Geometry optimization

A geometry optimization is the process of changing the system’s geometry (the nuclear coordinates and potentially the lattice vectors) to minimize the total energy of the systems. This is typically a local optimization, i.e. the optimization converges to the next local minimum on the potential energy surface (PES), given the initial system geometry specified in the System block. In other words: The geometry optimizer moves “downhill” on the PES into the local minimum.

Geometry optimizations are performed by selecting them as the Task. The details of the optimization can be configured in the corresponding block:

Task GeometryOptimization
GeometryOptimization
   Convergence
      Energy float
      Gradients float
      Quality [VeryBasic | Basic | Normal | Good | VeryGood | Custom]
      Step float
      StressEnergyPerAtom float
   End
   MaxIterations integer
   CalcPropertiesOnlyIfConverged Yes/No
   OptimizeLattice Yes/No
   KeepIntermediateResults Yes/No
   PretendConverged Yes/No
   MaxRestarts integer
   RestartDisplacement float
End

Convergence criteria

GeometryOptimization
Type

Block

Description

Configures details of the geometry optimization and transition state searches.

Convergence
Type

Block

Description

Convergence is monitored for up to 4 quantities: the energy change, the Cartesian gradients, the Cartesian step size, and for lattice optimizations the stress energy per atom. Convergence criteria can be specified separately for each of these items.

Energy
Type

Float

Default value

1e-05

Unit

Hartree

Value Range

value > 0

GUI name

Energy convergence

Description

The criterion for changes in the energy. The energy is considered converged when the change in energy is smaller than this threshold times the number of atoms.

Gradients
Type

Float

Default value

0.001

Unit

Hartree/Angstrom

Value Range

value > 0

GUI name

Gradient convergence

Description

Threshold for nuclear gradients.

Quality
Type

Multiple Choice

Default value

Custom

Options

[VeryBasic, Basic, Normal, Good, VeryGood, Custom]

GUI name

Convergence

Description

A quick way to change convergence thresholds: ‘Good’ will reduce all thresholds by an order of magnitude from their default value. ‘VeryGood’ will tighten them by two orders of magnitude. ‘Basic’ and ‘VeryBasic’ will increase the thresholds by one or two orders of magnitude respectively.

Step
Type

Float

Default value

0.01

Unit

Angstrom

Value Range

value > 0

GUI name

Step convergence

Description

The maximum Cartesian step allowed for a converged geometry.

StressEnergyPerAtom
Type

Float

Default value

0.0005

Unit

Hartree

Value Range

value > 0

Description

Threshold used when optimizing the lattice vectors. The stress is considered ‘converged’ when the maximum value of stress_tensor * cell_volume / number_of_atoms is smaller than this threshold (for 2D and 1D systems, the cell_volume is replaced by the cell_area and cell_length respectively).

A geometry optimization is considered converged when all the following criteria are met:

  1. The difference between the bond energy at the current geometry and at the previous geometry step is smaller than Convergence%Energy times the number of atoms in the system.

  2. The maximum Cartesian nuclear gradient is smaller than Convergence%Gradient.

  3. The root mean square (RMS) of the Cartesian nuclear gradients is smaller than 2/3 Convergence%Gradient.

  4. The maximum Cartesian step is smaller than Convergence%Step.

  5. The root mean square (RMS) of the Cartesian steps is smaller than 2/3 Convergence%Step.

Note: If the maximum and RMS gradients are 10 times smaller than the convergence criterion, then criteria 4 and 5 are ignored.

The Convergence%Quality sets the criteria as follows:

Quality

Energy (Ha)

Gradients (Ha/Å)

Step (Å)

StressEnergyPerAtom (Ha)

VeryBasic

10⁻³

10⁻¹

1

5×10⁻²

Basic

10⁻⁴

10⁻²

0.1

5×10⁻³

Normal

10⁻⁵

10⁻³

0.01

5×10⁻⁴

Good

10⁻⁶

10⁻⁴

0.001

5×10⁻⁵

VeryGood

10⁻⁷

10⁻⁵

0.0001

5×10⁻⁶

Some remarks on the choice of the convergence thresholds:

  • Molecules may differ very much in the stiffness around the energy minimum. Using the standard convergence thresholds without second thought is therefore not recommended. Strict criteria may require a large number of steps, while a loose threshold may yield geometries that are far from the minimum (with respect to atom-atom distances, bond-angles etc…) even when the total energy of the molecule might be very close to the value at the minimum. It is good practice to consider first what the objectives of the calculation are. The default settings in AMS are intended to be reasonable for most applications, but inevitably situations may arise where they are inadequate.

  • The convergence threshold for the coordinates (Convergence%Step) is not a reliable measure for the precision of the final coordinates. Usually it yields a reasonable estimate (order of magnitude), but to get accurate results one should tighten the criterion on the gradients, rather than on the steps (coordinates). (The reason for this is that with the Quasi-Newton based optimizers the estimated uncertainty in the coordinates is related to the used Hessian, which is updated during the optimization. Quite often it stays rather far from an accurate representation of the true Hessian. This does usually not prevent the program from converging nicely, but it does imply a possibly incorrect calculation of the uncertainty in the coordinates.)

  • Note that tight convergence criteria for the geometry optimization require accurate and noise-free gradients from the engine. For some engines this might mean that their numerical accuracy has to be increased for geometry optimization with tight convergence criteria, see e.g. the NumericalQuality keyword in the BAND manual.

The maximum number of geometry iterations allowed to locate the desired structure is specified with the MaxIterations keyword:

GeometryOptimization
MaxIterations
Type

Integer

Value Range

value >= 0

GUI name

Maximum number of iterations

Description

The maximum number of geometry iterations allowed to converge to the desired structure.

CalcPropertiesOnlyIfConverged
Type

Bool

Default value

Yes

Description

Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or Phonons, only if the optimization (or transition state search) converged. If False, the properties will be computed even if the optimization did not converge.

PretendConverged
Type

Bool

Default value

No

Description

Normally a non-converged geometry optimization is considered an error. If this keyword is set to True, the optimizer will only produce a warning and still claim that the optimization is converged. (This is mostly useful for scripting applications, where one might want to consider non-converged optimizations still successful jobs.)

If the geometry optimization does not converge within this many steps it is considered failed and the iteration aborted, i.e. PES point properties block will not be calculated at the last geometry. The default maximum number of steps is chosen automatically based on the used optimizer and the number of degrees of freedom to be optimized. The default is a fairly large number already, so if the geometry has not converged (at least to a reasonable extent) within that many iterations you should step back and consider the underlying cause rather than simply increase the allowed number of iterations and try again.

Automatic restarts

While a geometry optimization aims to find a (local) PES minimum, it may occur that it ends up finding a saddle point instead. The PESPointCharacter property keyword can be used to quickly calculate the lowest few Hessian eigenvalues to determine what kind of stationary PES point the optimization found. More information on this feature can be found on its Documentation Page. Since AMS2022.1, geometry optimizations with enabled PES point characterization can automatically restart when a transition state (or higher order saddle point) is found: the geometry is distorted along the lowest frequency mode and the optimizer run again. The applied distortion is often symmetry breaking in this case, so this automatic restarting is only enabled if the system does not have any symmetry operators or the use of symmetry is explicitly disabled using the UseSymmetry keyword. Furthermore the automatic restarting must be explicitly enabled by setting the MaxRestarts option to a value >0. Of course the PES point characterization needs to be enabled too:

GeometryOptimization
   MaxRestarts 5
End

UseSymmetry False

Properties
   PESPointCharacter True
End

Details of the automatic restarting can configured with the following keywords:

GeometryOptimization
MaxRestarts
Type

Integer

Default value

0

Description

If a geometry optimization of a system with no symmetry operators (or with explicitly disabled symmetry: UseSymmetry False) and enabled PES point characterization converges to a transition state (or higher order saddle point), it can be restarted automatically after a small displacement along the imaginary vibrational mode. In case the restarted optimization again does not find a minimum, this can happen multiple times in succession. This keyword sets the maximum number of restarts. The default value is 0, so the automatic restarting is disabled by default.

RestartDisplacement
Type

Float

Default value

0.05

Unit

Angstrom

Description

If a geometry optimization of a system with no symmetry operators (or with explicitly disabled symmetry: UseSymmetry False) and enabled PES point characterization converges to a transition state (or higher order saddle point), it can be restarted automatically after a small displacement along the imaginary vibrational mode. This keywords sets the size of the displacement for the furthest moving atom.

Lattice optimization

For periodic systems the lattice degrees of freedom can be optimized in addition to the nuclear positions.

GeometryOptimization
OptimizeLattice
Type

Bool

Default value

No

Description

Whether to also optimize the lattice for periodic structures. This is currently supported with the Quasi-Newton, FIRE, and L-BFGS optimizers.

See also Constrained optimization for constrained lattice optimizations.

Keep all results files

The GeometryOptimization block also contains some technical options:

GeometryOptimization
KeepIntermediateResults
Type

Bool

Default value

No

Description

Whether the full engine result files of all intermediate steps are stored on disk. By default only the last step is kept, and only if the geometry optimization converged. This can easily lead to huge amounts of data being stored on disk, but it can sometimes be convenient to closely monitor a tricky optimization, e.g. excited state optimizations going through conical intersections, etc. …

Constrained optimization

The AMS driver also allows to perform constrained optimizations, where a number of specified degrees of freedom are fixed to particular values.

The desired constraints are specified in the Constraints block at the root level of the AMS input file:

Constraints
   Atom integer
   AtomList integer_list
   FixedRegion string
   Coordinate integer [x|y|z] float?
   Distance (integer){2} float
   All ... [Bonds|Triangles] ...
   Angle (integer){3} float
   Dihedral (integer){4} float
   SumDist (integer){4} float
   DifDist (integer){4} float
   BlockAtoms integer_list
   Block string
   FreezeStrain [xx] [xy] [xz] [yy] [yz] [zz]
   EqualStrain  [xx] [xy] [xz] [yy] [yz] [zz]
End
Constraints
Type

Block

Description

The Constraints block allows geometry optimizations and potential energy surface scans with constraints. The constraints do not have to be satisfied at the start of the calculation.

The different types constraints are described with examples below.

Note that in principle an arbitrary number of constraints can be specified and thus combined. However, it is the user’s responsibility to ensure that the specified constraints are actually compatible with each other, meaning that it is theoretically possible to satisfy all of them at the same time. The AMS driver does not detect this kind of problems, but the optimization will show very unexpected results. Furthermore, for calculations involving block constraints the following restrictions apply:

  • There should be no other constrained coordinates used together with block constraints although this may work in many situation.

  • The user should absolutely avoid specifying other constraints that include atoms of a frozen block.

Fixed atoms

The following constraints can be used to fix atoms in space.

Atom atomIdx

Fix the atom with index atomIdx at the initial position, as given in the System%Atoms block.

AtomList [atomIdx1 .. atomIdxN]

Fix all atoms in the list at the initial position, as given in the System%Atoms block.

FixedRegion regionName

Fix all atoms in a region to their initial positions.

Coordinate atomIdx [x|y|z] coordValue?

Constrain the atom with index atomIdx (following the order in the System%Atoms block) to have a cartesian coordinate (x, y or z) of coordValue (given in Angstrom). If the coordValue is missing, the coordinate will be fixed to its initial value.

Internal degrees of freedom

The following options allow constraints of internal degrees of freedom, such as distances, angles and dihedral angles.

Distance atomIdx1 atomIdx2 distValue

Constrain the distance between the atoms with index atomIdx1 and atomIdx2 (following the order in the System%Atoms block) to distValue, given in Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 angleValue

Constrain the angle (1)–(2)–(3) between the atoms with indices atomIdx1-3 (as given by their order in the System%Atoms block) to angleValue, given in degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 dihedValue

Constrain the dihedral angle (1)–(2)–(3)–(4) between the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms block) to dihedValue, given in degrees.

SumDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 sumDistValue

Constrain the sum of the distances R(1,2)+R(3,4) between the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms block) to sumDistValue, given in Angstrom.

DifDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 difDistValue

Constrain the difference between the distances R(1,2)-R(3,4) of the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms block) to difDistValue, given in Angstrom.

Note that the above constraints do not need to be satisfied at the beginning of the optimization.

The Distance keyword described above can be used to set up constraints for specific pairs of atoms in the system. For some applications, this input can be cumbersome and one would rather specify a constraint for all bonds of a particular type. Since the AMS2022.1 release, there is a simplified input for this using the All keyword. The All keyword allows generating distance constraints for matching bonds defined in the System block. The bonds for which distance constraints will be generated can be selected based on the elements of the bonded atoms, as well as the bond order defined in the System block. The following example would constrain all carbon-carbon single bonds to a distance of 1.4 Angstrom, and all bonds with hydrogen atoms to their initial distance:

Constraints
   All single bonds C C to 1.4
   All bonds H *
End

It is also possible to constrain neighboring bonds and the angle between them using the combination All triangles. This is mostly useful for water molecules, which can then easily be made entirely rigid:

All triangles H O H

Warning

It is very easy to generate a large number of interdependent distance constraints using the All triangles keyword. Interdependent distance constraints can impair optimizer performance and should be avoided. Consider for example the input All triangles H C H for methane: there are 6 triangles matching this description in CH4, generating 18 interdependent distance constraints. A rigid CH4 would be better set up using a block constraint.

See below for a full description of the Constraints%All keyword.

Constraints
All
Type

String

Recurring

True

Description

Fix multiple distances using one the following formats: All [bondOrder] bonds at1 at2 [to distance] All triangles at1 at2 at3 The first option constrains all bonds between atoms at1 at2 to a certain length, while the second - bonds at1-at2 and at2-at3 as well as the angle between them. The [bondOrder] can be a number or a string such as single, double, triple or aromatic. If it’s omitted then any bond between specified atoms will be constrained. Atom names are case-sensitive and they must be as they are in the Atoms block, or an asterisk ‘*’ denoting any atom. If the distance is omitted then the bond length from the initial geometry is used. Important: only the bonds present in the system at the start of the simulation can be constrained, which means that the bonds may need to be specified in the System block. Valid examples: All single bonds C C to 1.4 All bonds O H to 0.98 All bonds O H All bonds H * All triangles H * H

Block constraints

Block constraints can be used to treat parts of the System as a rigid unit in the optimization.

BlockAtoms [atomIdx1 ... atomIdxN]

Creates a block constraint (freezes all internal degrees of freedom) for a set of atoms identified by the list of integers [atomIdx1 ...  atomIdxN]. These atom indices refer to the order of the atoms in the System%Atoms block.

Block regionName

Creates a block constraint (freezes all internal degrees of freedom) for a all atoms in a region defined in the System%Atoms block. Example:

System
   Atoms
      C  0.0  0.0  0.0    region=myblock
      C  0.0  0.0  1.0    region=myblock
      C  0.0  1.0  0.0
   End
End
Constraints
   Block myblock
End

Lattice constraints

For lattice optimizations, the following constraints can be used on the lattice degrees of freedom:

FreezeStrain [xx] [xy] [xz] [yy] [yz] [zz]

Exclusively for lattice optimizations: Freezes any lattice deformation corresponding to a particular component of the strain tensor. Accepts a set of strain components [xx, xy, xz, yy, yz, zz] to be frozen.

EqualStrain  [xx] [xy] [xz] [yy] [yz] [zz]

Exclusively for lattice optimizations: Accepts a set of strain components [xx, xy, xz, yy, yz, zz] which are to be kept equal. The applied strain will be determined by the average of the corresponding stress tensors components.

Restraints

Not all optimizers support constraints. An alternative is to use so-called restraints. These are not exact constraints, but rather a number of springs that pull the system towards the preferred constraints, see Restraints.

Optimization under pressure / external stress

Pressure or non-isotropic external stress can be included in your simulation via the corresponding engine addons.

Optimization methods

The AMS driver implements a few different geometry optimization algorithms. It also allows to choose the coordinate space in which the optimization is performed:

GeometryOptimization
   Method [Auto | Quasi-Newton | FIRE | L-BFGS | ConjugateGradients | Dimer]
   CoordinateType [Auto | Delocalized | Cartesian]
End
GeometryOptimization
Method
Type

Multiple Choice

Default value

Auto

Options

[Auto, Quasi-Newton, FIRE, L-BFGS, ConjugateGradients, Dimer]

GUI name

Optimization method

Description

Select the optimization algorithm employed for the geometry relaxation. Currently supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the fast inertial relaxation method (FIRE), the limited-memory BFGS method, and the conjugate gradients method. The default is to choose an appropriate method automatically based on the engine’s speed, the system size and the supported optimization options.

CoordinateType
Type

Multiple Choice

Default value

Auto

Options

[Auto, Delocalized, Cartesian]

GUI name

Optimization space

Description

Select the type of coordinates in which to perform the optimization. ‘Auto’ automatically selects the most appropriate CoordinateType for a given Method. If ‘Auto’ is selected, Delocalized coordinates will be used for the Quasi-Newton method, while Cartesian coordinates will be used for all other methods.

We strongly advise leaving both the Method as well as the Coordinate type on the Auto setting. There are many restrictions as to which optimizer and coordinate type can be used together with which kind of optimization. The following (roughly) sketches the compatibility of the different optimizers and options:

Optimizer

Constraints

Lattice opt.

Coordinate types

Quasi-Newton

All, except strain

Yes

All

FIRE

Fixed coordinates, distances, strain

Yes

Cartesian

L-BFGS

No

Yes

Cartesian

Conjugate gradients

No

No

Cartesian

Furthermore for optimal performance the optimizer should be chosen with the speed of the engine: a faster engine in combination should use an optimizer with little overhead (FIRE), while slower engines should use optimizers that strictly minimize the number of steps (Quasi-Newton). This is all handled automatically by default, and we recommend changing Method and Coordinate only in case there are problems with the automatic choice.

The following subsections list the strengths and weaknesses of the individual optimizers in some more detail, motivating why which optimizer is chosen automatically under which circumstances.

Quasi-Newton

This optimizer implements a quasi Newton approach 1 2 3, using the Hessian for computing changes in the geometry so as to reach a local minimum. The Hessian itself is typically approximated in the beginning and updated in the process of optimization. It uses delocalized coordinates by default both for molecules and periodic systems. The molecular part is based mainly on the work by Marcel Swart 4. Cartesian coordinates are used in the presence of an external electric field and/or frozen atom constraints.

The Quasi-Newton (QN) optimizer supports all types of constraints and can be used for both molecular and periodic systems, including lattice optimizations. For cases where the optimization can be performed in delocalized coordinates, the number of steps taken to reach the local minimum is usually smaller than when optimizing in Cartesian ones. For fast compute engines, the overhead of the QN optimizer can become a bottleneck of the calculation, thus a more light-weight optimizer such as FIRE may give an better overall performance. In principle, a QN optimization in delocalized coordinates may run out of memory for a very large system (say over 1000 atoms) because of the SVD step. However, since it is going to be used for a moderate-to-slow engine we still recommend sticking to it for the benefit of fewer steps. Because of these properties the QN optimizer is the default in AMS for all kinds of optimizations with moderate and slow engines, such DFTB and ADF. It is also used as the optimizer back-end for the PES scan task, the transition state search as well as the calculation of the elastic tensor.

Details of the Quasi-Newton optimizer are configured in a dedicated block:

GeometryOptimization
   Quasi-Newton
      MaxGDIISVectors integer
      Step
         TrustRadius float
         VaryTrustRadius Yes/No
      End
      UpdateTSVectorEveryStep Yes/No
   End
End
GeometryOptimization
Quasi-Newton
Type

Block

Description

Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors
Type

Integer

Default value

0

Description

Sets the maximum number of GDIIS vectors. Setting this to a number >0 enables the GDIIS method.

Step
Type

Block

Description

TrustRadius
Type

Float

Description

Initial value of the trust radius.

VaryTrustRadius
Type

Bool

Description

Whether to allow the trust radius to change during optimization. By default True during energy minimization and False during transition state search.

UpdateTSVectorEveryStep
Type

Bool

Default value

Yes

GUI name

Update TSRC vector every step

Description

Whether to update the TS reaction coordinate at each step with the current eigenvector.

The Quasi-Newton optimizer uses the Hessian to compute the step of the geometry optimization. The Hessian is typically approximated in the beginning and then updated during the optimization. A very good initial Hessian can therefore increase the performance of the optimizer and lead to faster and more stable convergence. The choice of the initial Hessian can be configured in a dedicated block:

GeometryOptimization
   InitialHessian
      File string
      Type [Auto | UnitMatrix | Swart | FromFile | Calculate | CalculateWithFastEngine]
   End
End
GeometryOptimization
InitialHessian
Type

Block

Description

Options for initial model Hessian when optimizing systems with the Quasi-Newton method.

File
Type

String

GUI name

Initial Hessian from

Description

KF file containing the initial Hessian (or the results dir. containing it). This can be used to load a Hessian calculated in a previously with the [Properties%Hessian] keyword.

Type
Type

Multiple Choice

Default value

Auto

Options

[Auto, UnitMatrix, Swart, FromFile, Calculate, CalculateWithFastEngine]

GUI name

Initial Hessian

Description

Select the type of initial Hessian. Auto: let the program pick an initial model Hessian. UnitMatrix: simplest initial model Hessian, just a unit matrix in the optimization coordinates. Swart: model Hessian from M. Swart. FromFile: load the Hessian from the results of a previous calculation (see InitialHessian%File). Calculate: compute the initial Hessian (this may be computationally expensive and it is mostly recommended for TransitionStateSearch calculations). CalculateWithFastEngine: compute the initial Hessian with a faster engine.

While there are some options for the construction of approximate model Hessians, the best initial Hessians are often those calculated explicitly at a lower level of theory, e.g. the real DFTB Hessian can be used the initial Hessian for an optimization with the more accurate BAND engine. Using the CalculateWithFasterEngine keyword can be used to automatically chose a fast engine at a lower level of theory. What the lower level of theory is depends on the main engine used in the calculation: DFTB with the GFN1-xTB model is used as the lower level of theory for relatively slow engines, e.g. DFT based engines. For semi-empirical engines like DFTB or MOPAC, the lower level of theory is currently UFF. If more control over the lower level engine is needed, the initial Hessian can be calculated with a user defined engine and then loaded from file, see this example.

FIRE

The Fast Inertial Relaxation Engine 5 based optimizer has basically no overhead per step, so that the speed of the optimization purely depends on the performance of the used compute engine. As such it is a good option for large systems or fast compute engines, where the overhead of the Quasi-Newton optimizer would be significant. Note that is also supports fixed atom constraints and coordinate constraints (as long as the value of the constrained coordinate is already satisfied in the input geometry), distance constraints, as well as lattice optimizations (with strain constraints).

FIRE is selected as the default optimizer for fast compute engines if it is compatible with all other settings of the optimization (i.e. no unsupported constraints or coordinate types).

Note

FIRE is a very robust optimizer. In case of convergence problems with the other methods, it is a good idea to see if the optimization converges with FIRE. If it does not, it is very likely that the problem is not the optimizer but the shape of the potential energy surface …

The details of the FIRE optimizer are configured in a dedicated block. It is quite easy to make the optimization numerically unstable when tweaking these settings, so we strongly recommend leaving everything at the default values.

GeometryOptimization
   FIRE
      AllowOverallRotation Yes/No
      AllowOverallTranslation Yes/No
      MapAtomsToUnitCell Yes/No
      NMin integer
      alphaStart float
      dtMax float
      dtStart float
      fAlpha float
      fDec float
      fInc float
      strainMass float
   End
End
GeometryOptimization
FIRE
Type

Block

Description

This block configures the details of the FIRE optimizer. The keywords name correspond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

AllowOverallRotation
Type

Bool

Default value

Yes

Description

Whether or not the system is allowed to freely rotate during the optimization. This is relevant when optimizing structures in the presence of external fields.

AllowOverallTranslation
Type

Bool

Default value

No

Description

Whether or not the system is allowed to translate during the optimization. This is relevant when optimizing structures in the presence of external fields.

MapAtomsToUnitCell
Type

Bool

Default value

No

Description

Map the atoms to the central cell at each geometry step.

NMin
Type

Integer

Default value

5

Description

Number of steps after stopping before increasing the time step again.

alphaStart
Type

Float

Default value

0.1

Description

Steering coefficient.

dtMax
Type

Float

Default value

1.0

Unit

Femtoseconds

Description

Maximum time step used for the integration. For ReaxFF and APPLE&P, this value is reduced by 50%.

dtStart
Type

Float

Default value

0.25

Unit

Femtoseconds

Description

Initial time step for the integration.

fAlpha
Type

Float

Default value

0.99

Description

Reduction factor for the steering coefficient.

fDec
Type

Float

Default value

0.5

Description

Reduction factor for reducing the time step in case of uphill movement.

fInc
Type

Float

Default value

1.1

Description

Growth factor for the integration time step.

strainMass
Type

Float

Default value

0.5

Description

Fictitious relative mass of the lattice degrees of freedom. This controls the stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with smaller values resulting in a more aggressive optimization of the lattice.

Limited-memory BFGS

AMS also offers an L-BFGS based geometry optimizer. It usually converges faster than FIRE, but does not support constrained optimizations. For periodic systems it can be quite good for lattice optimizations. The new implementation has not been thoroughly tested yet, therefore never selected automatically. For large systems and fast engines you may want to disable symmetry: simply the detection of (non-existing) symmetry may be a huge overhead.

GeometryOptimization
   HessianFree
      Step
         MaxCartesianStep float
         MinRadius float
         TrialStep float
         TrustRadius float
      End
   End
End
GeometryOptimization
HessianFree
Type

Block

Description

Configures details of the Hessian-free (conjugate gradients or L-BFGS) geometry optimizer.

Step
Type

Block

Description

MaxCartesianStep
Type

Float

Default value

0.1

Unit

Angstrom

Description

Limit on a single Cartesian component of the step.

MinRadius
Type

Float

Default value

0.0

Unit

Angstrom

Description

Minimum value for the trust radius.

TrialStep
Type

Float

Default value

0.0005

Unit

Angstrom

Description

Length of the finite-difference step when determining curvature. Should be smaller than the step convergence criterion.

TrustRadius
Type

Float

Default value

0.2

Unit

Angstrom

Description

Initial value of the trust radius.

Conjugate gradients

AMS also offers a conjugate gradients based geometry optimizer, as it was also implemented in the pre-2018 releases of the DFTB program. However, it is usually slightly slower than FIRE, and supports neither lattice nor constrained optimizations. It is therefore never selected automatically, and we do not recommend using it. Like L-BFGS, the conjugate gradients optimizer is also configured in the HessianFree block, see L-BFGS section above for details.

Dimer method for TS seach

The dimer method 6 works differently from the quasi-Newton. It is designed to always follow the lowest mode from the initial geometry without requiring the Hessian. The mode (a.k.a. the dimer vector) is defined by two close-lying points (midpoint and endpoint) on the potential energy surface. The vector’s direction is found by minimizing the PES curvature (finite-difference second derivative of the energy along the vector) on the hypersphere around the midpoint. This is achieved by iteratively rotating the vector until the estimated rotation angle drops below the AngleThreshold value. These are called rotation iterations. After that, a translation iteration is performed that maximized the energy along the dimer vector and minimizes it in all other directions. The optimization is considered converged when the largest energy gradient component drops below the Convergence%Gradient value.

Both the rotation and the translation are performed in Cartesian coordinates using the L-BFGS method as described in 7. The L-BFGS trust radii are set by the RotationTrustRadius and TranslationTrustRadius keywords, respectively. The TS search can be restricted to a subset of atomic coordinates defined by the Region keyword, in which case only atoms of the selected region are moved during rotations.

Each translation iteration requires two engine evaluations: one for the midpoint and one for the endpoint. Each rotation iteration additionally requires one or two engine evaluations depending on the ExtrapolateForces setting. It should be noted that with the default settings the rotations are usually necessary only at the beginning of the optimization. At the later steps the dimer vector (the direction of the search) does not usually change much.

By default, the initial value of the search vector is chosen randomly. This can be changed using either a ReactionCoordinate or a System final input block described in the Transition state search section.

GeometryOptimization
   Dimer
      AngleThreshold float
      DimerDelta float
      ExtrapolateForces Yes/No
      LBFGSMaxVectors integer
      MaxRotationIterations integer
      Region string
      RotationTrustRadius float
      TranslationTrustRadius float
   End
End
GeometryOptimization
Dimer
Type

Block

Description

Options for the Dimer method for transition state search.

AngleThreshold
Type

Float

Default value

1.0

Unit

Degree

Description

The rotation is considered converged when the the rotation angle falls below the specified threshold.

DimerDelta
Type

Float

Default value

0.01

Unit

Angstrom

Description

Euclidian distance between the midpoint and the endpoint.

ExtrapolateForces
Type

Bool

Default value

Yes

Description

Set to false to call engine to calculate forces at the extrapolated rotation angle instead of extrapolating them.

LBFGSMaxVectors
Type

Integer

Default value

10

Description

Max number of vectors for the L-BFGS algorithm to save.

MaxRotationIterations
Type

Integer

Default value

10

Description

Maximum number of rotation iterations for a single translation step.

Region
Type

String

Default value

*

Description

Include only atoms of the specified region(s) in the rotations, which allows searching for a transition state involving selected atoms only.

RotationTrustRadius
Type

Float

Default value

0.1

Unit

Angstrom

Description

L-BFGS trust radius during rotation iterations.

TranslationTrustRadius
Type

Float

Default value

0.1

Unit

Angstrom

Description

L-BFGS trust radius during translation iterations.

Troubleshooting

Failure to converge

First of all one should look how the energy changed during the latest ten or so iterations. If the energy is decreasing more or less consistently, possibly with occasional jumps, then there is probably nothing wrong with the optimization. This behavior is typical in the cases when the starting geometry was far away from the minimum and the optimization has a long way to go. Just increase the allowed number of iterations, restart from the latest geometry and see if the optimization converges.

If the energy oscillates around some value and the energy gradient hardly changes then you may need to look at the calculation setup.

The success of geometry optimization depends on the accuracy of the calculated forces. The default accuracy settings are sufficient in most cases. There are, however, cases when one has to increase the accuracy in order to get geometry optimization converged. First of all, this may be necessary if you tighten the optimization convergence criteria. In some cases it may be necessary to increase the accuracy also for the default criteria. Please refer to the engine manuals for instructions on how to increase the accuracy of an engine’s energies and gradients. Often this is done with the NumericalQuality keyword in the engine input.

A geometry optimization can also fail to converge because the underlying potential energy surface is problematic, e.g. it might be discontinuous or not have a minimum at which the gradients vanish. This often indicates real problems in the calculation setup, e.g. an electronic structure that changes fundamentally between subsequent steps in the optimization. In these cases it is advisable to run a single point calculation at the problematic geometries and carefully check if the results are physically actually sensible.

Finally it can also be a technical problem with the specific optimization method used. In these cases switching to another method could help with convergence problems. We recommend first trying the FIRE optimizer, as it is internally relatively simple and stable.

Converged, but did not find a minimum on the PES

If Normal Modes or PES point characterization were requested, the PES character of the final optimized geometry is checked.

While you would generally expect the final optimized geometry to be a local minimum (i.e. no imaginary frequencies), it can happen for the optimization procedure to converge to a saddle point instead (i.e. a stationary point on the PES with one or more imaginary frequency). In that case you will get the following error message:

ERROR: Geometry optimization failed! (Converged, but did not find a minimum on the PES.)

Depending on your application, (small) imaginary frequencies might not be a problem. But if you want to get rid of all imaginary frequencies, these are a few recommendations:

  • Try using a tighter gradient convergence threshold (GeometryOptimization%Convergence%Gradient). E.g. 1.0E-4 (instead of the default 1.0E-3).

  • Try using the MaxRestart option. Reasonable values for MaxRestart range from 2 to 20 (if there are many imaginary frequencies, a larger value might be needed). When using the MaxRestart option, you might try increasing RestartDisplacement.

  • Open the results with the AMSSpectra GUI module and visually inspect the negative/imaginary vibrational modes. You can then manually perturb the input geometry along those modes and re-run the optimization.

  • If the system is symmetric and symmetry is enabled, the optimizer will try not to break the symmetry of the system. It might be that in order to reach the local minimum, symmetry must be broken. Try disabling symmetry (UseSymmetry False) and slightly perturb the atomic coordinates in order to break the symmetry (or use the PerturbCoordinates option.)

Restarting a geometry optimization

During a running optimization the system’s geometry is written out to the AMS driver’s output file ams.rkf after every step (in the Molecule section). This means that crashed or otherwise canceled geometry optimizations can be restarted by simply loading the last frame from there using the LoadSystem keyword, see its documentation in the system definition section of this manual:

LoadSystem File=my_crashed_GO.results/ams.rkf

This can of course also be used to continue an optimization but e.g. with tighter convergence criteria or a different optimizer, as it essentially starts a new geometry optimization from the previous geometry, and does not propagate any information internal to the optimizer (e.g. the approximate Hessian for the Quasi-Newton optimizer or the FIRE velocities) to the new job. As such it might take a few more steps to convergence than if the original job had continued, but allows for additional flexibility.

References

1

L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of Chemical Physics 88, 322 (1988)

2

L. Versluis, The determination of molecular structures by the HFS method, PhD thesis, University of Calgary, 1989

3

L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density functional theory, Journal of Chemical Physics 95, 7401 (1991)

4

M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of Quantum Chemistry 106, 2536 (2006)

5

E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Structural Relaxation Made Simple, Physical Review Letters 97, 170201 (2006)

6
  1. Henkelman and H. Jonsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, Journal of Chemical Physics 111, 7010 (1999)

7
  1. Kästner and P. Sherwood, Superlinearly converging dimer method for transition state search, Journal of Chemical Physics 128, 014106 (2008)