Ru L2,3-edges XANES specta of a di-Ruthenium catalyst

L2,3-edges X-ray absorption near edge structure (XANES) spectra – transitions from 2p to εs and εd levels – contain important information about the electronic structure of transition metals in materials and molecules.
To correctly interpret the XANES spectra, sophisticated modeling is required. While multiplet effects strongly affect X-ray spectra of 3d ions, 4d and 5d elements are much less affected. However, inclusion of spin-orbit coupling effects is critical, as some of the transitions from the 2p1/2 and 2p3/2 manifolds to εd levels are symmetrically forbidden. Analytical analysis is only possible for symmetrically coordinated ions, reducing computation time. To overcome this limitation a collaboration of Purdue University (USA) and Southern Federal University (Russia) developed an approach to simulate L2,3-edges spectra on the basis of relativistic DFT as implemented within ZORA approximation in the ADF suite. The spatial distribution of spin-dependent molecular orbitals was obtained with the ADF2010 package, and XANES spectra were calculated as excitations from the Ru 2p level to unoccupied molecular orbitals.

Calculated L2,3-edges XANES spectrum of Ru complexes with SOC-TDDFT

An excellent agreement between experiment and theory was demonstrated for the complex di-Ru catalyst cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ (bpy = 2,2-bipyridine).

Do you want try for yourself? Request a free 30-day evaluation for the whole Amsterdam Modeling Suite.

Newsletter: tips & tricks, highlights, events

Would you like to keep up to date with the latest developments in the Amsterdam Modeling Suite and the SCM team, learn more about new applications and functionality?
Subscribe to our newsletter!

X-ray Absorption Near-Edge Spectroscopy, core excitations, spin-orbit coupling, TDDFT

I. Alperovich, G. Smolentsev, D. Moonshiram, J.W. Jurss, J.J. Concepcion, T.J. Meyer, A. Soldatov, Y. Pushkar Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst J. Am. Chem. Soc., 133 15786-15794 (2011).

Key concepts