Question 14

# Find the value of if \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align}

is equal to

\begin{align} (A) \pi \;\;(B) -\frac{\pi}{3}\;\; (C) \frac{\pi}{3} \;\;(D) \frac{2\pi}{3}\end{align}

is equal to

\begin{align} (A) \pi \;\;(B) -\frac{\pi}{3}\;\; (C) \frac{\pi}{3} \;\;(D) \frac{2\pi}{3}\end{align}

Answer

\begin{align} Let \;\; tan^{-1}(\sqrt 3)=x. \;\;Then\;\; tan x = \sqrt 3 = tan\left(\frac{\pi}{3}\right).\end{align}

We know that the range of the principal value branch of tan^{−1} is

\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right)\end{align}

\begin{align} \therefore tan^{-1}\sqrt3=\frac{\pi}{3}\end{align}

\begin{align} Let \;\; sec^{-1}\left(-2\right)=y \;\;Then\;\; sec y = -2 = -sec\left(\frac{\pi}{3}\right) = sec\left(\pi - \frac{\pi}{3}\right) = sec\left(\frac{2\pi}{3}\right)\end{align}

We know that the range of the principal value branch of sec^{−1} is

\begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right)\end{align}

\begin{align} \therefore sec^{-1}({-2})=\frac{2\pi}{3}\end{align}

Hence, \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align}

\begin{align} =\frac{\pi}{3} - \frac{2\pi}{3}=-\frac{\pi}{3}\end{align}

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:- Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = {1, 2, 3,13, 14} defined as

R = {(x, y): 3x − y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {(x, y): y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x − y is as integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) R = {(x, y): x and y work at the same place}

(b) R = {(x, y): x and y live in the same locality}

(c) R = {(x, y): x is exactly 7 cm taller than y}

(d) R = {(x, y): x is wife of y}

(e) R = {(x, y): x is father of y} - Q:- Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b
^{2}} is neither reflexive nor symmetric nor transitive. - Q:- Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
Prove that the Greatest Integer Function

*f*: R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:- Show that each of the relation R in the set A = { x ∈Z: 0≤x≤12}, A={x} given by

(i) R = { (a,b) : |a - b| is a multiple of 4}

(ii) R = {(a,b):a = b} is an equivalence relation.

Find the set of all elements related to 1 in each case. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.

- Q:- Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive. - Q:-
Consider

*f*: R → R given by*f(x)*= 4x + 3. Show that*f*is invertible. Find the inverse of*f*. - Q:-
Show that the Modulus Function

*f*: R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative. - Q:-
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)

*f*:**R → R**defined by*f(x)*= 3 – 4x(ii)

*f*:**R → R**defined by*f(x)*= 1 + x^{2 } - Q:- If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
- Q:-
Let

*f*: R → R be defined as f(x) = 3x. Choose the correct answer.(A)

*f*is one-one onto(B)

*f*is many-one onto(C)

*f*is one-one but not onto(D)

*f*is neither one-one nor onto. - Q:- If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
- Q:- Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- Q:-
The total revenue in Rupees received from the sale of

*x*units of a product is given byR (x) = 13x

^{2}+ 26x + 15Find the marginal revenue when

*x*= 7. - Q:-
The rate of change of the area of a circle with respect to its radius

*r*at*r*= 6 cm is(A) 10π (B) 12π (C) 8π (D) 11π

- NCERT Chapter

Copyright © 2021 saralstudy.com. All Rights Reserved.