Screening industrial polymers for lithium–ion batteries electrode materials

Organic polymers are promising electrode materials for lithium ion batteries due to their low solubility, low self-discharge rates, high mechanical strength, great flexibility, superior thermal stability, and versatility. A recent study virtually screens industrial polymers for their use in Li ion batteries. First, a linear relationship was found between experimental potential and the energy difference between the bare and lithiated polymers (ΔEpoly).

Then 26 industrial polymers were screened on their band gap, theoretical capacity and their predicted potential. The polymers were treated as 1D periodic systems with a polarizable continuum. Three ideal candidates were selected with high potential and high theoretical capacity. The best polymers differ in only one place (O, S or CH2) and the electronegativity of that group is seen to correlate with a lower LUMO and higher potential, which could further help to design novel polymer electrode materials.

Screening polymers for batteries

Do you want try for yourself? Request a free 30-day evaluation for the whole Amsterdam Modeling Suite.

Newsletter: tips & tricks, highlights, events

Would you like to keep up to date with the latest developments in the Amsterdam Modeling Suite and the SCM team, learn more about new applications and functionality?
Subscribe to our newsletter!

You have already subscribed. Thank you! If you don't receive our newsletters, send us an email.

H. Lu, J. Yu, G. Chen, and S. Sun, Theoretical screening of novel electrode materials for lithium–ion
batteries from industrial polymers, Ionics (2019)

Key concepts