Highlights with ‘SOC-TDDFT’

Intersystem crossing through spin-orbit coupling in Os(II) complexes

The Os(fipz)(tfa)(CO)3 (tfa = trifluoroacetate, fipz=3-trifluoromethyl-5-(1-isoquinolinyl)-1,2-pyrazole) complex shows excitation-dependent emission quantum yield. The higher-energy excitation (< 340 nm) contributes more to phosphorescence than fluorescence, implying stronger intersystem crossing (ISC) for highly excited singlet states. Theoretical...

Spin-orbit coupling increases dye-sensitized solar cells efficiency

The incident photon-to-current-conversion efficiency (IPCE) of dye-sensitized solar cells depends, amongst others, on the light-harvesting capabilities of the dye. In two recent studies, researchers from the Computational Lab for Hybrid/Organic Photovoltaics of CNR-ISTM Perugia, Italy,...

Predicting phosphorescent rates of Ir(III) complexes

The theoretical luminescence efficiency of fluorescent-only organic light-emitting diodes (OLEDs) can be increased from 25% to 100% by harvesting triplet excitons with transition metal complexes, most notably Ir(III). In a recent J. Phys. Chem. C...

Case study on OLED modeling with ADF

Mr. Kento Mori of Ryoka (now MOLSIS), reselling ADF in Japan, have conducted a case study on fac-tris(2-phenylpyridine)iridium (Ir(ppy)3), bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic) and bis(2-benzo[b]thiophen-2-yl-pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), molecules of great interest in the development of Organic Light Emitting Diodes...

Ru L2,3-edges XANES specta of a di-Ruthenium catalyst

L2,3-edges X-ray absorption near edge structure (XANES) spectra – transitions from 2p to εs and εd levels – contain important information about the electronic structure of transition metals in materials and molecules. To correctly interpret...

Understanding OLED phosphorescence with SOC-TDDFT

Organic light emitting diodes (OLEDs) are used in displays in smartphones and televisions, and future applications include general lighting and flexible screens. Phosphorescent emitters typically achieve higher quantum efficiencies. At the University of Queensland’s Centre...