Skip to content
Scm logo
Scm logo
  • Amsterdam Modeling Suite
  • Applications
  • Tools
  • Docs & Support
  • Company
    • About us
    • Team
    • Projects & Collaborations
    • Partners & Contributors
    • News
    • Events
    • Careers
    • Pricing & Licensing
    • Contact us
Amsterdam Modeling Suite
Atomistic Scale
Electronic Structure
ADF

Understand and predict chemical properties with our fast and accurate molecular DFT code.

Periodic DFT

BAND & Quantum Espresso: Calculate reactivity, band gaps, optical response, and other properties for periodic systems.

DFTB & MOPAC

Model larger molecules and periodic systems, or prescreen many candidates, with the fast electronic structure methods DFTB and MOPAC.

Interatomic Potentials
ReaxFF

Study large, chemically evolving systems with ReaxFF molecular dynamics.

Machine Learning Potentials

Use preparametrized ML potentials M3GNET, ANI-1ccx or your own models.

Force Fields

GFN-FF, Apple&P, UFF, and more- (polarizable) force fields.

Meso- & Macroscale
kMC and Microkinetics

Predict catalytic turn-over frequencies with microkinetics and kinetic Monte Carlo.

Bumblebee: OLED stacks

3D kinetic Monte Carlo for simulating OLED device-level physics

Fluid Thermodynamics
COSMO-RS

Quick physical property predictions, thermodynamic properties in solution, and solvent screening.

Amsterdam Modeling Suite: computational chemistry with expert support to advance your chemistry & materials R&D

Discover the Suite Pricing & licensing
Tools
Workflows and Utilities
OLED workflows

Automatic workflows to simulate physical vapor deposition and calculate properties for OLED device modeling.

ChemTraYzer2

Automatically extract reaction pathways and reaction rates from reactive MD trajectories.

Conformers

Easily generate, screen, refine, and select conformers. Pass on to other modules for conformational averaging.

Reactions Discovery

Predict chemical (side) reactions from nothing but constituent molecules.

AMS Driver
Properties

Calculate frequencies, phonons, and more. Use forces and energies from AMS or external engines.

PES Exploration

Minimize structures, find transitions states, scan multiple coordinates.

Molecular Dynamics

Use advanced thermo- and barostats, non-equilibrium and accelerated MD, molecule gun.

Monte Carlo

Grand Canonical Monte Carlo to study absorption, (dis)charge processes.

Interfaces
ParAMS

Versatile graphical and python scripting tools to create training sets and parametrize DFTB, ReaxFF, and machine learned potentials.

PLAMS

Versatile python scripting interface to create your own computational chemistry workflows

GUI

Powerful graphical interface to set up, run, and analyze calculations. Even across different platforms.

VASP

Interface to popular plane-wave code VASP. Easily set up PES Scans to create training data.

The SCM team wants to make computational chemistry work for you!

Check out the tutorials Questions? Contact us!
Docs & Support
Downloads
Windows

ams2025.102

Mac

ams2025.102

Linux

ams2025.102

See all
Documentation
Overview

Documentation links for all our modules and tools

Tutorials

Get started quickly with our Tutorials!

Installation Manual

Quick-start guide and extensive installation manual

Brochures

Brochure and flyers for different applications

Other Resources
Changelog

Latest changes to our binaries

Webinars

Workshops

Knowledgebank

Research highlights

FAQ

General FAQs on licensing.

Pricing and licensing

Price and licensing information.

Consulting & Support
How can we help?
Search
  • Free trial
  • Contact

Home > Documentation

Navigate to
  • Documentation
  • Tutorials
  • Installation
  • Keywords Index
  • General
    • Introduction
      • Functionality
      • Applicability
      • Model Hamiltonian
      • Analysis
      • Technical
      • Fragments
        • Basic atoms
        • Automatic mode
      • Slater-type basis sets
    • What’s new in ADF 2020
      • ADF is an AMS Engine
      • Bug ADF2006 - ADF2020
      • New Defaults
      • New features
    • AMSification of ADF
      • Restructuring of the input
      • Restructuring of input keys
      • Example shell script changes
      • Automatic tool for conversion of ADF2019 shell scripts
    • Input, execution and output
      • ADF specific files
    • Feature List
      • Model Hamiltonians
      • Structure and Reactivity
      • Spectroscopic properties
      • Charge transport properties
      • Analysis
      • Accuracy and Efficiency
    • Technical remarks, Terminology
      • Density functional theory
      • The Kohn-Sham MO model
      • Basis functions and orbitals
        • Cartesian function sets, spurious components
        • Frozen core: Core Orbitals and Core Functions
        • Symmetry
        • Orthonormal basis
        • Fragments
        • Summary of functions and orbitals
        • Acronyms
      • Coulomb potential evaluation, density fitting
      • Three-step build-up of the bonding
      • Transition State procedure
  • Input, execution, and output
    • Input
      • General remarks on input structure and parsing
      • Keys
      • Blocks
      • Including an external file
      • Units
      • Title, comment
      • Amsification of ADF in ADF2020
      • Input parsing changes in ADF2018 and later
        • New syntax for a few keywords
        • Strict parsing of input file
    • Execution
    • Structure of the Output
      • Job Characteristics on standard Output
      • Log file, adf.rkf, TAPE13
  • Coordinates, Basis sets, Fragments
    • Atomic coordinates
      • Cartesian
      • Z-Matrix
      • Orientation of Local Atomic Coordinates
      • Symmetry Key
    • Basis sets and atomic fragments
      • STO basis sets
      • Available basis sets
      • The Basis Key
      • Automatic mode
      • Create mode
      • Ghost Atoms, Non-standard Chemical Elements
        • Automatic mode
      • Nuclear Model
    • Molecular fragments
      • Fragment mode
      • Fragment files
  • Model Hamiltonians
    • Electronic Configuration
      • Charge and Spin
        • Spin: restricted vs. unrestricted
        • Unrestricted and Spin-Orbit Coupling
        • Net Charge
      • Orbital occupations: electronic configuration, excited states
        • Aufbau, smearing, freezing
        • Explicit occupation numbers
        • CHARGE and SPINPOLARIZATION vs. IRREPOCCUPATIONS
        • Create mode
      • Frozen core approximation
      • Spin-polarized start-up potential
        • Spin-flip method for broken symmetries
        • Modify the starting potential
      • Unrestricted fragments
        • Prepared for bonding
      • Simulated unrestricted fragments with key FRAGOCCUPATIONS
        • Prepared for bonding
        • FRAGOCCUPATIONS
      • Remove Fragment Orbitals
      • CDFT: Constrained Density Functional Theory
    • Density Functionals (XC)
      • LDA
      • GGA
      • MetaGGA
      • Hartree-Fock
      • Hybrid
      • Meta-Hybrid
      • Range separated hybrids
        • RangeSep + XCFun: Yukawa-range separated hybrids
        • Range-separated hybrids with LibXC
      • Notes on Hartree-Fock and (meta-)hybrid functionals
      • Post-SCF correlation methods
        • Double-Hybrid
        • MP2-methods
        • RPA
        • Notes on MP2, double-hybrid functionals and RPA
      • Model Potentials
      • Optimized effective potentials
      • XCFun
      • LibXC
      • Dispersion corrections
        • DFT-D4 functionals
        • DFT-D3 functionals
        • DFT-D functionals
        • dDsC: density dependent dispersion correction
        • DFT-ulg
        • DFT-MBD functionals
      • Post-SCF energy functionals
        • GGA energy functionals
        • Meta-GGA and hybrid energy functionals
        • Post Hartree-Fock energy functionals
    • Relativistic effects
      • Pauli
      • ZORA
      • X2C and RA-X2C
      • Spin-Orbit coupling
    • Solvents and other environments
      • COSMO: Conductor like Screening Model
      • SM12: Solvation Model 12
      • Quild
      • DIM/QM: Discrete Interaction Model/Quantum Mechanics
        • DRF
        • Surface-enhanced response properties
        • Input options
        • EXTERNALS key for DRF
      • FDE: Frozen Density Embedding
        • Fragment-specific FDE options
        • Kinetic energy approximants
        • General FDE options
        • Frozen Density Embedding with External Orthogonality
        • FDE and (localized) COSMO
        • Subsystem TDDFT, coupled FDE
        • Restrictions and pitfalls
      • SCRF: Self-Consistent Reaction Field
      • VSCRF: Vertical Excitation Self-Consistent Reaction Field
      • 3D-RISM: 3D reference Interaction Site Model
    • Electric Field: Homogeneous, Point Charges, Polarizability
  • Structure and Reactivity
    • Single point calculations
    • Geometry optimization
    • Transition state search
    • Linear Transit, PES scan
    • Nudged Elastic Band (NEB)
    • Intrinsic Reaction Coordinate (IRC)
    • Excited state optimizations
    • Molecular dynamics
  • Gradients, Hessian, Thermodynamics
    • Gradients
    • Hessian
    • PES point character
    • Thermodynamics, gas phase Gibbs free energy
  • Spectroscopic properties
    • Vibrational Spectroscopy
      • IR frequencies and normal modes
        • Analytical Hessian
      • (Resonance) Raman
      • VROA: (Resonance) vibrational Raman optical activity
      • VCD: Vibrational Circular Dichroism
    • Time-dependent DFT
      • General remarks on the Response and Excitation functionality
      • Analysis options for TDDFT (excitation energies and polarizabilities)
      • Time-dependent Current DFT
        • Magnetic properties within TDCDFT
    • Excitation energies: UV/Vis, X-ray, CD, MCD
      • Excitation energies, UV/Vis spectra
        • Tamm-Dancoff approximation
        • Full XC kernel
        • Plasmons in Molecules
        • Accuracy and other technical parameters
      • Excitation energies for open-shell systems
      • Spin-flip excitation energies
      • Select (core) excitation energies, X-ray absorption
        • State selective optimization excitation energies
        • Modify range of excitation energies
        • Excitations as orbital energy differences
        • Quadrupole intensities in X-ray spectroscopy
      • XES: X-ray emission spectroscopy
      • Excitation energies and Spin-Orbit coupling
        • Perturbative inclusion of spin-orbit coupling
        • Self-consistent spin-orbit coupling
        • Highly approximate spin-orbit coupled excitation energies open shell molecule
      • CV(n)-DFT: Constricted Variational DFT
      • HDA: Hybrid Diagonal Approximation
      • TD-DFT+TB
      • sTDA, sTDDFT
      • CD spectra
      • MCD
      • Analysis
        • NTO: Natural Transition Orbitals
        • SFO analysis
        • Charge-transfer descriptors
    • Excited state (geometry) optimizations
      • Nuclear gradients only
    • Vibrationally resolved electronic spectra
      • AH-FC: Adiabatic Hessian Franck-Condon
      • VG-FC: Vertical Gradient Franck-Condon
    • (Hyper-)Polarizabilities, ORD, magnetizabilities, Verdet constants
      • RESPONSE: (Hyper-)Polarizabilities, ORD
        • RESPONSE: Polarizabilities
        • RESPONSE: Accuracy and convergence
        • RESPONSE: Hyperpolarizabilities
        • RESPONSE: Optical rotation dispersion (ORD)
      • AORESPONSE: Lifetime effects, (Hyper-)polarizabilities, ORD, magnetizabilities, Verdet constants
        • AORESPONSE: Polarizabilities
        • AORESPONSE: Technical parameters and expert options
        • AORESPONSE: Damped First Hyperpolarizabilities
        • AORESPONSE: Damped Second Hyperpolarizabilities
        • AORESPONSE: ORD
        • AORESPONSE: magnetizabilities, Verdet constants, Faraday B term
        • AORESPONSE: Raman
        • Applications of AORESPONSE
      • POLTDDFT: Damped Complex Polarizabilities
        • UV/Vis spectra, CD spectra
        • Reduced fit set
      • Van der Waals dispersion coefficients
        • DISPER program: Dispersion Coefficients
    • Ligand Field and Density Functional Theory (LFDFT)
      • Introduction
      • Input description
    • NMR
      • NMR Chemical Shifts
        • Important notes
        • Input options
      • Paramagnetic NMR Chemical Shifts
      • NMR spin-spin coupling constants
        • Introduction
        • Input file for CPL: adf.rkf
        • Running CPL
        • Practical Aspects
    • ESR/EPR
      • ESR/EPR g-tensor and A-tensor
      • ESR/EPR Q-tensor
      • ESR/EPR Zero-field splitting (D-tensor)
    • Nuclear Quadrupole Interaction (EFG)
    • Mössbauer spectroscopy
    • GW (G0W0)
    • Recommendations
    • Trouble-shooting
  • Transport properties
    • Charge transfer integrals (transport properties)
      • Charge transfer integrals with the TRANSFERINTEGRALS key
      • Charge transfer integrals with FDE
    • GREEN: Non-self-consistent Green’s function calculation
      • Introduction
      • Wide-band-limit
      • Input options
      • Output
      • GREEN with ADF-GUI
  • Analysis
    • Molecules built from fragments
    • Bond energy analysis
      • Bond energy details
      • Notes on double-hybrid functionals and MP2
      • Total energy evaluation
      • Interacting Quantum Atoms (IQA)
    • Localized Molecular Orbitals
      • Perturbed Localized Molecular Orbitals
    • Advanced charge density and bond order analysis
      • Charges, Populations
      • Bond orders
      • ETS-NOCV: Natural Orbitals for Chemical Valence
      • Adfnbo, gennbo: NBO analysis
        • NBO analysis of EFG, NMR chemical shifts, NMR spin-spin coupling
      • QTAIM: Atoms in Molecules
        • Local, atomic, and non-local properties
        • ADF2AIM
        • Aromaticity index with QTAIM
      • Conceptual DFT
        • Global, atomic, and non-local descriptors
        • Domains of the dual descriptor
      • adf2damqt: DAMQT interface
      • FOD: fractional orbital density
    • Controlling printed Output
      • Print / NoPrint
      • Debug
      • Eprint
      • Eprint subkeys vs. Print switches
      • Other Eprint subkeys
      • Reduction of output
    • Results on Output
      • Electronic Configuration
      • Mulliken populations
      • Hirshfeld charges, Voronoi deformation density
      • Multipole derived charges
      • Charge model 5
      • Bond order analysis
      • Dipole moment, Quadrupole moment, Electrostatic potential
      • Fragments and Basis Functions
      • MO analysis
      • Bond energy analysis
    • Densf: Volume Maps
      • Input
      • Result: TAPE41
    • Dos: Density of States
      • Introduction
      • Mulliken population analysis
      • Density of states analyses based on Mulliken population analysis
      • Generalizations of OPDOS, GPDOS, PDOS
      • Input
    • VCD Analysis: VCDtools
    • PyFrag: Activation Strain Model Analysis
      • Requirements
      • Running PyFrag
      • Specifying the Trajectory
      • Molecular Fragments
      • ADF Options
      • Analysis Options
  • Accuracy and Efficiency
    • Precision and Self-Consistency
      • SCF
        • Main options
        • Energy-DIIS
        • Augmented Roothaan-Hall (ARH)
      • Numerical Integration
        • Becke Grid
        • Voronoi grid (deprecated)
        • Atomic radial grid
      • Density fitting
      • Hartree-Fock RI scheme
        • Old Hartree-Fock RI scheme
      • MBPT scheme
      • Dependency (basis set, fit set)
    • Basis Set Superposition Error (BSSE)
    • Control of Program Flow
      • Limited execution
      • Skipping
      • Ignore checks
    • Technical Settings
      • Memory usage
      • Direct SCF: recalculation of data
      • Vector length
      • Tails and old gradients
      • Linearscaling
      • All Points
      • Full Fock
      • Save info
  • Restarts
    • ADF Restart files
    • AMS restart file
    • The restart key
    • Structure of the restart file
  • Recommendations and Troubleshooting
    • Recommendations
      • Precision
      • Electronic Configuration
        • Spin-unrestricted versus spin-restricted, Spin states
      • What basis set should I use in ADF?
        • ZORA or non-relativistic calculation?
        • Large or small molecule?
        • Frozen core or all-electron?
        • Diffuse functions needed?
        • Normal or even-tempered basis?
        • What accuracy do the basis sets give?
      • Relativistic methods
    • Troubleshooting
      • License file corrupt
      • Recover from Crash
      • Memory Management
      • SCF Convergence Guidelines for ADF
      • Geometry Optimization troubleshooting
        • Very short bonds
      • Frequencies
        • Imaginary Frequencies
        • Geometry-displacement numbers in the logfile are not contiguous
      • Input ignored
      • SFO Populations
      • Error Aborts
      • Warnings
  • Appendices
    • Basis set file format
      • Sections
      • Example of a basis set file: Calcium
      • Extending a basis set
    • Elements of the Periodic Table
    • Multiplet States
      • Multiplet energies
    • Dirac program: relativistic core potentials
    • Symmetry
      • Schönfliess symbols and symmetry labels
        • TDDFT irrep labels
      • Molecular orientation requirements
    • Binary result files, KF browser
      • adf.rkf (TAPE21)
        • ams.rkf
        • Contents of adf.rkf
        • Using Data from adf.rkf
      • TAPE13
      • KF browser
    • Error messages
    • Warnings
  • Examples
    • Introduction
    • Model Hamiltonians
      • Special exchange-correlation functionals
        • Example: Asymptotically correct XC potentials: CO
        • Example: Meta-GGA energy functionals: OH
        • Example: Hartree-Fock: HI
        • Example: B3LYP: H2PO
        • Example: Long-range corrected GGA functional LCY-BP: H2O
        • Example: Range-separated functional CAMY-B3LYP: H2O
        • Example: Single point MP2
        • Example: Water Dimer SOS-AO-PARI-MP2
        • Example: Single point B2GPPLYP
        • Example: Water-MeOH - DODSCAN
        • Example: unrestricted MP2: Li
        • Example: G0W0@PBE calculation: H2O
        • Example: G0W0@PBE0 calculation: O3
        • Example: G0W0@PBE0 calculation: Phenol
        • Example: RPA@PBE calculation: H2O
        • Example: Grimme Molecular Mechanics dispersion-corrected functionals (DFT-D3-BJ)
        • Example: Density-Dependent Dispersion Correction (dDsC): CH4-dimer
        • Example: DFT-ulg Dispersion Correction: Benzene dimer T-shaped
      • ZORA and spin-orbit Relativistic Effects
        • Example: ZORA Relativistic Effects: Au2
        • Example: Spin-Orbit coupling: Bi and Bi2
        • Example: Spin-Orbit unrestricted non-collinear: Tl
        • Example: Excitation energies including spin-orbit coupling: AuH
        • Example: ZORA, X2C and RA-X2C: HgI2 = Hg + I2
      • Solvents, other environments
        • Example: COSMO: HCl
        • Example: solvation model SM12: Acetamide
        • Example: Electric Field: PtCO
        • Example: Electric Field, Point Charge: N2
        • Example: 3D-RISM: Glycine
      • FDE: Frozen Density Embedding
        • Example: FDE: H2O in water
        • Example: FDE freeze-and-thaw: HeCO2
        • Example: FDE energy: NH3-H2O
        • Example: FDE energy: unrestricted fragments: Ne-H2O
        • Example: FDE geometry optimization: H2O-Li(+)
        • Example: FDE NMR shielding: Acetonitrile in water
        • Example: FDE NMR spin-spin coupling: NH3-H2O
        • Example: Subsystem TDDFT, coupled FDE excitation energies
        • Example: FDE and COSMO: H2O-NH3
        • Example: FDE and COSMO: H2O-NH3
      • QM/MM calculations
      • Quild: Quantum-regions Interconnected by Local Descriptions
      • DIM/QM: Discrete Interaction Model/Quantum Mechanics
        • Example: DRF: H2O and H2O
        • Example: DRF: hyperpolarizability H2O in water
        • Example: DRF: scripting tool
        • Example: DRF2: Polarizability N2 on Ag68 + H2O
        • Example: CPIM: excitation energies N2 on silver cluster Ag68
        • Example: CPIM: polarizability N2 on silver cluster Ag68
        • Example: PIM: H2O on Ag2689
        • Example: PIM: Polarizability with local fields
        • Example: PIM: optimization N2 on silver cluster Ag68
        • Example: PIM: polarizability N2 on silver cluster Ag68
        • Example: PIM: Raman scattering N2 on silver cluster Ag68
        • Example: PIM: SEROA calculation N2 on silver cluster Ag68
        • Example: PIM: Multipole Method N2 on silver cluster Ag1415
    • Structure and Reactivity
      • Geometry Optimizations
        • Example: Geometry Optimization: H2O
        • Example: Restraint Geometry Optimization: H2O
        • Example: Constraint Geometry Optimization: H2O
        • Example: Initial Hessian
        • Example: Geometry optimization with an external electric field or point charges: LiF
      • Transition States, Linear Transits, Intrinsic Reaction Coordinates
        • Example: LT, Frequencies, TS, and IRC: HCN
        • Example: TS search using partial Hessian: C2H6 internal rotation
        • Example: Relativistic ZORA TS search: CH4 + HgCl2 <==> CH3HgCl + HCl
        • Example: TS reaction coordinate: F- + CH3Cl
        • Example: (non-)Linear Transit: H2O
      • Total energy, Multiplet States, S2, Localized hole, CEBE
        • Example: Total Energy calculation: H2O
        • Example: Multiplet States: [Cr(NH3)6]3+
        • Example: Calculation of S2: CuH+
        • Example: Localized Hole: N2+
        • Example: Broken spin-symmetry: Fe4S4
        • Example: Core-electron binding energies (CEBE): NNO
        • Example: Constrained DFT: H2O+ … H2O
    • Spectroscopic Properties
      • IR Frequencies, (resonance) Raman, VROA, VCD
        • Example: Numerical Frequencies: NH3
        • Example: Numerical Frequencies, spin-orbit coupled ZORA: UF6
        • Example: Numerical Frequencies, accurate Hartree-Fock: H2O
        • Example: Analytic Frequencies: CN
        • Example: Analytic Frequencies: CH4
        • Example: Analytic Frequencies: HI
        • Example: Mobile Block Hessian (MBH): Ethanol
        • Example: Mobile Block Hessian: CH4
        • Example: Raman: NH3
        • Example: Raman: HI
        • Example: Resonance Raman, excited state finite lifetime: HF
        • Example: Vibrational Raman optical activity (VROA): H2O2
        • Example: Resonance VROA: H2O2
        • Example: Raman and VROA for approximate modes
        • Example: Vibrational Circular Dichroism (VCD): NHDT
        • Example: unrestricted VCD: CHFClBr
      • Excitation energies: UV/Vis spectra, X-ray absorption, CD, MCD
        • Example: Excitation energies and polarizability: Au2
        • Example: Excitation energies open shell molecule: CN
        • Example: Spin-flip excitation energies: SiH2
        • Example: TDHF excitation energies: N2
        • Example: excitation energies CAM-B3LYP: Pyridine
        • Example: CAMY-B3LYP excitation energies: H2O
        • Example: Full XC kernel in excitation energy calculation: H2O+
        • Example: Use of xcfun in excitation energy calculations: H2O
        • Example: Core excitation energies: TiCl4
        • Example: X-Ray Absorption and Emission Quadrupole Oscillator strengths at the Cl K-edge: TiCl4
        • Example: (Core) Excitation energies including spin-orbit coupling: Ne
        • Example: Excitation energies perturbative spin-orbit coupling: AgI
        • Example: Excitation energies including spin-orbit coupling for open shell: PbF
        • Example: Circular Dichroism (CD) spectrum: DMO
        • Example: CD spectrum, hybrid functional: Twisted ethene
        • Example: MCD: H2O
        • Example: MCD including zero-field splitting: H2O
        • Example: CV(n)-DFT excitation energies: Formamide
        • Example: HDA excitation energies: NH3
        • Example: HDA spin-orbit coupled excitation energies: H2O
        • Example: TD-DFT+TB excitation energies: beta-Carotene
        • Example: sTDA excitation energies: Adenine
        • Example: sTDDFT excitation energies: Adenine
        • Example: sTDA excitation energies RS functional: Bimane
        • Example: sTDA excitation energies wB97: TCNE-Benzene
      • Excited state (geometry) optimizations
        • Example: Excited state geometry optimization: N2
        • Example: Excited state geometry optimization with a constraint: CH2O
        • Example: Spin-flip excited state geometry optimization: CH2
        • Example: Numerical Frequencies of an excited state: PH2
      • Vibrationally resolved electronic spectra
        • Example: Franck-Condon Factors: NO2
        • Example: Vibronic-Structure Tracking: Naphthalene
      • (Hyper-)Polarizabilities, dispersion coefficients, ORD, magnetizabilities, Verdet constants
        • Example: Polarizabilities including spin-orbit coupling: AgI
        • Example: damped first hyperpolarizability: LiH
        • Example: damped second hyperpolarizability: LiH
        • Example: Verdet constants: H2O
        • Example: Dispersion Coefficients: HF
        • Example: Optical Rotation Dispersion (ORD): DMO
        • Example: ORD, lifetime effects (key AORESPONSE): DMO
        • Example: Polarizability: first order perturbed density
        • Example: Hyperpolarizabilities of He and H2
        • Example: Damped Verdet constants: Propene
        • Example: Static magnetizability: H2O
        • Example: Dynamic magnetizability: H2O
        • Example: Time-dependent current-density-functional theory: C2H4:
        • Example: Damped complex polarizabilities with POLTDDFT: Au10
        • Example: POLTDDFT with hybrid functional: NH3
      • Ligand Field DFT (LFDFT)
        • Example: Ligand Field DFT: Co 2+
        • Example: Ligand Field DFT: f-d transitions in Pr 3+
      • NMR chemical shifts and spin-spin coupling constants
        • Example: NMR Chemical Shifts: HBr
        • Example: NMR Chemical Shifts: HgMeBr
        • Example: NMR Chemical Shifts, SAOP potential: CH4
        • Example: NMR Nucleus-independent chemical shifts (NICS): PF3
        • Example: NMR with B3LYP: PF3
        • Example: NMR Spin-spin coupling constants: C2H2
        • Example: NMR Spin-spin coupling constants, hybrid PBE0: HF
        • Example: NMR Spin-spin coupling constants, finite nucleus: PbH4
      • ESR/EPR g-tensor, A-tensor, Q-tensor, ZFS
        • Example: ESR g-tensor, A-tensor, Q-tensor, D-tensor: HfV
        • Example: ESR g-tensor, A-tensor, self consistent spin-orbit coupling: VO
        • Example: ESR g-tensor, A-tensor, perturbative spin-orbit coupling: HgF
        • Example: ESR spin-restricted and spin-unrestricted: TiF3
        • Example: ESR, X2C and RA-X2C: PdH
        • Example: Zero-field splitting (ZFS), ESR D-tensor: NH
        • Example: ZFS D tensor, including direct electron spin-spin part: Phenylnitrene
      • EFG, Mössbauer
        • Example: Mössbauer spectroscopy: Ferrocene
        • Example: Mössbauer with X2C: Hg compounds
    • Transport properties
      • Charge transfer integrals (transport properties)
        • Example: Charge transfer integrals: AT base pair
        • Example: Charge transfer integrals with FDE: water dimer
        • Example: Charge Recombination Calculation of Toluene and TCNE
        • Example: XCDFT: Charge Separation of an ethylene dimer
      • Non-self-consistent Green’s function calculation
        • Example: DOS and transmission: Aluminium
        • Example: Gold electrodes
        • Example: Benzenedithiol junction: Wide-Band-Limit
        • Example: Benzenedithiol junction
    • Analysis
      • Fragment orbitals, bond energy decomposition
        • Example: Compound Fragments: Ni(CO)4
        • Example: Fragments: PtCl4H2 2-
        • Example: Spin-unrestricted Fragments: H2
        • Example: Bond Energy analysis open-shell fragments: PCCP
        • Example: Analysis of NaCl using ionic fragments: Na+ and Cl-
        • Example: Electron Pair bonding in NaCl: open shell fragments
        • Example: Bond Energy analysis meta-GGA, (meta-)hybrids: Zn2, Cr2, CrH
        • Example: unrestricted EDA: Cu(C2H4)2
        • Example: unrestricted fragments: CH3I
        • Example: Spin-Orbit SFO analysis: TlH
        • Example: Activation Strain Model Analysis using PyFrag
      • Localized orbitals, bond orders, charge analysis
        • Example: (Perturbed) localized molecular orbitals in twisted Ethene
        • Example: Charge model 5 (CM5)
        • Example: Bond Orders
      • ETS-NOCV
        • Example: NOCV: ethylene – Ni-diimina
        • Example: NOCV: H+ – CO
        • Example: NOCV: CH2 – Cr(CO)5
        • Example: NOCV: CH3 – CH3
      • QTAIM
        • Example: QTAIM Analysis
        • Example: QTAIM Reactivity
        • Example: IQA/QTAIM analysis
        • Example: QTAIM Aromaticity indices
      • DOS: Density of states
        • Example: Density of States: Cu4CO
      • Third party analysis software
        • Example: adf2aim: convert an ADF adf.rkf to WFN format (for Bader analysis)
        • Example: NBO analysis: adfnbo, gennbo
        • Example: NBO analysis: EFG
        • Example: NBO analysis: NMR chemical shift
        • Example: NBO analysis: NMR spin-spin coupling
        • Example: Multiple excited state gradients: H2O
        • Example: Calculation of overlap of primitive basis functions
    • Accuracy and Efficiency
      • BSSE, SCF convergence, Frequencies
        • Example: Basis Set Superposition Error (BSSE): Cr(CO)5 +CO
        • Example: Troubleshooting SCF convergence: Ti2O4
        • Example: Rescan frequencies: NH3
      • Speed
        • Example: Multiresolution
    • Scripting
      • Prepare an ADF job and generate a report
        • Example: Single point for multiple xyz files: Bakerset
        • Example: Basis set and integration accuracy convergence test: Methane
        • Example: amsprep: Replace atom with ligand
    • List of Examples
  • Required Citations
    • General References
    • Feature References
      • Coordinates, basis sets, fragments
      • Geometry optimizations, transition states, and reaction paths
      • Model Hamiltonians
      • Relativistic Effects
      • Solvents and other environments
      • Frequencies, IR Intensities, Raman, VCD
      • Time-Dependent DFT
      • LFDFT
      • NMR
      • ESR/EPR
      • Transport properties: Non-self-consistent Green’s function
      • Analysis
      • Accuracy and efficiency
    • External programs and Libraries
  • Keywords
    • Summary of all keywords
ADF
  • Documentation/
  • ADF/
  • Input, execution, and output

Input, execution, and output¶

  • Input
    • General remarks on input structure and parsing
    • Keys
    • Blocks
    • Including an external file
    • Units
    • Title, comment
    • Amsification of ADF in ADF2020
    • Input parsing changes in ADF2018 and later
  • Execution
  • Structure of the Output
    • Job Characteristics on standard Output
    • Log file, adf.rkf, TAPE13
Next Previous
AMS Modules
Electronic Structure
ADF: molecular DFT Periodic DFT DFTB & MOPAC
Interatomic Potentials
ReaxFF ML Potentials Force Fields
Kinetics
kMC and Microkinetics Bumblebee: OLEDs
Macroscale
COSMO-RS
Application Areas
Research Topics
Batteries Biotechnology Bonding Analysis Catalysis Heavy Elements Inorganic Chemistry Materials Science Nanoscience Oil & Gas OLEDs Perovskites Polymers Semiconductors Spectroscopy
Where to use AMS?
Industry Government Lab National Supercomputer Academic Research Teaching
Tools
Workflows
Conformers OLED workflows Reaction analysis Reaction discovery
AMS Driver
Hybrid Engine Molecular Dynamics Monte Carlo PES Exploration Properties
Python Utilities
ACErxn ParAMS PLAMS pyZacros
Interfaces
GUI VASP Parametrization
Documentation & Support
Downloads Documentation Videos Release notes Changelog Previous releases Webinars Workshops AMS Literature Brochure
Company
About us Careers Contact us Events News Our team Partners & Contributors Projects & Collaborations
Pricing & Licensing
Get a price quote Pricing structure Ordering License terms Resellers FAQ

© SCM – Software Chemistry & Materials 2025 – All Rights Reserved

Privacy Disclaimer Cookies Terms of Use Copyright
Manage Cookie Consent
We use cookies to optimise site functionality and give you the best possible experience.
See our cookie statement for all information.
Functional cookies Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}