Growth Mechanism of Small Endohedral Metallofullerenes

In two recent combined experimental and computational studies, the optimal cage for each endohedral metallofullerene within the families Ti@C2n and Ca@C2n has been identified and key aspects of the intriguing growth mechanisms of fullerenes were unravelled. All optimal isomers from C26 to C50 are linked by a simple C2 insertion, with the exception of a few carbon cages that require an additional C2 rearrangement. The large formation abundance observed in mass spectra for Ti@C28 and Ti@C44 on one hand, and Ca@C50 and Ca@C60 on the other, can be explained by the special electronic properties of these cages and their higher relative stabilities with respect to C2 reactivity. Extrusion of C atoms from an already closed fullerene is much more energetically demanding than forming the fullerene by a bottom-up mechanism.

growth of endohedral metallofullerenes

Correlation between observed abundances and computed reaction energies for the next C2 insertion step for Ti@C2n (left) and Ca@C2n (right).

Do you want try for yourself? Request a free 30-day evaluation for the whole Amsterdam Modeling Suite.

Newsletter: tips & tricks, highlights, events

Would you like to keep up to date with the latest developments in the Amsterdam Modeling Suite and the SCM team, learn more about new applications and functionality?
Subscribe to our newsletter!

You have already subscribed. Thank you! If you don't receive our newsletters, send us an email.

Reactivity, nanomaterials, bonding analysis

M. Mulet-Gas, L. Abella, P. W. Dunk, A. Rodriguez-Fortea, H. W. Kroto, and J. P. Poblet, Small endohedral metallofullerenes: exploration of the structure and growth mechanism in the Ti@C2n (2n = 26–50) family, Chem. Sci., 6, 675-686 (2015)

P. W. Dunk, M. Mulet-Gas, Y. Nakanishi, N. K. Kaiser, A. Rodriguez-Fortea, H. Shinohara,  J. P. Poblet, A. G. Marshall, and H. W. Kroto, Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer, Nature Comm. 5, 5844 (2014)

Key concepts