Required Citations

When you publish results in the scientific literature that were obtained with programs of the ADF package, you are required to include references to the program package with the appropriate release number, and a few key publications.

In addition to these general references, references to special features are mandatory, in case you have used them.

General References

For calculations with the molecular ADF program, version 2020:

G.te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders and T. Ziegler, Chemistry with ADF, Journal of Computational Chemistry 22, 931 (2001) (bibtex)

ADF 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. Optionally, you may add the following list of authors and contributors: E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, M. Reimann, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev

Note: if you have used a modified (by yourself, for instance) version of the code, you should mention in the citation that a modified version has been used.

Feature References

When you have used special features, you should include one (or more, as the case may be) lead reference(s) to the implementation. Additional references to related publications are suggested.

Coordinates, basis sets, fragments

Basis Sets
E. van Lenthe and E.J. Baerends, Optimized Slater-type basis sets for the elements 1-118, Journal of Computational Chemistry 24, 1142 (2003)
Spherical Gaussian nuclear charge distribution model
J. Autschbach, Magnitude of Finite-Nucleus-Size Effects in Relativistic Density Functional Computations of Indirect NMR Nuclear Spin-Spin Coupling Constants, ChemPhysChem 10, 2274 (2009)

Geometry optimizations, transition states, and reaction paths

Transition State search

L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of Chemical Physics 88, 322 (1988)

L. Fan and T. Ziegler, Nonlocal density functional theory as a practical tool in calculations on transition states and activation energies, Journal of the American Chemical Society 114, 10890 (1992)

IRC

L. Deng, T. Ziegler and L. Fan, A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of H2 CO, Journal of Chemical Physics 99, 3823 (1993)

L. Deng and T. Ziegler, The determination of Intrinsic Reaction Coordinates by density functional theory, International Journal of Quantum Chemistry 52, 731 (1994)

Nudged Elastic Band
G. Henkelman, B.P. Uberuaga and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, Journal of Chemical Physics 113, 9901 (2000)

Model Hamiltonians

Range Separated Functionals
M. Seth and T. Ziegler, Range-Separated Exchange Functionals with Slater-Type Functions, Journal of Chemical Theory and Computation 8, 901 (2012)
MP2, double hybrids
A. Förster, M. Franchini, E. van Lenthe, L. Visscher, A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals, Journal of Chemical Theory and Computation 16, 875 (2020)
OEP
M. Krykunov and T. Ziegler, On the use of the exact exchange optimized effective potential method for static response properties, International Journal of Quantum Chemistry 109, 3246 (2009)

Relativistic Effects

ZORA

Lead references

E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians, Journal of Chemical Physics 99, 4597 (1993)

E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic total energy using regular approximations, Journal of Chemical Physics 101, 9783 (1994)

E. van Lenthe, A.E. Ehlers and E.J. Baerends, Geometry optimization in the Zero Order Regular Approximation for relativistic effects, Journal of Chemical Physics 110, 8943 (1999)

Suggested related references

E. van Lenthe, J.G. Snijders and E.J. Baerends, The zero-order regular approximation for relativistic effects: The effect of spin.orbit coupling in closed shell molecules, Journal of Chemical Physics 105, 6505 (1996)

E. van Lenthe, R. van Leeuwen, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians, International Journal of Quantum Chemistry 57, 281 (1996)

Pauli

J.G. Snijders, E.J. Baerends and P. Ros, A perturbation theory approach to relativistic calculations. II. Molecules, Molecular Physics 38, 1909 (1979)

P.M. Boerrigter, E.J. Baerends and J.G. Snijders, A relativistic LCAO Hartree-Fock-Slater investigation of the electronic structure of the actinocenes M(COT)2 , M=Th, Pa, U, Np and Pu, Chemical Physics 122, 357 (1988)

T. Ziegler, V. Tschinke, E.J. Baerends, J.G. Snijders and W. Ravenek, Calculation of bond energies in compounds of heavy elements by a quasi-relativistic approach, Journal of Physical Chemistry 93, 3050 (1989)

Solvents and other environments

COSMO: Conductor like Screening Model
C.C. Pye and T. Ziegler, An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package, Theoretical Chemistry Accounts 101, 396 (1999)
SM12: Solvation Model 12
C.A. Peeples and G. Schreckenbach, Implementation of the SM12 Solvation Model into ADF and Comparison with COSMO, Journal of Chemical Theory and Computation 12, 4033 (2016)

QM/MM: Quantum mechanical and Molecular Mechanics model

Lead
T. K. Woo, L. Cavallo and T. Ziegler, Implementation of the IMOMM methodology for performing combined QM/MM molecular dynamics simulations and frequency calculations, Theoretical Chemistry Accounts 100, 307 (1998)
Suggested
T. K. Woo, S. Patchkovskii, and T. Ziegler, Atomic Scale Modeling of Polymerization Catalysts, Computing in Science & Engineering, 2, 28-37 (2000)
For AddRemove model
M. Swart, AddRemove: A new link model for use in QM/MM studies, International Journal of Quantum Chemistry 91, 177 (2003)
FDE: Frozen Density Embedding

T.A. Wesolowski and A. Warshel, Frozen Density Functional Approach for ab-initio Calculations of Solvated Molecules, Journal of Physical Chemistry 97, 8050 (1993)

J. Neugebauer, C.R. Jacob, T.A. Wesolowski and E.J. Baerends, An Explicit Quantum Chemical Method for Modeling Large Solvation Shells Applied to Aminocoumarin C151 Journal of Physical Chemistry A 109, 7805 (2005)

C.R. Jacob, J. Neugebauer and L. Visscher, A flexible implementation of frozen-density embedding for use in multilevel simulations, Journal of Computational Chemistry 29, 1011 (2008)

DIM/QM: Discrete Interaction Model/Quantum Mechanics
J.L. Payton, S.M. Morton, Justin E. Moore, and Lasse Jensen, A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy, Journal of Chemical Physics 136, 214103 (2012)
DRF: Discrete Solvent Reaction Field model
L. Jensen, P.T. van Duijnen and J.G. Snijders, A discrete solvent reaction field model within density functional theory Journal of Chemical Physics 118, 514 (2003)
SCRF: Self-Consistent Reaction Field
J.L. Chen, L. Noodleman, D.A. Case and D. Bashford, Incorporating solvation effects into density functional electronic structure calculations, Journal of Physical Chemistry 98, 11059 (1994)
VSCRF (vertical excitation self-consistent reaction field)

T. Liu, W.-G Han, F. Himo, G.M. Ullmann, D. Bashford, A. Toutchkine, K.M. Hahn, and L. Noodleman, Density Functional Vertical Self-Consistent Reaction Field Theory for Solvatochromism Studies of Solvent-Sensitive Dyes, Journal of Physical Chemistry A 108, 3545 (2004)

W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K.M. Hahn, L. Noodleman, A Theoretical Study of the UV/Visible Absorption and Emission Solvatochromic Properties of Solvent-Sensitive Dyes, ChemPhysChem 4, 1084 (2003)

3D-RISM: Three-Dimensional Reference Interaction Site Model

Lead
S. Gusarov, T. Ziegler, and A. Kovalenko, Self-Consistent Combination of the Three-Dimensional RISM Theory of Molecular Solvation with Analytical Gradients and the Amsterdam Density Functional Package, Journal of Physical Chemistry A 110, 6083 (2006)
Suggested

A. Kovalenko and F. Hirata, Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model, Journal of Chemical Physics 110, 10095 (1999)

A. Kovalenko, Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces, In Molecular Theory of Solvation; Hirata, Fumio, Ed.; Understanding Chemical Reactivity (series); Mezey, Paul G., Series Ed.; Kluwer Acadamic Publishers: Dordrecht, The Netherlands, 2003; Vol. 24, pp 169-275.

MM Dispersion: Molecular Mechanics dispersion-corrected functionals
S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, Journal of Computational Chemistry 27, 1787 (2006)
old implementation

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry 25, 1463 (2004)

J.-M. Ducéré and L. Cavallo, Parametrization of an Empirical Correction Term to Density Functional Theory for an Accurate Description of pi-Stacking Interactions in Nucleic Acids, Journal of Physical Chemistry B 111, 13124 (2007) contact: J.M. Ducere, L. Cavallo, University of Salerno, Italy

Frequencies, IR Intensities, Raman, VCD

Numerical Differentiation of Gradients

L. Fan and T. Ziegler, Application of density functional theory to infrared absorption intensity calculations on main group molecules, Journal of Chemical Physics 96, 9005 (1992)

L. Fan and T. Ziegler, Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls, Journal of Physical Chemistry 96, 6937 (1992)

Analytical Second Derivatives

A. Bérces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone and T. Ziegler, An implementation of the coupled perturbed Kohn-Sham equations: perturbation due to nuclear displacements, Computer Physics Communications 100, 247 (1997)

H. Jacobsen, A. Bérces, D. Swerhone and T. Ziegler, Analytic second derivatives of molecular energies: a density functional implementation, Computer Physics Communications 100, 263 (1997)

S. K. Wolff, Analytical second derivatives in the Amsterdam density functional package, International Journal of Quantum Chemistry 104, 645 (2005)

Mobile Block Hessian (MBH)

Lead
A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen and M. Waroquier, Vibrational Modes in partially optimized molecular systems Journal of Chemical Physics 126, 224102 (2007)
Suggested
A. Ghysels, D. Van Neck and M. Waroquier, Cartesian formulation of the Mobile Block Hessian Approach to vibrational analysis in partially optimized systems Journal of Chemical Physics 127, 164108 (2007)
Raman scattering

S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Application of time-dependent density functional response theory to Raman scattering, Chemical Physics Letters 259, 599 (1996)

S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Implementation of time-dependent density functional response equations, Computer Physics Communications 118, 119 (1999)

Resonance Raman: excited-state finite lifetime
L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives, Journal of Chemical Physics 123, 174110 (2005)
Resonance Raman: excited-state gradient
J. Neugebauer, E.J. Baerends, E. Efremov, F. Ariese and C. Gooijer, Combined Theoretical and Experimental Deep-UV Resonance Raman Studies of Substituted Pyrenes, Journal of Physical Chemistry A 109, 2100 (2005)
VROA: (Resonance) vibrational Raman optical activity
L. Jensen, J. Autschbach, M. Krykunov, and G.C. Schatz, Resonance vibrational Raman optical activity: A time-dependent density functional theory approach, Journal of Chemical Physics 127, 134101 (2007)
Vibrational Circular Dichroism (VCD)
V.P. Nicu J. Neugebauer S.K. Wolff and E.J. Baerends, A vibrational circular dichroism implementation within a Slater-type-orbital based density functional framework and its application to hexa- and hepta-helicenes, Theoretical Chemical Accounts 119, 245 (2008)
VCD analysis: VCDtools

V.P. Nicu, J. Neugebauer and E.J. Baerends, Effects of Complex Formation on Vibrational Circular Dichroism Spectra, Journal of Physical Chemistry A 112, 6978 (2008)

M.A.J. Koenis, O. Visser, L. Visscher, W.J. Buma, V.P. Nicu, GUI Implementation of VCDtools, A Program to Analyze Computed Vibrational Circular Dichroism Spectra, J. Chem. Inf. Model 60, 259 (2020)

V.P. Nicu, Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals, Physical Chemistry Chemical Physics 18, 21202 (2016).

Franck-Condon factors
J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner and J.M. Thijssen, Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008)

Time-Dependent DFT

For all Time-Dependent DFT features (Excitation Energies, (Hyper) Polarizabilities, Dispersion Coefficients, Raman Scattering, include:
S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Implementation of time-dependent density functional response equations, Computer Physics Communications 118, 119 (1999)

Excitation Energies and Oscillator Strengths

Lead reference
S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Implementation of time-dependent density functional response equations, Computer Physics Communications 118, 119 (1999)
Suggested (when ZORA relativistic results are used)
A. Rosa, E.J. Baerends, S.J.A. van Gisbergen, E. van Lenthe, J.A. Groeneveld and J. G. Snijders, Article Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach, Journal of the American Chemical Society 121, 10356 (1999)
Open Shell ground state
F. Wang and T. Ziegler, Mol. Phys.102, 2585 (2004)
Spin-flip transitions

F. Wang and T. Ziegler, Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential, Journal of Chemical Physics 121, 12191 (2004)

F. Wang and T. Ziegler, The performance of time-dependent density functional theory based on a noncollinear exchange-correlation potential in the calculations of excitation energies, Journal of Chemical Physics 122, 74109 (2005)

Core excitations
M. Stener, G. Fronzoni and M. de Simone, Time dependent density functional theory of core electrons excitations, Chemical Physics Letters 373, 115 (2003)
Quadrupole intensities
S. Bernadotte, A.J. Atkins, Ch.R. Jacob, Origin-independent calculation of quadrupole intensities in X-ray spectroscopy, Journal of Chemical Physics 137, 204106 (2012)
XES: X-ray emission spectroscopy
A.J. Atkins, M. Bauer, and Ch.R. Jacob, The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes, Physical Chemistry Chemical Physics 15, 8095 (2013)
Excitations including spin-orbit coupling
F. Wang, T. Ziegler, E. van Lenthe, S.J.A. vand Gisbergen and E.J. Baerends, The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry, Journal of Chemical Physics 122, 204103 (2005)
Perturbative approach to include spin-orbit coupling
F. Wang and T. Ziegler, A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect, Journal of Chemical Physics 123, 154102 (2005)
CV(n)-DFT: Constricted Variational DFT

J. Cullen, M. Krykunov, and T. Ziegler, The formulation of a self-consistent constricted variational density functional theory for the description of excited states, Chemical Physics 391, 11 (2011)

M. Krykunov and T. Ziegler, Self-consistent Formulation of Constricted Variational Density Functional Theory with Orbital Relaxation. Implementation and Applications, Journal of Chemical Theory and Computation 9, 2761 (2013)

CV(n)-DFT: triplet states
Y.C. Park, F. Senn, M. Krykunov, and T. Ziegler, Self-Consistent Constricted Variational Theory RSCF-CV( \(\infty\) )-DFT and Its Restrictions To Obtain a Numerically Stable \(\Delta\) SCF-DFT-like Method: Theory and Calculations for Triplet States, Journal of Chemical Theory and Computation 12, 5438 (2016)
TD-DFT+TB: Tight-Binding approximations to time-dependent Density Functional Theory
R. Rüger, E. van Lenthe, T. Heine, L. Visscher, Tight-Binding Approximations to Time-Dependent Density Functional Theory - a fast approach for the calculation of electronically excited states, Journal of Chemical Physics 144, 184103 (2016)
Excited state gradients
M. Seth, G. Mazur, and T. Ziegler, Time-dependent density functional theory gradients in the Amsterdam density functional package: geometry optimizations of spin-flip excitations, Theoretical Chemistry Accounts 129, 331 (2011)
Polarizabilities
S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, A Density Functional Theory study of frequency-dependent polarizabilities and van der Waals dispersion coefficients for polyatomic molecules, Journal of Chemical Physics 103, 9347 (1995)
Polarizabilities including spin-orbit coupling
A. Devarajan, A. Gaenko, and J. Autschbach, Two-component relativistic density functional method for computing nonsingular complex linear response of molecules based on the zeroth order regular approximation, Journal of Chemical Physics 130, 194102 (2009)
Suggested
V.P. Osinga, S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Density functional results for isotropic and anisotropic multipole polarizabilities and C6 , C7 , and C8 Van der Waals dispersion coefficients for molecules, Journal of Chemical Physics 106, 5091 (1997)
Damped complex polarizabilities, POLTDDFT scheme
O. Baseggio, G. Fronzoni, and M. Stener, A new time dependent density functional algorithm for large systems and plasmons in metal clusters, Journal of Chemical Physics 143, 024106 (2015)

Hyperpolarizabilities

Hyperpolarizabilities with RESPONSE
S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory, Journal of Chemical Physics 109, 10644 (1998)
Suggested:
S.J.A. van Gisbergen, J.G. Snijders, and E.J. Baerends, Time-dependent Density Functional Results for the Dynamic Hyperpolarizability of C60, Physical Review Letters 78, 3097 (1997)
First hyperpolarizabilities with AORESPONSE
Z. Hu, J. Autschbach, and L. Jensen, Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach, Journal of Chemical Physics 141, 124305 (2014)
Second hyperpolarizabilities with AORESPONSE
Z. Hu, J. Autschbach, and L. Jensen, Simulating Third-Order Nonlinear Optical Properties Using Damped Cubic Response Theory within Time-Dependent Density Functional Theory, Journal of Chemical Theory and Computation 12, 1294 (2016)

Dispersion Coefficients

Lead
V.P. Osinga, S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Density functional results for isotropic and anisotropic multipole polarizabilities and C6 , C7 , and C8 Van der Waals dispersion coefficients for molecules, Journal of Chemical Physics 106, 5091 (1997)
Suggested
S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, A Density Functional Theory study of frequency-dependent polarizabilities and van der Waals dispersion coefficients for polyatomic molecules, Journal of Chemical Physics 103, 9347 (1995)
Circular Dichroism (CD)

J. Autschbach and T. Ziegler, Calculating molecular electric and magnetic properties from time-dependent density functional response theory, Journal of Chemical Physics 116, 891 (2002)

J. Autschbach, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, Journal of Chemical Physics 116, 6930 (2002)

Optical Rotation (OR), Optical Rotation Dispersion (ORD)

J. Autschbach and T. Ziegler, Calculating molecular electric and magnetic properties from time-dependent density functional response theory, Journal of Chemical Physics 116, 891 (2002)

J. Autschbach, S. Patchkovskii, T. Ziegler, S.J.A. van Gisbergen and E.J. Baerends, Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules, Journal of Chemical Physics 117, 581 (2002)

Magnetizability
M. Krykunov and J. Autschbach, Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory, Journal of Chemical Physics 126, 24101 (2007)
Magnetic Circular Dichroism (MCD)

M. Seth, M. Krykunov, T. Ziegler, J. Autschbach and A. Banerjee, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism: Calculation of B terms, Journal of Chemical Physics 128, 144105 (2008)

M. Seth, M. Krykunov, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. II. Calculation of A terms, Journal of Chemical Physics 128, 234102 (2008)

M. Seth, T. Ziegler and J. Autschbach, Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. III. Temperature-dependent magnetic circular dichroism induced by spin-orbit coupling, Journal of Chemical Physics 129, 104105 (2008)

Verdet constant and Faraday term

M. Krykunov, A. Banerjee, T. Ziegler and J. Autschbach, Calculation of Verdet constants with time-dependent density functional theory. Implementation and results for small molecules, Journal of Chemical Physics 122, 074105 (2005)

M. Krykunov, M. Seth, T. Ziegler and J. Autschbach, Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory, Journal of Chemical Physics 127, 244102 (2007)

LFDFT

Lead reference
M. Atanasov, C.A. Daul, C. Rauzy, A DFT Based Ligand Field Theory, Structure & Bonding 106, 97 (2004)
LFDFT for two-open-shell configuration
H. Ramanantoanina, W. Urland, F. Cimpoesu, and C. Daul, Ligand field density functional theory calculation of the 4f2 → 4f1 5d1 transitions in the quantum cutter Cs2 KYF6 Pr3+, Physical Chemistry Chemical Physics 15, 13902 (2013).

NMR

NMR Chemical Shifts

Lead reference
G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors using GIAO’s and modern density functional theory, Journal of Physical Chemistry 99, 606 (1995)
NMR chemical shifts with hybrid functionals
M. Krykunov, T. Ziegler and E. van Lenthe, Hybrid density functional calculations of nuclear magnetic shieldings using Slater-type orbitals and the zeroth-order regular approximation, International Journal of Quantum Chemistry 109, 1676 (2009)
NMR chemical shifts with NBO analysis

J. Autschbach and S. Zheng, Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs, Magnetic Resonance in Chemistry 46, S45 (2008)

J. Autschbach, Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals, Journal of Chemical Physics 128, 164112 (2008)

Paramagnetic NMR chemical shifts
J. Autschbach, S. Patchkovskii, and B. Pritchard, Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory, Journal of Chemical Theory and Computation 7, 2175 (2011)
Suggested

G. Schreckenbach and T. Ziegler, The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation, International Journal of Quantum Chemistry 60, 753 (1996)

G. Schreckenbach and T. Ziegler, Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes, International Journal of Quantum Chemistry 61, 899 (1997)

S.K. Wolff and T. Ziegler, Calculation of DFT-GIAO NMR shifts with inclusion of spin-orbit coupling, Journal of Chemical Physics 109, 895 (1998)

S.K. Wolff, T. Ziegler, E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance, Journal of Chemical Physics 110, 7689 (1999)

NMR spin-spin coupling

Lead

J. Autschbach and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds, Journal of Chemical Physics 113, 936 (2000)

J. Autschbach, and T. Ziegler, Nuclear spin-spin coupling constants from regular approximate relativistic density functional calculations. II. Spin-orbit coupling effects and anisotropies, Journal of Chemical Physics 113, 9410 (2000)

NMR spin-spin couplings with PBE0
J. Autschbach, Two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques, Journal of Chemical Physics 129, 094105 (2008), Erratum: Journal of Chemical Physics 130, 209901 (2009)
NMR spin-spin couplings with NBO analysis
J. Autschbach, Analyzing molecular properties calculated with two-component relativistic methods using spin-free Natural Bond Orbitals: NMR spin-spin coupling constants Journal of Chemical Physics 127, 124106 (2007)
Suggested

R.M. Dickson and T. Ziegler, NMR Spin.Spin Coupling Constants from Density Functional Theory with Slater-Type Basis Functions, Journal of Physical Chemistry 100, 5286 (1996)

J. Khandogin and T. Ziegler, A density functional study of nuclear magnetic resonance spin.spin coupling constants in transition-metal systems, Spectrochimica Acta 55, 607 (1999)

J. Autschbach and T. Ziegler, Solvent Effects on Heavy Atom Nuclear Spin.Spin Coupling Constants: A Theoretical Study of Hg.C and Pt.P Couplings, Journal of the American Chemical Society 123, 3341 (2001)

J. Autschbach and T. Ziegler, A Theoretical Investigation of the Remarkable Nuclear Spin.Spin Coupling Pattern in [(NC)5 Pt-Tl(CN)]-, Journal of the American Chemical Society 123, 5320 (2001)

Suggested book reference
J. Autschbach, T. Ziegler, in Encyclopedia of Nuclear Magnetic Resonance, Eds. D.M. Grant, R. K. Harris, John Wiley and Sons, Chichester, 2002, Vol. 9 Advances in NMR.

ESR/EPR

G-tensor: Zeeman interaction

Lead reference (self-consistent spin-orbit coupling)
E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular g-tensors in the zero order regular approximation for relativistic effects, Journal of Chemical Physics 107, 2488 (1997)
Lead reference (perturbative inclusion spin-orbit coupling)
J. Autschbach and B. Pritchard, Calculation of molecular g-tensors using the zeroth-order regular approximation and density functional theory: expectation value versus linear response approaches, Theoretical Chemistry Accounts 129, 453 (2011)
Lead references (perturbative inclusion spin-orbit coupling with EPR/NMR program)

G. Schreckenbach and T. Ziegler, Calculation of the G-tensor of electron paramagnetic resonance spectroscopy using Gauge-Including Atomic Orbitals and Density Functional Theory, Journal of Physical Chemistry A 101, 3388 (1997) (for ESR/EPR g-tensor)

S. Patchkovskii and T. Ziegler, Calculation of the EPR g-Tensors of High-Spin Radicals with Density Functional Theory, Journal of Physical Chemistry A 105, 5490 (2001) (for high-spin ESR/EPR g-tensor)

A-tensor: Nuclear magnetic dipole hyperfine interaction

Lead reference
E. van Lenthe, A. van der Avoird and P.E.S. Wormer, Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects, Journal of Chemical Physics 108, 4783 (1998)
Lead reference (perturbative inclusion spin-orbit coupling)
J. Autschbach, S. Patchkovskii, and B. Pritchard, Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory, Journal of Chemical Theory and Computation 7, 2175 (2011)

Electric Field Gradient, NQCC

Lead reference (in ESR called Q-tensor: Nuclear electric quadrupole hyperfine interaction)
E. van Lenthe and E.J. Baerends, Density functional calculations of nuclear quadrupole coupling constants in the zero-order regular approximation for relativistic effects, Journal of Chemical Physics 112, 8279 (2000)
EFG with NBO analysis

A.J. Rossini, R.W. Mills, G.A. Briscoe, E.L. Norton, S.J. Geier, I. Hung, S. Zheng, J. Autschbach, and R.W. Schurko, Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes, Journal of the American Chemical Society 131, 3317 (2009)

J. Autschbach, S. Zheng, and R.W. Schurko, Analysis of Electric Field Gradient Tensors at Quadrupolar Nuclei in Common Structural Motifs, Concepts in Magnetic Resonance Part A 36A, 84 (2010)

Transport properties: Non-self-consistent Green’s function

Lead reference
Chapter 2 and appendix C of J.S. Seldenthuis, Electrical and mechanical effects in single-molecule junctions, PhD thesis, Delft University of Technology, 2011
Wide-band limit
C.J.O. Verzijl, J.S. Seldenthuis, and J.M. Thijssen, Applicability of the wide-band limit in DFT-based molecular transport calculations, Journal of Chemical Physics 138, 094102 (2013)

Analysis

Bond Energy Analysis

T. Ziegler and A. Rauk, A theoretical study of the ethylene-metal bond in complexes between Cu+ , Ag+ , Au+ , Pt0 or Pt2+ and ethylene, based on the Hartree-Fock-Slater transition-state method, Inorganic Chemistry 18, 1558 (1979)

T. Ziegler and A. Rauk, Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as sigma donors and pi acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method, Inorganic Chemistry 18, 1755 (1979)

F.M. Bickelhaupt and E.J. Baerends, In: Rev. Comput. Chem.; K.B. Lipkowitz and D.B. Boyd, Eds.; Wiley, New York, 2000, Vol. 15, p.1-86

ETS-NOCV
M. Mitoraj, A. Michalak and T. Ziegler, A Combined Charge and Energy Decomposition Scheme for Bond Analysis, Journal of Chemical Theory and Computation 5, 962 (2009)

QTAIM, Bader analysis

Grid-based algorithm

J.I. Rodríguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Götz and C. Bo, A high performance grid-based algorithm for computing QTAIM properties, Chemical Physics Letters 472, 149 (2009)

J.I. Rodríguez, An Efficient Method for Computing the QTAIM Topology of a Scalar Field: The Electron Density Case, Journal of Computational Chemistry 34, 681 (2013)

Localized molecular orbitals
J. Autschbach and H.F. King, Analyzing molecular static linear response properties with perturbed localized orbitals, Journal of Chemical Physics 133, 044109 (2010)

Accuracy and efficiency

Linear scaling methods
C.Fonseca Guerra, J.G. Snijders, G. te Velde and E.J. Baerends, Towards an order-N DFT method, Theoretical Chemistry Accounts 99, 391 (1998)
Numerical integration
M. Franchini, P.H.T. Philipsen, L. Visscher, The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite, Journal of Computational Chemistry 34, 1818 (2013).
Density fitting
M. Franchini, P.H.T. Philipsen, E. van Lenthe, L. Visscher, Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting, Journal of Chemical Theory and Computation 10, 1994 (2014)

External programs and Libraries

Click here for the list of programs and/or libraries used in the ADF package. On some platforms optimized libraries have been used and/or vendor specific MPI implementations.