Zeolite-catalyzed hydrolysis: DFT/DFTB calculations

The catalytic hydrolysis of propylene oxide in ZSM-5 was investigated using multi-layered ADF/DFTB calculations with QUILD. Using dispersion-corrected DFT (BP86-D3) at the high level and third-order DFTB (DFTB3) at the low level,  both monopropylene glycol and dipropylene glycol are preferentially formed via a concerted mechanism, with a lower barrier for the formation of monopropylene glycol. Selectivity could be further increased by reducing the pore size to disfavor dipropylene glycol formation.


Multi-layer DFT/DFTB set-up and product flow (top) and concerted reaction pathway in ZSM-5 for monopropylene glycol formation


  • Check out more news items and research highlights.
    Why not explore AMS yourself with a free 30-day trial?
    Subscribe to our newsletter (~6 times a year) to keep up to date about news, job openings, functionality and events such as webinars and workshops!

Y. Horbatenko, J. P. Pérez, P. Hernández, M. Swart, and M. Solà, Reaction Mechanisms for the Formation of Mono- And Dipropylene Glycol from the Propylene Oxide Hydrolysis over ZSM-5 Zeolite, J. Phys. Chem. C, 118, 21952–21962 (2014)

Key concepts