Highlights with ‘NEGF’

In Situ Switching of Quantum Interference in Molecular Tunneling Junctions

Conventional electronics are made up of bulk materials where the components of the system are carved out from bulk (top-down). Molecular electronics takes a different approach where electronic systems are built up atom by atom...

Charge transport through single molecule conductors

Tetraphenylmethane tripod is a promising platform to support functional moieties considered for the fabrication of working elements in future molecular electronic devices. In this work, charge transport (conductance G) in molecular conductors supported by tetraphenylmethane...

Single material transistor from 2D PdS2

Thomas Heine and coworkers computationally designed a logical junction made from a single material, PdS2. Uniquely, 2D transition metal dichalcogenide PdS2 is semiconducting as a monolayer (ML) while it is semimetallic as a bilayer (BL). By exploiting...

All-Electric Single-Molecule Motor modeled with ADF

In the November 2010 issue of ACS Nano, Jos Seldenthuis and coworkers at the Delft University of Technology published a design for an all-electric single-molecule motor which has drawn worldwide interest. The rotating moiety of...

BAND calculations explain break-through molecular charge transport experiment

Charge transport through single-molecule junctions is dominated by image charges. This is demonstrated and explained by a combined experimental and theoretical effort from Delft (Quantum Nanoscience and Chemical Engineering departments) and the Leiden Institute of...