Zeolite-catalyzed hydrolysis: DFT/DFTB calculations
The catalytic hydrolysis of propylene oxide in ZSM-5 was investigated using multi-layered ADF/DFTB calculations with QUILD. Using dispersion-corrected DFT (BP86-D3) at the high level and third-order DFTB (DFTB3) at the low level, both monopropylene glycol and dipropylene glycol are preferentially formed via a concerted mechanism, with a lower barrier for the formation of monopropylene glycol. Selectivity could be further increased by reducing the pore size to disfavor dipropylene glycol formation.
Multi-layer DFT/DFTB set-up and product flow (top) and concerted reaction pathway in ZSM-5 for monopropylene glycol formation
Newsletter
You have already subscribed to our newsletter. Thank you! If you don't receive our newsletters, email us.
Y. Horbatenko, J. P. Pérez, P. Hernández, M. Swart, and M. Solà, Reaction Mechanisms for the Formation of Mono- And Dipropylene Glycol from the Propylene Oxide Hydrolysis over ZSM-5 Zeolite, J. Phys. Chem. C, 118, 21952–21962 (2014)
Key conceptsADF catalysis DFTB Dispersion multi-layer oil & gas Reactivity