman interaction

E.S. Kadantsev and T. Ziegler, Implementation of a DFT Based Method for the Calculation of Zeeman g-tensor in Periodic Systems with the use of Numerical and Slater Type Atomic Orbitals, Journal of Physical Chemistry A 113, 1327 (2009).


    1. O. Verzijl and J. M. Thijssen DFT-Based Molecular Transport Implementation in ADF/BAND, J. Phys. Chem. C, 2012, 116 (46), pp 24393–24412.

Electron energy density


Stefano Racioppi and Martin Rahm, In-Situ Electronegativity and the Bridging of Chemical Bonding Concepts, Chemistry – A European Journal 72 18156-18167 (2021).

Stefano Racioppi, Per Hyldgaar and Martin Rahm, Quantifying Atomic Volume, Partial Charge, and Electronegativity in Condensed Phases, The Journal of Physical Chemistry C 128.9 (2024): 4009.

External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries have been used and/or vendor specific MPI implementations.