Helpers¶
Useful static functions and classes used throughout the GloMPO package.
- class BoundGroup(iterable=(), /)[source]¶
 Used to better represent the parameter bounds in a human-readable but reusable way in YAML.
- exception CheckpointingError[source]¶
 Error raised during creation of a checkpoint which would result in an incomplete checkpoint.
- class FlowList(iterable=(), /)[source]¶
 Used to wrap lists which should appear in YAML flow style rather than default block style.
- class SplitOptimizerLogs(filepath='', propagate=False, formatter=None)[source]¶
 Splits print statements from child processes and threads to text files. If this filter is applied to a
Handleron the'glompo.optimizers'logger it will automatically separate the single'glompo.optimizers'logging stream into separate ones for each individual optimizer.- Parameters:
 
- filepath
 Directory in which new log files will be located.
- propagate
 If propagate is
Truethen the filter will allow the message to pass through the filter allowing all'glompo.optimizers'logging to be simultaneously recorded together.- formatter
 Formatting to be applied in the new logs. If not supplied the
loggingdefault is used.
- Examples:
 
>>> frmttr = logging.Formatter("%(levelname)s : %(name)s : %(processName)s :: %(message)s")
Adds individual handlers for each optimizer created. Format for the new handlers is set by
frmttrpropagate=Truesends the message on toopt_handlerwhich in this case issys.stdout.>>> opt_filter = SplitOptimizerLogs("diverted_logs", propagate=True, formatter=frmttr) >>> opt_handler = logging.StreamHandler(sys.stdout) >>> opt_handler.addFilter(opt_filter) >>> opt_handler.setFormatter(frmttr)
Messages of the
'INFO'level will propogate tosys.stdout.>>> opt_handler.setLevel('INFO') >>> logging.getLogger("glompo.optimizers").addHandler(opt_handler)
The level for the handlers made in
SplitOptimizerLogsis set at the higher level. Here'DEBUG'level messages will be logged to the files even though'INFO'level propagates to the console.>>> logging.getLogger("glompo.optimizers").setLevel('DEBUG')
Initialize a filter.
Initialize with the name of the logger which, together with its children, will have its events allowed through the filter. If no name is specified, allow every event.
- class WorkInDirectory(path)[source]¶
 Context manager to manage the creation of new files in a different directory from the working one.
- Parameters:
 
- path
 A directory to which the working directory will be changed on entering the context manager. If the directory does not exist, it will be created. The working directory is changed back on exiting the context manager.
- __all__ = ('SplitOptimizerLogs', 'nested_string_formatting', 'is_bounds_valid', 'distance', 'number_available_cores', 'glompo_colors', 'present_memory', 'rolling_min', 'unravel', 'infer_headers', 'deepsizeof', 'LiteralWrapper', 'FlowList', 'BoundGroup', 'literal_presenter', 'optimizer_selector_presenter', 'generator_presenter', 'flow_presenter', 'numpy_dtype_presenter', 'numpy_array_presenter', 'bound_group_presenter', 'unknown_object_presenter', 'WorkInDirectory', 'CheckpointingError', 'StopInterrupt', 'retry_unlink')¶
 Sundry Code Stubs
- deepsizeof(obj)[source]¶
 Recursively determines the byte size of an object. Any initialised objects (not including Python primitives) must correct implement
__sizeof__for this method to work correctly.
- distance(pt1, pt2)[source]¶
 Calculate the Euclidean distance between two points.
- Examples:
 
>>> distance([0,0,0], [1,1,1]) 1.7320508075688772
- generator_presenter(dumper, generator)[source]¶
 Unique YAML constructor for the
BaseGenerator.
- glompo_colors(opt_id=None)[source]¶
 Returns a matplotlib.colors.ListedColormap containing the custom GloMPO color cycle. If
opt_idis provided than the specific color at that index is returned instead.
- infer_headers(infer_from)[source]¶
 Infers tables.Col types based on a function evaluation return. Only used if
BaseFunction.headers()is not defined. The produced headings are required byFileLogger. Default header names will be used:'result_0', ..., 'result_N'.- Parameters:
 
- infer_from
 A function evaluation result
- Returns:
 
- Dict[str, tables.Col]
 Mapping of column names to type
- Examples:
 
>>> import tables >>> infer_headers((1232.1431423, [213, 345, 675], False, "valid")) {'result_0': tables.Float64Col(pos=0), 'result_1': tables.Int64Col((1, 3), pos=1), 'result_2': tables.BoolCol(pos=2), 'result_3': tables.StringCol(280, pos=3)}
- is_bounds_valid(bounds, raise_invalid=True)[source]¶
 Checks if provided parameter bounds are valid. ‘Valid’ is defined as meaning that every lower bound is less than the upper bound and every bound is finite.
- Parameters:
 
- bounds
 Sequence of min/max pairs indicating the interval in which the optimizer must search for each parameter.
- raise_invalid
 If
Trueraises an error if the bounds are invalid otherwise a bool is returned.
- Returns:
 
- bool
 Trueif the bounds are all valid,Falseotherwise.
- Raises:
 
- ValueError
 If
raise_invalidisTrueand bounds are invalid.
- Examples:
 
>>> is_bounds_valid([(0, 1), (-1, 0)]) True
>>> is_bounds_valid([(0, 0), (0, float('inf'))], False) False
- nested_string_formatting(nested_str)[source]¶
 Reformat strings produced by the
._CombiCoreclass.BaseStoppers andBaseExitConditions produce strings detailing their last evaluation. This method parses and indents each nested level of the string to make it more human-readable.- Parameters:
 
- nested_str
 Return produced by
BaseStopper.__str__()orBaseStopper.str_with_result().
- Returns:
 
- str
 String with added nesting and indenting.
- Examples:
 
>>> nested_string_formatting("[TrueStopper() AND\n" ... "[[TrueStopper() OR\n" ... "[FalseStopper() AND\n" ... "[TrueStopper() OR\n" ... "FalseStopper()]]]\n" ... "OR\n" ... "FalseStopper()]]") "TrueStopper() AND\n" \ "[\n" \ " [\n" \ " TrueStopper() OR\n" \ " [\n" \ " FalseStopper() AND\n" \ " [\n" \ " TrueStopper() OR\n" \ " FalseStopper()\n" \ " ]\n" \ " ]\n" \ " ]\n" \ " OR\n" \ " FalseStopper()\n" \ "]"
- number_available_cores()[source]¶
 Provides a consistent manner to get the number of available CPUs for a particular process. First, returns the environment variable NSCM if set. Second, tries to measure CPU affinity. Third, tries to return the number of physical cores present. Finally, returns the number of logical cores.
- optimizer_selector_presenter(dumper, opt_selector)[source]¶
 Unique YAML constructor for the
BaseSelector.
- present_memory(n_bytes, digits=2)[source]¶
 Accepts an integer number of bytes and returns a string formatted to the most appropriate units.
- Parameters:
 
- n_bytes
 Number of bytes to write in human readable format
- digits
 Number of decimal places to include in the result
- Returns:
 
- str
 Converted data quantity and units
- Examples:
 
>>> present_memory(123456789, 1) '117.7MB'
- rolling_min(x)[source]¶
 Returns a vector of shape
xwhere each index has been replaced by the smallest number seen thus far when reading the list sequentially from left to right.- Examples:
 
>>> rolling_min([3, 4, 5, 6, 2, 3, 4, 1, 2, 3]) [3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
- unknown_object_presenter(dumper, unknown_class)[source]¶
 Parses all remaining classes into strings and python primitives for YAML files. To ensure the YAML file is human readable and can be loaded only with native python types. This constructor parses all unknown objects into a dictionary containing their name and instance variables or, if uninitialised, just the class name.